A comparative analysis of the Classical and Machine learning Forecasting Methods for the Mexican Stock Exchange

Authors

  • Juan Frausto Solis Tecnologico Nacional de México/IT Cd Madero https://orcid.org/0000-0001-9307-0734
  • Javier Alberto Rangel-González Universidad Autónoma de Tamaulipas
  • Erick Estrada-Patiño Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Cuidad Madero, Tamaulipas, México
  • Juan Javier González-Barbosa Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Cuidad Madero, Tamaulipas, México https://orcid.org/0000-0002-3699-4436
  • Erika Alarcón Ruiz Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Cuidad Madero, Tamaulipas, México
  • Guadalupe Castilla-Valdez Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Cuidad Madero, Tamaulipas, México https://orcid.org/0000-0002-3439-9975
  • Ocotlán Díaz-Parra Universidad Politécnica de Pachuca

DOI:

https://doi.org/10.61467/2007.1558.2024.v15i3.512

Keywords:

Statistical forecasting methods, Regression Algorithms, Mexican Stock Exchange, Machine learning forecasting

Abstract

There is no recent comparison in the literature on the application of classical and machine learning methods for forecasting financial assets on the Mexican Stock Exchange (BMV). These methods divide the time series into three sections: training, validation, and testing. They predict future values using the training data and are evaluated in the validation phase using error metrics; once the lowest error is obtained, the best parameters and algorithms are used to predict values using the test section. This paper aims to find the most accurate regression algorithm to make predictions in the financial time series of the BMV. The regression methods compared include linear regression, neural networks, decision trees, and support vector regression. The study uses historical BMV asset price data to compare the accuracy of each of these algorithms.

Downloads

Published

2024-10-01

How to Cite

Frausto Solis, J., Rangel-González, J. A., Estrada-Patiño, E., González-Barbosa, J. J., Alarcón Ruiz, E., Castilla-Valdez, G., & Díaz-Parra, O. (2024). A comparative analysis of the Classical and Machine learning Forecasting Methods for the Mexican Stock Exchange. International Journal of Combinatorial Optimization Problems and Informatics, 15(3), 43–58. https://doi.org/10.61467/2007.1558.2024.v15i3.512

Issue

Section

Articles

Most read articles by the same author(s)