Optimization of Marginal Price Forecasting in Mexico through applying Machine Learning Models

Authors

  • Marcos Fidel Guzmán Escobar Tecnológico Nacional de México/Instituto Tecnológico de Orizaba
  • Alberto Alfonso Aguilar-Lasserre Tecnológico Nacional de México/Instituto Tecnológico de Orizaba
  • Marco Julio Del Moral Argumedo Tecnológico Nacional de México/Instituto Tecnológico de Orizaba
  • Nicasio Hernández Flores Instituto Nacional de Electricidad y Energías Limpias (INEEL)
  • Gustavo Arroyo Figueroa Instituto Nacional de Electricidad y Energías Limpias (INEEL)

DOI:

https://doi.org/10.61467/2007.1558.2024.v15i4.493

Keywords:

Recurrent Neural Networks, Statistical Analysis, Local Marginal Price Forecast, Python code

Abstract

The Local Marginal Price (LMP) represents the value of energy at a specific moment and location, and its proper management is crucial for the development of the country's strategic sectors. This study compares the ADR, RPSG, SARIMA, and LSTM-H models for predicting the LMP, achieving an approximate effectiveness of 88%. By implementing it in 28 nodes of the three interconnection systems (SIN, BCA, and BCS) in Mexico, the results of the enhanced LSTM network analysis are presented through sensitivity analysis and an ensemble with Prophet, yielding the following metrics: MAE: 0.0189, MSE: 0.0101, RMSE: 0.1007, and MAPE: 12.18, at node 05PAR-115 in Hidalgo del Parral, Chihuahua. This model can construct tree diagrams (ADR) that identify the critical variables for predicting the LMP of any node, significantly contributing to the accuracy of predictive analysis models.

Downloads

Published

2024-11-04

How to Cite

Guzmán Escobar, M. F., Aguilar-Lasserre, A. A., Del Moral Argumedo, M. J., Hernández Flores, N., & Arroyo Figueroa, G. (2024). Optimization of Marginal Price Forecasting in Mexico through applying Machine Learning Models. International Journal of Combinatorial Optimization Problems and Informatics, 15(4), 19–41. https://doi.org/10.61467/2007.1558.2024.v15i4.493

Issue

Section

COMIA