Review of Genetic Algorithm to improve Students Academic Performance by applying Smart Learning

Authors

  • Luis Arturo Ortiz-Suarez Universidad Politécnica de Pachuca-Maestría en Tecnologías de la Información y Comunicaciones
  • Yaneth Reyes-Hernández Universidad Politécnica de Pachuca-Maestría en Tecnologías de la Información y Comunicaciones
  • Uriel Amado Ramírez-Hernández Universidad Politécnica de Pachuca-Maestría en Tecnologías de la Información y Comunicaciones
  • Joel Silos Sánchez Universidad Politécnica de Pachuca-Maestría en Tecnologías de la Información y Comunicaciones
  • Luis José Gómez-Pérez Universidad Politécnica de Pachuca-Maestría en Tecnologías de la Información y Comunicaciones
  • Francisco Rafael Trejo-Macotela Universidad Politécnica de Pachuca
  • Daniel Robles Camarillo Universidad Politécnica de Pachuca

DOI:

https://doi.org/10.61467/2007.1558.2023.v14i3.401

Keywords:

Smart learning, genetic algorithm

Abstract

This paper reviews the use of genetic algorithms for enhancing academic performance through Smart learning. The study reveals that the application of technology in teaching can improve students' grades. It also analyzes the implementation of cognitive training and the benefits obtained for a better comprehension of the information received by individuals. A literature review is provided to give an overview of how these issues have impacted various parts of the world. The importance of integrating novel approaches to Smart learning, such as genetic algorithms and cognitive training, to enrich pedagogical strategies is highlighted.

Downloads

Published

2023-12-31

How to Cite

Ortiz-Suarez, L. . A., Reyes-Hernández, Y., Ramírez-Hernández, U. A., Silos Sánchez, J., Gómez-Pérez, L. J., Trejo-Macotela, F. R., & Robles Camarillo, D. (2023). Review of Genetic Algorithm to improve Students Academic Performance by applying Smart Learning. International Journal of Combinatorial Optimization Problems and Informatics, 14(3), 117–137. https://doi.org/10.61467/2007.1558.2023.v14i3.401

Issue

Section

Articles

Most read articles by the same author(s)