An analysis of YOLO models versus RT-DETR applied to multi-object detection in images

Authors

  • Alan J. González Hernández Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero
  • Juan Paulo Sánchez Hernández Universidad Politécnica del Estado de Morelos
  • Deny Lizbeth Hernández Rabadán Universidad Politécnica del Estado de Morelos
  • Juan Frausto Solis Tecnologico Nacional de México/IT Cd Madero
  • Javier González Barbosa Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero

DOI:

https://doi.org/10.61467/2007.1558.2025.v16i3.778

Keywords:

Object Detection, Computer Vision, Transformer Model, RT-DETR

Abstract

Object detection is one of the critical and essential tasks in computer vision, with applications ranging from surveillance and industrial control to robotics and image analysis. This research presents a performance analysis of different YOLO (You Only Look Once) versions and a transformer model. The study evaluates YOLOv8, YOLOv9, YOLOv10, YOLOv11, and the RT-DETR (Real-Time Detection Transformer) model for object detection. The experiment uses a dataset of 1,730 images classified into five types: birds, dogs, cats, plants, and fruits, each with its subtypes. Also, we test with a frog dataset of 613 images which are characterized as complex images because present occlusion, complex backgrounds and variations in illumination. In addition, its performance is evaluated using standard metrics such as Precision, Recall, mAP50, and mAP50-95.

Downloads

Published

2025-07-14

How to Cite

González Hernández, A. J., Sánchez Hernández, J. P., Hernández Rabadán, D. L., Frausto Solis, J., & González Barbosa, J. (2025). An analysis of YOLO models versus RT-DETR applied to multi-object detection in images. International Journal of Combinatorial Optimization Problems and Informatics, 16(3), 360–377. https://doi.org/10.61467/2007.1558.2025.v16i3.778

Issue

Section

Recent Advances on Soft Computing

Most read articles by the same author(s)