DCA Detection of cardiac arrhythmias in a 12-lead ECG dataset of more than 10,000 patients: a preliminary study using clustering algorithms

Authors

DOI:

https://doi.org/10.61467/2007.1558.2025.v16i2.528

Keywords:

Arrhythmia, Electrocardiogram, Clustering

Abstract

The groupings of cardiac arrhythmias allow the identification of common patterns, distinctive characteristics, and similarities between different cases. In datasets where less common types of arrhythmias are identified, these grouping tools can better classify each subtype. This research was carried out on electrocardiogram records from a data set with more than 10,000 patients, previously labeled by cardiology specialists into 11 heart rhythms and grouped according to medical guidelines into four groups. A preliminary analysis of an ongoing project for detecting cardiac arrhythmias using unsupervised learning tools: clustering is presented. Feature selection was performed using filter tools, and the RR interval was extracted from the ECG records to be incorporated into the dataset under analysis as a new attribute. Internal validation metrics are used to check the quality of the selected clustering methods.

Author Biographies

Jessica Alvariño Durán, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias y Tecnologías de la Información

División Académica de Ciencias y Tecnologías de la Información

José Hernández Torruco, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias y Tecnologías de la Información

División Académica de Ciencias y Tecnologías de la Información

Oscar Alberto Chávez Bosquez, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias y Tecnologías de la Información

División Académica de Ciencias y Tecnologías de la Información

Betania Hernández Ocaña, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias y Tecnologías de la Información

División Académica de Ciencias y Tecnologías de la Información

Downloads

Published

2025-03-25

How to Cite

Alvariño Durán, J., Hernández Torruco, J., Chávez Bosquez, O. A., & Hernández Ocaña, B. (2025). DCA Detection of cardiac arrhythmias in a 12-lead ECG dataset of more than 10,000 patients: a preliminary study using clustering algorithms. International Journal of Combinatorial Optimization Problems and Informatics, 16(2), 147–157. https://doi.org/10.61467/2007.1558.2025.v16i2.528

Issue

Section

Articles