Software Development for Brain Glioma Detection Using Magnetic Resonance Imaging and Deep Learning Techniques

Authors

  • Luis E. Gaspar Vargas Universidad Politécnica de Pachuca
  • Karla Andrea Torres Calva Universidad Politécnica de Pachuca
  • Jorge A. Ruiz-Vanoye Universidad Politécnica de Pachuca
  • Ocotlán Díaz Parra Universidad Politécnica de Pachuca
  • Eric Simancas-Acevedo Universidad Politécnica de Pachuca
  • Julio C Salgado Ramirez Universidad Politécnica de Pachuca

DOI:

https://doi.org/10.61467/2007.1558.2025.v16i3.1132

Keywords:

AI in healthcare, Image preprocessing, Flask web application, Glioma detection, Brain tumours, Deep learning, MRI segmentation, Ensemble model, Convolutional neural networks, Medical Imaging

Abstract

The detection of brain gliomas is a crucial clinical challenge that requires early, accurate diagnostic methods to improve patient outcomes. This work presents the development of a deep learning-based system for glioma detection, employing an ensemble of ResNet18, VGG16, and DenseNet121 models trained with MRI images. The preprocessing involved dataset curation, image normalisation, and mask generation through K-means clustering. The trained model was integrated into a web application, allowing users to upload images and receive immediate diagnostic feedback. Experimental results demonstrate promising accuracy rates and reliable segmentation performance. This research highlights the potential of artificial intelligence (AI) to augment traditional medical imaging techniques and assist clinical diagnosis.

 

Downloads

Published

2025-07-14

How to Cite

Gaspar Vargas, L. E., Torres Calva, K. A., Ruiz-Vanoye, J. A., Díaz Parra, O., Simancas-Acevedo, E., & Salgado Ramirez, J. C. (2025). Software Development for Brain Glioma Detection Using Magnetic Resonance Imaging and Deep Learning Techniques. International Journal of Combinatorial Optimization Problems and Informatics, 16(3), 1–10. https://doi.org/10.61467/2007.1558.2025.v16i3.1132

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4 > >>