Analysis of Multi-objective Hyper-Heuristics Under Different Dynamic and Preferential Environments
DOI:
https://doi.org/10.61467/2007.1558.2022.v13i2.264Keywords:
Hyper-heuristic, Dynamic Optimization, Multi-objective Optimization, Preference IncorporationAbstract
The use of hyper-heuristics to solve dynamic multi-objective optimization problems (DMOPs) that incorporate decision-maker's preferences is a recently addressed research area. This paper proposes the analysis and comparison of three hyper-heuristics to solve preferential DMOPs. The Dynamic Hyper-Heuristic with Plane Separation (DHH-PS), a previously proposed methodology using Plane Separation (PS), a reference-point-based preference incorporation method. This paper also proposes two versions of the Dynamic Population-Evolvability based Multi-objective Hyper-Heuristic (DPEM-HH), incorporating PS and different low-level heuristics sets. This work tests DHH-PS and both DPEM-HH-PS versions under multiple dynamic and preferential environments, seeking to extend the study of DHH-PS and analyze the capability of DPEM-HH-PS. DPEM-HH-PS exhibited suitability for type II DMOPs and randomly-changing instances. DHH-PS presented a better performance for tri-objective DMOPs. The combination of genetic algorithms and differential evolution in DPEM-HH-PS proved effective for solving preferential DMOPs. DHH-PS and DPEM-HH-PS were capable of adapting to different preferential and dynamic environments.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 International Journal of Combinatorial Optimization Problems and Informatics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.