Comparative Evaluation of the Performance of Vocal Signals and EGG in the Classification of Vocal Pathologies

Authors

  • Virna V. Vela-Rincón Departamento de Ciencias Computacionales, Tecnológico Nacional de México/CENIDET
  • Dante Mújica-Vargas Departamento de Ciencias Computacionales, Tecnológico Nacional de México/CENIDET
  • Andrés Antonio Arenas Muñiz Departamento de Ciencias Computacionales, Tecnológico Nacional de México/CENIDET
  • Antonio Luna-Álvarez Departamento de Ciencias Computacionales, Tecnológico Nacional de México/CENIDET

DOI:

https://doi.org/10.61467/2007.1558.2025.v16i3.854

Keywords:

Vocal pathologies, EGG signal, Intuitionistic fuzzy clustering

Abstract

This study proposes a methodology for the classification of vocal pathologies by comparing voice signals with electroglottographic (EGG) signals. The segmentation of the voice signal into temporal components and its transformation into recurrence plots through intuitionistic fuzzy clustering provides input for a deep learning model to classify voices as healthy or pathological. The results obtained show that the Inception-v3 model, when using intuitionistic clustering, achieves superior accuracy — particularly with EGG signals — reaching a peak performance of 87.8%. Furthermore, the F1 score is 0.885 for EGG and 0.860 for speech, demonstrating better performance on EGG signals.

Downloads

Published

2025-07-14

How to Cite

Vela-Rincón, V. V., Mújica-Vargas, D., Arenas Muñiz, A. A., & Luna-Álvarez, A. (2025). Comparative Evaluation of the Performance of Vocal Signals and EGG in the Classification of Vocal Pathologies. International Journal of Combinatorial Optimization Problems and Informatics, 16(3), 499–511. https://doi.org/10.61467/2007.1558.2025.v16i3.854

Issue

Section

Recent Advances on Soft Computing