Identification and control of a Tail-Sitter Unmanned Aerial Vehicle

Authors

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i1.1230

Keywords:

Tail-sitter UAV; Neural networks; Adaptive control

Abstract

Unmanned aerial vehicles (UAVs) are increasingly employed in domains such as military operations, search-and-rescue missions, and surveillance. Recent research efforts have sought to integrate the advantages of fixed-wing and rotor-wing aircraft. Tail-sitter UAVs represent a class of hybrid platforms that combine rotor-wing vertical take-off and landing with fixed-wing forward-flight capability. These vehicles operate in three flight modes: vertical, horizontal, and transition. Depending on the transition mechanism, tail-sitter UAVs can be classified as mono-thrust transitioning (MTT), collective-thrust transitioning (CTT), or differential-thrust transitioning (DTT).

Despite their potential, tail-sitter UAVs present substantial challenges in aerodynamic design and flight control, particularly with respect to instability and sensitivity to external disturbances. To address these issues, this work proposes an approach grounded in artificial intelligence and adaptive control principles. In particular, neural networks with tunable parameters, including inputs, weights, and transfer functions, are employed to enhance system robustness across varying operating conditions.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1230

Dimensions.
Open Alex.

References

Álvarez González, J. C., Vega Navarrete, M. A., Ramos Velasco, L. E., Domínguez Mayorga, C. R., García Rodríguez, R., & Parra Vega, V. (2019a). Identificación inteligente de un dron convertible. Academia Journals Hidalgo 2019.

Álvarez González, J. C., Vega Navarrete, M. A., Ramos Velasco, L. E., Domínguez Mayorga, C. R., García Rodríguez, R., & Parra Vega, V. (2019b). Identification and intelligent control of a tail-sitter UAV. In Proceedings of the 3rd International Conference on Aeronautics.

Åström, K. J., & Hägglund, T. (2009). Control PID avanzado. Pearson Educación.

Åström, K. J., & Wittenmark, B. (2011). Computer-controlled systems: Theory and design (3rd ed.). Dover Publications. ISBN: 978-0486486130

Beard, R. W., & McLain, T. W. (2012). Small unmanned aircraft: Theory and practice (2nd ed.). Princeton, NJ: Princeton University Press.

Edwards, N. W. (2014). System identification of an unmanned tailsitter aircraft (Master’s thesis, Brigham Young University). Brigham Young University ScholarArchive.

Lipera, L. (2000). Micro Craft ducted air vehicle.

Lipera, L., Colbourne, J. D., Tischler, M. B., Mansur, M. H., Field, M., & Rotkowitz, M. C. (2001). The Micro Craft iSTAR micro air vehicle: Control system design and testing. Annual Forum Proceedings of the American Helicopter Society, 57(2), 1998–2008. https://mcrotk.github.io/publications/ahs01.pdf

Islas Gómez, O., Ramos Velasco, L. E., García Lamont, J., Ramos Fernández, J. C., & Espejel Rivera, M. A. (2011). Implementation of different wavelets in an auto-tuning Wavenet PID controller and its application to a DC motor. In Proceedings of the 2011 IEEE Electronics, Robotics and Automotive Mechanics Conference (CERMA 2011) (pp. 301–306). IEEE. https://doi.org/10.1109/CERMA.2011.55

Navarrete, M. A., Ramos-Velasco, L. E., Domínguez Mayorga, C. R., Carreón, P. A., Hernández, J. V., Delgado, V. M., Parra Vega, V., & Márquez Vera, M. A. (2018). Output feedback self-tuning Wavenet control for underactuated Euler–Lagrange systems. IFAC-PapersOnLine, 51(13), 633–638. https://doi.org/10.1016/j.ifacol.2018.07.351

Ramos Velasco, L. E., Domínguez Ramírez, O. A., & Parra Vega, V. (2016). Wavenet fuzzy PID controller for nonlinear MIMO systems: Experimental validation on a high-end haptic robotic interface. Applied Soft Computing, 40, 199–205. https://doi.org/10.1016/j.asoc.2015.11.014

Saeed, A. S., Younes, A. B., Cai, C., & Cai, G. (2018). A survey of hybrid unmanned aerial vehicles. Progress in Aerospace Sciences, 98, 91–105. https://doi.org/10.1016/j.paerosci.2018.03.007

Spong, M. W., & Vidyasagar, M. (2008). Robot dynamics and control (2nd ed.). Wiley-Interscience. ISBN: 978-0471612438

Wang, X., Chen, Z., & Yuan, Z. (2015). Modeling and control of an agile tail-sitter aircraft. Journal of the Franklin Institute, 352(12), 5437–5472. https://doi.org/10.1016/j.jfranklin.2015.09.012

Downloads

Published

2026-01-02

How to Cite

Álvarez González, J. C., Ramos Velasco, L. E., Vega Navarrete, M. A., Dominguez Mayorga, C. R., Marroquín Gutiérrez, F., & Argumedo Teuffer, P. J. (2026). Identification and control of a Tail-Sitter Unmanned Aerial Vehicle. International Journal of Combinatorial Optimization Problems and Informatics, 17(1), 132–155. https://doi.org/10.61467/2007.1558.2026.v17i1.1230

Issue

Section

Articles