Towards Interpretable Inverse Model Control: The Role of Grey-Box Models

Authors

  • Marco Antonio Márquez-Vera Universidad Politécnica de Pachuca, México.
  • Alfian Ma'arif Universitas Ahmad Dahlan, Indonesia.
  • Ocotlán Díaz-Parra Universidad Politécnica de Pachuca, México.
  • Zaineb Yakoub University of Gabès, Tunisia. https://orcid.org/0000-0002-6680-7582
  • Julio César Ramos-Fernández Universidad Politécnica de Pachuca, México. https://orcid.org/0000-0002-9997-6550

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i1.1244

Keywords:

Gray Boxes, Kolmogorov-Arnold Networks, Inverse Model, Fuzzy Logic

Abstract

This work presents and compares two approaches for inverse modelling and control of a biotechnological system: a fuzzy rule-based model and a Kolmogorov–Arnold network (KAN) model. Both approaches aim to derive a control law that enables the system to reach a desired substrate concentration through model inversion. Whereas the fuzzy model offers interpretability via linguistic rules, the KAN model provides an explicit functional representation that allows for the analysis and visualisation of individual input contributions through univariate functions.

It is shown how both models can be inverted online to determine the required dilution rate, thereby generating controlled trajectories that remain close to the reference signal. The results indicate that the use of interpretable models is viable for control applications and, in addition, may provide advantages in terms of transparency, pruning capability, and the automatic generation of symbolic expressions. These features can assist in determining or adapting implementations in critical control systems.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1244

Dimensions.
Open Alex.

References

Ammara, U., Zehra, S. S., Nazir, S., & Ahmad, I. (2024). Artificial neural network-based nonlinear control and modeling of a DC microgrid incorporating regenerative FC/HPEV and energy storage system. Renewable Energy Focus, 49, 100565. https://doi.org/10.1016/j.ref.2024.100565

Aslam, M. S., & Bilal, H. (2024). Modeling a takagi-sugeno (T-S) fuzzy for unmanned aircraft vehicle using fuzzy controller. Ain Shams Engineering Journal, 15(10), 102984. https://doi.org/10.1016/j.asej.2024.102984

Bárcenas-Castañeda, M., Calatayud-Velázquez, L. E., Roblero-Aguilar, S. S., Solís-Romero, J., & Castellanos-Escamilla, V. A. (2023). Expert system through a fuzzy logic approach for the macroscopic visual analysis of corroded metallic ferrous surfaces: Knowledge acquisition process. Expert Systems with Applications, 214, 119104. https://doi.org/10.1016/j.eswa.2022.119104

Hong, Y., Fu, C., & Merci, B. (2023). Optimization and determination of the parameters for a PID based ventilation system for smoke control in tunnel fires: Comparative study between a genetic algorithm and an analytical trial-and-error method. Tunnelling and Underground Space Technology, 136, 105088. https://doi.org/10.1016/j.tust.2023.105088

Kassem, Y., & Camur, H. (2017). Prediction of biodiesel density for extended ranges of temperature and pressure using adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF). Procedia Computer Science, 120, 311–316. https://doi.org/10.1016/j.procs.2017.11.244

Khosravi, H., & Bahram, M. (2025). Prediction of geopolymer concrete compressive strength using artificial neural network and genetic algorithm. Results in Engineering, 27, 105537. https://doi.org/10.1016/j.rineng.2025.105537

Konar, A. (2000). Artificial Intelligence and Soft Computing: Behavioral and Cognitive Modeling of the Human Brain. CRC Press.

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T. Y., & Tegmark, M. (2024). KAN: Kolmogorov–Arnold networks (arXiv:2404.19756). arXiv. https://arxiv.org/abs/2404.19756

Márquez-Vera, C. A., Márquez-Vera, M. A., Yakoub, Z., Ma’arif, A., Castro-Montoya, A. J., & Cázarez-Castro, N. R. (2022). Fuzzy state feedback with double integrator and anti-windup for the Van de Vusse reaction. Archives of Control Science, 32(2), 383–408.

Márquez-Vera, M. A., Ramos-Fernández, J. C., Cerecero-Natale, L. F., Lafont, F., Balmat, J.-F., & Esparza-Villanueva, J. I. (2016). Temperature control in a MISO greenhouse by inverting its fuzzy model. Computers and Electronics in Agriculture, 124, 168–174. https://doi.org/10.1016/j.compag.2016.04.005

Nguyen, A. T., Nguyen, N. H., & Trinh, M. L. (2025). Fuzzy PD control for a quadrotor with experimental results. Results in Control and Optimization, 19, 100568.

Ouifak, H., & Idri, A. (2025). A comprehensive review of fuzzy logic based interpretability and explainability of machine learning techniques across domains. Neurocomputing, 647, 130602. https://doi.org/10.1016/j.neucom.2025.130602

Salihu, S. A., Adebayo, S. O., Abikoye, O. C., Usman-Hamza, F. E., Mabayoje, M. A., Brahma, B., & Bandyopadhyay, A. (2025). Detection and classification of potato leaves diseases using convolutional neural network and ADAM optimizer. Procedia Computer Science, 258, 2–17. https://doi.org/10.1016/j.procs.2025.04.159

Samar, M., & Lin, F. R. (2022). Perturbation analysis and condition numbers for the Tikhonov regularization of total least squares problem and their statistical estimation. Journal of Computational and Applied Mathematics, 411, 114230. https://doi.org/10.1016/j.cam.2022.114230

Searle, J. R. (1990). Cognitive Science and the Computer Metaphor. Artificial Intelligence, Culture and Language: On Education and Work, 23-34. The Springer Series on Artificial Intelligence and Society, London. https://doi.org/10.1007/978-1-4471-1729-2_4

Surma, R., Wojcieszyńska, D., Mulla, S. I., & Guzik, U. (2025). Current strategy of non-model-based bioprocess optimizations with genetic algorithms in bioscience - a systematic review. Computers in Biology and Medicine, 192-A, 110247. https://doi.org/10.1016/j.compbiomed.2025.110247

Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis. John Wiley & Sons, Inc., New York.

Thakolkaran, P., Guo, Y., Saini, S., Peirlinck, M., Alheit, B., & Kumar, S. (2025). Can KAN CANS? input-convex Kolmogorov-Arnold networks (KANS) as hyperelastic constitutive artificial neural networks (CANS). Computer Methods in Applied Mechanics and Engineering, 443, 118089. https://doi.org/10.1016/j.cma.2025.118089

Wang, F. (2015). Simulation tool for asynchronous cortical streams (STACS): Interfacing with spiking neural networks. Procedia Computer Science, 61, 322–327. https://doi.org/10.1016/j.procs.2015.09.149

Wang, G., Li, X., & Xie, S. (2024). Bilateral Turing test: Assessing machine consciousness simulations. Cognitive Systems Research, 88, 101299. https://doi.org/10.1016/j.cogsys.2024.101299

Downloads

Published

2026-01-02

How to Cite

Márquez-Vera, M. A., Ma’arif, A., Díaz-Parra, O., Yakoub, Z., & Ramos-Fernández, J. C. (2026). Towards Interpretable Inverse Model Control: The Role of Grey-Box Models. International Journal of Combinatorial Optimization Problems and Informatics, 17(1), 117–131. https://doi.org/10.61467/2007.1558.2026.v17i1.1244

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5