Early Detection of Students at High Risk of Academic Failure using Artificial Intelligence

Authors

  • Antonio Álvarez Núñez Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Computación
  • María del Carmen Santiago Díaz Benemérita Universidad Autónoma de Puebla. Facultad de Ciencias de la Computación.
  • Ana Claudia Zenteno Vázquez Benemérita Universidad Autónoma de Puebla. Facultad de Ciencias de la Computación.
  • Judith Pérez Marcial Benemérita Universidad Autónoma de Puebla. Facultad de Ciencias de la Computación.
  • Gustavo Trinidad Rubín Linares Benemérita Universidad Autónoma de Puebla. Facultad de Ciencias de la Computación.

DOI:

https://doi.org/10.61467/2007.1558.2024.v15i5.573

Keywords:

Artificial Intelligence, Logistic Regression

Abstract

The academic performance of students in Mexico has a great impact on the social and economic development of the country. Early detection of students at academic risk is necessary to improve educational quality and reduce school dropouts. This work presents a proposal that uses a predictive model based on Logistic Regression to identify students at high risk of academic failure and its usefulness to provide proactive and personalized support to those who need it. In addition, an overview of the impact of Artificial Intelligence and Machine Learning in education is presented, especially in predicting student dropout and supporting academic performance, allowing us to take an important step towards a more promising and successful educational future for students. students.

Downloads

Published

2024-11-29

How to Cite

Álvarez Núñez, A. ., Santiago Díaz, M. del C., Zenteno Vázquez, A. C., Pérez Marcial, J., & Rubín Linares, G. T. (2024). Early Detection of Students at High Risk of Academic Failure using Artificial Intelligence. International Journal of Combinatorial Optimization Problems and Informatics, 15(5), 155–160. https://doi.org/10.61467/2007.1558.2024.v15i5.573

Issue

Section

Articles

Most read articles by the same author(s)