Exploring BERT-Based Pretrained Models for Polarity Analysis of Tweets in Spanish

Authors

  • Erick Barrios González Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Computación
  • Mireya Tovar Vidal Benemerita Universidad Autonoma de Puebla https://orcid.org/0000-0002-9086-7446
  • José A. Reyes-Ortiz Universidad Autónoma Metropolitana
  • Fernando Zacarias Flores Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Computación
  • Pedro Bello López Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Computación

Keywords:

Polarity analysis, NLP, BERT

Abstract

This paper reviews the implementation of three pre-trained models based on BERT (“bert-base-multilingual-cased”, “IIC/beto-base-spanish-sqac” and “MarcBrun/ixambert-finetuned-squad-eu-en”) to solve tasks 1.1 and 1.2 of “Workshop on Semantic Analysis at SEPLN 2020” (TASS 2020), these tasks consist of the polarity analysis of tweets in Spanish from different Spanish-speaking countries. The proposed models are evaluated individually by pre-processing and replacing synonyms. This research is carried out to find the points to improve in the polarity analysis of tweets (tweets), mainly in how the pre-trained models interpret words that are not in their vocabulary due to variations in the language, regional expressions, misspellings, and use of emojis.

Downloads

Published

2023-03-01

How to Cite

Barrios González, E. ., Tovar Vidal, M., Reyes-Ortiz, J. A. ., Zacarias Flores, F. ., & Bello López, P. . (2023). Exploring BERT-Based Pretrained Models for Polarity Analysis of Tweets in Spanish. International Journal of Combinatorial Optimization Problems and Informatics, 14(1), 27–38. Retrieved from https://ijcopi.org/ojs/article/view/336

Issue

Section

Articles