Convolutional Neural Networks to Decode Images in a Wavefront Coding Imaging System

Authors

  • José Manuel Reyes Alfaro Universidad Politécnica de Tulancingo, Laboratorio de Visión por Computadora
  • Carina Toxqui Quitl Universidad Politécnica de Tulancingo, Laboratorio de Visión por Computadora
  • María Angélica Espejel Rivera Universidad Politécnica de Tulancingo, Laboratorio de Visión por Computadora
  • Alfonso Padilla Vivanco Universidad Politécnica de Tulancingo, Laboratorio de Visión por Computadora
  • Enrique González Amador Universidad Politécnica de Tulancingo,Laboratorio de Visión por Computadora

DOI:

https://doi.org/10.61467/2007.1558.2024.v15i5.559

Keywords:

Wavefront coding, Convolutional neural network

Abstract

Wavefront coding technique has been used to extend the depth of focus in an optical imaging system. An optical element called a phase mask allows coded images to be obtained since the point spread function remains almost invariant in an axial range. Subsequently, a computational technique is required to decode the acquired images. An optical-computational technique is proposed to use a phase mask for the coding stage and a convolutional neural network for the final restoration. Comparative results are made between cubic and trefoil profile phase masks and decoded using the traditional Wiener filter and a convolutional neural network. Image quality evaluation is done using the peak signal-to-noise ratio.

Downloads

Published

2024-11-29

How to Cite

Reyes Alfaro, J. M. ., Toxqui Quitl, C., Espejel Rivera, M. A., Padilla Vivanco, A., & González Amador, E. (2024). Convolutional Neural Networks to Decode Images in a Wavefront Coding Imaging System. International Journal of Combinatorial Optimization Problems and Informatics, 15(5), 75–83. https://doi.org/10.61467/2007.1558.2024.v15i5.559

Issue

Section

Articles