Repair and Initialization Functions in the Generation of School Schedules with Genetic Algorithms

Authors

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i1.1144

Keywords:

Genetic Algorithms, School Schedules, Timetabling Problem

Abstract

The elaboration of school timetables is a complex and laborious task when performed manually, due to the large number of requirements and constraints that must be considered for its correct construction. In this work, the problem is addressed by using a simple Genetic Algorithms (GA) and compared with an improved approach that incorporates both an initialization function and a repair function. The study uses real data from the Computer Engineering course at the Centro Universitario UAEM Valle de México. The results obtained show that the initialization function significantly reduces errors from the first generations, while the repair function further accelerates the reduction of class or teacher splices. Thus, the effectiveness of the proposed approach to solve the scheduling problem in the university center is demonstrated.

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1144
Dimensions.
Open Alex.

Author Biographies

Victor Manuel Landassuri Moreno, Universidad Autónoma del Estado de México

Dr. Víctor Manuel Landassuri Moreno is a full-time professor at the Universidad Autónoma del Estado de México, Campus Valle de México, where he also serves as Coordinator of the Doctoral Program in Engineering Sciences. He obtained his PhD in Computer Science from the University of Birmingham, United Kingdom, and is a member of the National System of Researchers (SNI - Candidate Level). His research focuses on evolutionary computation, time series analysis, and artificial neural networks.

Alejandro Moreno Martínez, Universidad Autónoma del Estado de México

Alejandro Moreno Martínez holds a Bachelor's degree in Computer Engineering and recently earned his Master's degree in Computer Science from the Centro Universitario UAEM Valle de México, part of the Universidad Autónoma del Estado de México. His research interests include evolutionary algorithms in general, as well as their application in the development of swarm robotics behavior.

Asdrúbal López Chau, Universidad Autónoma del Estado de México

Dr. Asdrúbal López Chau is a full-time professor at the Autonomous University of the State of Mexico (UAEM), Zumpango Campus. He holds a PhD in Computer Science from CINVESTAV-IPN and is a member of the National System of Researchers (SNI Level I). His research interests include sentiment analysis and the application of deep learning techniques to national challenges.

Saturnino Job Morales Escobar , Universidad Autónoma del Estado de México

Dr. Saturnino Job Morales Escobar is a full-time professor and coordinator of the Computer Systems and Communications Engineering program at the Universidad Autónoma del Estado de México (UAEM), Valle de México campus. He holds a PhD in Computer Science and is a member of the National System of Researchers (SNI - Candidate Level). His research interests include artificial intelligence, pattern recognition, and data mining.

References

Abdelhalim, E. A., & El Khayat, G. A. (2016). A utilization-based genetic algorithm for solving the university timetabling problem (UGA). Alexandria Engineering Journal, 55(2), 1395-1409. https://doi.org/10.1016/j.aej.2016.02.017

Abdullah, S., Turabieh, H., McCollum, B., & McMullan, P. (2012). A hybrid metaheuristic approach to the university course timetabling problem. Journal of Heuristics, 18(1), 1–23. https://doi.org/10.1007/s10732-010-9154-y

Abramson, D., & Abela, J. (1992). A parallel genetic algorithm for solving the school timetabling problem. En Proceedings of the Australian Computer Science Conference (pp. 1–11).

Assi, M., Halawi, B., & Haraty, R. A. (2018). Genetic algorithm analysis using the graph coloring method for solving the university timetable problem. Procedia Computer Science, 126, 899–906. https://doi.org/10.1016/j.procs.2018.08.024

Bejarano, G. (2011). Planificación de Horarios del Personal de Cirugía de un Hospital del Estado Aplicando Algoritmos Genéticos [Tesis]. Pontificia Universidad Católica de Perú.

Broca, J. M. (2016). Algoritmos genéticos en la generación de horarios escolares [Tesis de maestría, Universidad Autónoma del Estado de México]. Repositorio Institucional UAEMex. https://ri.uaemex.mx/handle/20.500.11799/63083

Castrillón, O. D. (2014). Combinación entre algoritmos genéticos y aleatorios para la programación de horarios de clases basado en ritmos cognitivos. Información Tecnológica, 25(4), 51–62. https://doi.org/10.4067/S0718-07642014000400008

Cortez Vásquez, A., Rosales Gerónimo, G., Naupari Quiroz, R., & Vega Huerta, H. Z. (2010). Sistema de apoyo a la generación de horarios basado en algoritmos genéticos. Revista de Investigación de Sistemas e Informática, 7(1), 37–55.

Flores, P., Brau, E., Monteverde, J. A., Salazar, N. F., Figueroa, J., Cadena, E., & Lizárraga, C. A. (2004). Experimentos con algoritmos genéticos para resolver un problema real de programación maestros-horarios-cursos. Revista Iberoamericana de Sistemas, Cibernética e Informática, 1, 42–46.

Guerra, M., Pardo, E., & Salas, E. (2013). Problema del school timetabling y algoritmos genéticos: una revisión. Revista Vínculos, 10(2), 259–276. https://doi.org/10.14483/2322939X.6478

Hafsa, M., Wattebled, P., Jacques, J., & Jourdan, L. (2023). Solving a multiobjective professional timetabling problem using evolutionary algorithms at Mandarine Academy. International Transactions in Operational Research. https://doi.org/10.1111/itor.13276

Jafari, H., & Salmasi, N. (2015). Maximizing the nurses’ preferences in nurse scheduling problem: Mathematical modeling and a meta-heuristic algorithm. Journal of Industrial Engineering International, 11(3), 439–458. https://doi.org/10.1007/s40092-015-0111-0

Jha, S. K. (2014). Exam timetabling problem using genetic algorithm. International Journal of Research in Engineering and Technology, 3(5), 649–654.

Mahlous, A. R., & Mahlous, H. (2023). Student timetabling genetic algorithm accounting for student preferences. PeerJ Computer Science, 9, e1200. https://doi.org/10.7717/peerj-cs.1200

Savdekar, M., Bornare, C., Birari, K., & Kolhe, K. (2023). Timetable generation system. International Research Journal of Modernization in Engineering Technology and Science, 5(4), 1574–1577.

Shahvali Kohshori, M., & Saniee Abadeh, M. (2012). Hybrid genetic algorithms for university course timetabling. International Journal of Computer Science Issues, 9(2), 446.

Tan, Y. Y., Li, Y. X., & Wang, R. X. (2020). Scheduling extra train paths into cyclic timetable based on the genetic algorithm. IEEE Access, 8, 102199–102211. https://doi.org/10.1109/ACCESS.2020.2997777

Zandavi, S. M., Chung, V., & Anaissi, A. (2021). Multi-user remote lab: Timetable scheduling using simplex nondominated sorting genetic algorithm. ACM/IMS Transactions on Data Science, 2(2), 1–13. https://doi.org/10.1145/3437260

Downloads

Published

2026-01-02

How to Cite

Landassuri Moreno, V. M., Moreno Martínez, A., López Chau, A., & Morales Escobar , S. J. (2026). Repair and Initialization Functions in the Generation of School Schedules with Genetic Algorithms. International Journal of Combinatorial Optimization Problems and Informatics, 17(1), 263–274. https://doi.org/10.61467/2007.1558.2026.v17i1.1144

Issue

Section

Articles

Most read articles by the same author(s)