Prediction of PM10, SO2, NO2, O3, and CO Concentrations in Guadalajara Using ARIMA and Open Data with Python

Authors

  • Julio Cesar Salas López Universidad Politécnica de Pachuca
  • Juvencio Sebastián Zarazúa Silva Universidad Politécnica de Pachuca
  • Jorge A. Ruiz-Vanoye Universidad Politécnica de Pachuca
  • Eric Simancas-Acevedo Universidad Politécnica de Pachuca
  • Julio C. Salgado-Ramírez Universidad Politécnica de Pachuca
  • Ocotlán Díaz-Parra Universidad Politécnica de Pachuca

DOI:

https://doi.org/10.61467/2007.1558.2025.v16i3.1114

Keywords:

Air quality, Environment, ARIMA, Predictive model, Public health, Pollution, Guadalajara.

Abstract

Air quality in Guadalajara has deteriorated in recent years, becoming a serious health concern for the local population. In response, this project seeks to mitigate the impact of pollution by developing a prediction platform based on ARIMA models implemented in Python.

The system will analyse historical pollutant levels—including PM₂.₅, PM₁₀, SO₂, NO₂, O₃ and CO—enabling the anticipation of high-pollution episodes. Armed with this information, both citizens and authorities will be able to take timely preventative measures.

Given the growing interest in air quality and its implications for health, this tool will furnish valuable data for informed decision-making. Moreover, it will facilitate trend analysis and permit short-term forecasts, helping to identify potential pollution episodes before they occur.

Downloads

Published

2025-07-14

How to Cite

Salas López, J. C., Zarazúa Silva, J. S., Ruiz-Vanoye, J. A., Simancas-Acevedo, E., Salgado-Ramírez, J. C., & Díaz-Parra, O. (2025). Prediction of PM10, SO2, NO2, O3, and CO Concentrations in Guadalajara Using ARIMA and Open Data with Python. International Journal of Combinatorial Optimization Problems and Informatics, 16(3), 25–35. https://doi.org/10.61467/2007.1558.2025.v16i3.1114

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4