Optimization of Marginal Price Forecasting in Mexico through applying Machine Learning Models
DOI:
https://doi.org/10.61467/2007.1558.2024.v15i4.493Keywords:
Recurrent Neural Networks, Statistical Analysis, Local Marginal Price Forecast, Python codeAbstract
The Local Marginal Price (LMP) represents the value of energy at a specific moment and location, and its proper management is crucial for the development of the country's strategic sectors. This study compares the ADR, RPSG, SARIMA, and LSTM-H models for predicting the LMP, achieving an approximate effectiveness of 88%. By implementing it in 28 nodes of the three interconnection systems (SIN, BCA, and BCS) in Mexico, the results of the enhanced LSTM network analysis are presented through sensitivity analysis and an ensemble with Prophet, yielding the following metrics: MAE: 0.0189, MSE: 0.0101, RMSE: 0.1007, and MAPE: 12.18, at node 05PAR-115 in Hidalgo del Parral, Chihuahua. This model can construct tree diagrams (ADR) that identify the critical variables for predicting the LMP of any node, significantly contributing to the accuracy of predictive analysis models.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Combinatorial Optimization Problems and Informatics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.