Machine learning techniques for sentiment analysis

Authors

  • Jessica Olivares Lopez Benemérita Universidad Autónoma de Puebla. de Ciencias de la Computación.
  • Abraham Sánchez López Benemérita Universidad Autónoma de Puebla. de Ciencias de la Computación.
  • Rogelio González Velázquez Benemérita Universidad Autónoma de Puebla
  • María del Carmen Santiago Díaz Benemérita Universidad Autónoma de Puebla. de Ciencias de la Computación.
  • Ana Claudia Zenteno Vázquez Benemérita Universidad Autónoma de Puebla. de Ciencias de la Computación.

DOI:

https://doi.org/10.61467/2007.1558.2024.v15i5.554

Keywords:

Sentiment analysis, Machine Learning, Document classification

Abstract

Sentiment analysis stands out as one of the most dynamic and pivotal areas in the field of natural language processing. In this work, a range of machine learning strategies has been proposed, applied, and benchmarked for sentiment analysis, with a specific focus on supervised machine learning techniques. Various algorithms have been considered and applied to texts extracted from Twitter. Furthermore, the results are compared with works that applied unsupervised machine learning techniques to the same dataset.

Downloads

Published

2024-11-29

How to Cite

Olivares Lopez, J., Sánchez López, A., González Velázquez, R., Santiago Díaz, M. del C., & Zenteno Vázquez, A. C. (2024). Machine learning techniques for sentiment analysis. International Journal of Combinatorial Optimization Problems and Informatics, 15(5), 6–16. https://doi.org/10.61467/2007.1558.2024.v15i5.554

Issue

Section

Articles

Most read articles by the same author(s)