Emotion detection using natural language processing

Authors

  • Antonio Álvarez Núñez Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Computación
  • María del Carmen Santiago Díaz Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Computación
  • Ana Claudia Zenteno Vázquez Benemérita Universidad Autónoma de Puebla. Facultad de Ciencias de la Computación.
  • Judith Pérez Marcial Benemérita Universidad Autónoma de Puebla. Facultad de Ciencias de la Computación.
  • Gustavo Trinidad Rubín Linares Benemérita Universidad Autónoma de Puebla. Facultad de Ciencias de la Computación.

DOI:

https://doi.org/10.61467/2007.1558.2024.v15i5.564

Keywords:

Data Analysis, Emotion Recognition, Artificial Neural Networks

Abstract

The analysis of human emotions is of great interest in data analysis, as it allows us to identify patterns and behaviors in people. Different techniques are used, such as linguistic rule-based approaches. Natural language processing (NLP) is a branch of AI that seeks to make machines understand language like humans do. It combines computational linguistics with machine learning and deep learning models. In emotional prosody, spoken words convey linguistic and paralinguistic information, where the emotional context influences the interpretation of the words. Alexithymia refers to difficulty identifying and expressing emotions. AI and NLP offer powerful tools for their study and application, which is why it was possible to develop an AI for the detection of emotions through natural language, resulting in a system that offers sentiment analysis for patients.

Downloads

Published

2024-11-29

How to Cite

Álvarez Núñez, A. ., Santiago Díaz, M. del C., Zenteno Vázquez, A. C., Pérez Marcial, J., & Rubín Linares, G. T. (2024). Emotion detection using natural language processing. International Journal of Combinatorial Optimization Problems and Informatics, 15(5), 108–114. https://doi.org/10.61467/2007.1558.2024.v15i5.564

Issue

Section

Articles

Most read articles by the same author(s)