On the prediction of the labor welfare by using Markov chain approach

Authors

DOI:

https://doi.org/10.61467/2007.1558.2025.v16i4.959

Keywords:

markov chains, Prediction, labor welfare

Abstract

In this contribution, the Markov chain approach is used to predict the job satisfaction of employees in a telecommunications company in Mexico. Under certain assumptions, the Chapman–Kolmogorov equation is applied to estimate the probabilities that: employees remain satisfied if they are satisfied; if they are not satisfied, the probability that they remain unsatisfied; if they are satisfied, the probability that they will become unsatisfied; and finally, if they are unsatisfied, the probability that they will become satisfied, within a one-year prediction horizon. Our proposal could be applied to support decision-making in human capital management strategies.

Author Biographies

Rosa-Irene Rojas-Rauda, TecNM Instituto Tecnológico de Pachuca

Blvd. Felipe Ángeles Km. 84.5, Venta Prieta, C.P. 42083, Pachuca de Soto, Hidalgo, México.

Omar Jacobo Santos Sanchez, Universidad Autónoma del Estado de Hidalgo,

Área Académica de Computación y Electrónica, Ciudad del Conocimiento, Kilómetro 4.5 carretera Pachuca - Tulancingo en la Colonia Carboneras de Mineral de la Reforma, C.P. 42184, Hidalgo, México

Elisa Monterrubio Cabrera, Tecnológico Nacional de México, Instituto Tecnológico de Pachuca,

Blvd. Felipe Ángeles Km. 84.5, Venta Prieta, C.P. 42083, Pachuca de Soto, Hidalgo, México.

Evangelina Rojas Rauda, Tecnológico Nacional de México, Instituto Tecnológico de Minatitlán

Blvd. Instituto Tecnológico, Buena Vista Nte, C.P. 96848 Minatitlán, Ver, México

Downloads

Published

2025-10-12

How to Cite

Rojas-Rauda, R.-I., Santos Sanchez, O. J., Monterrubio Cabrera, E., & Rojas Rauda, E. (2025). On the prediction of the labor welfare by using Markov chain approach. International Journal of Combinatorial Optimization Problems and Informatics, 16(4), 122–130. https://doi.org/10.61467/2007.1558.2025.v16i4.959

Issue

Section

Articles

Most read articles by the same author(s)