Hybrid Extractive Abstractive Summarization for Multilingual Sentiment Analysis

Authors

  • Mikhail Krasitskii Instituto Politécnico Nacional (IPN), Centro de Investigación en Computación (CIC)
  • Grigori Sidorov Instituto Politécnico Nacional (IPN), Centro de Investigación en Computación (CIC).
  • Olga Kolesnikova Instituto Politécnico Nacional (IPN), Centro de Investigación en Computación (CIC).
  • Liliana Chanona Hernandez Instituto Politécnico Nacional (IPN), Escuela Superior de Ingeniería Mecánica y Eléctrica (ES- IME).
  • Alexander Gelbukh Instituto Politécnico Nacional (IPN), Centro de Investigación en Computación (CIC).

DOI:

https://doi.org/10.61467/2007.1558.2025.v16i4.1185

Keywords:

Hybrid summarization, multilingual sentiment analysis, low-resource NLP, transformer models

Abstract

We propose a hybrid approach for multilingual sentiment analysis that combines extractive and abstractive summarization to address the limitations of standalone methods. The model integrates TF-IDF-based extraction with a fine-tuned XLM-R abstractive module, enhanced through dynamic thresholding and cultural adaptation. Experiments across 10 languages demonstrate significant improvements over baselines, achieving an accuracy of 0.90 for English and 0.84 for low-resource languages. The approach also achieves 22% greater computational efficiency compared to traditional methods. Practical applications include real-time brand monitoring and cross-cultural discourse analysis. Future work will focus on optimizing performance for low-resource languages through 8-bit quantization.

Downloads

Published

2025-10-12

How to Cite

Krasitskii, M., Sidorov, G., Kolesnikova, O., Hernandez, L. C., & Gelbukh, A. (2025). Hybrid Extractive Abstractive Summarization for Multilingual Sentiment Analysis. International Journal of Combinatorial Optimization Problems and Informatics, 16(4), 24–31. https://doi.org/10.61467/2007.1558.2025.v16i4.1185

Issue

Section

Articles