Identification of Cardiac Arrhythmia by Selection of Relevant Variables Using Genetic Algorithms
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i1.1145Keywords:
: arrhythmia; classification; relevant variables; ECG; genetic algorithm.Abstract
This article presents the computational identification of cardiac arrhythmia from electrocardiogram (ECG) signal recordings to facilitate timely diagnosis and clinical management. The cardiac arrhythmia dataset from the public UCI repository was used, comprising 279 features and 452 classified cases. Several variable selection algorithms were applied, including filter methods such as OneR, Chi-square, information gain, symmetric uncertainty, gain ratio, CFS, and consistency, as well as a metaheuristic approach based on the genetic algorithm. The variables identified through the filter methods were subsequently used as inputs for the OneR, PART, Rpart, JRip, C4.5, SVMlin, KNN, and random forest classifiers. The results indicate two subsets of particular interest: 37 relevant variables achieving an average balanced accuracy of 82.93% using the Random Forest classifier in combination with the CFS filter method, and 12 relevant variables yielding an average balanced accuracy of 82.56% when the Random Forest classifier is combined with the genetic algorithm. These outcomes were obtained without the application of any data balancing method.
Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1145
Dimensions.
Open Alex.
References
Al-Saffar, B., Ali, Y. H., Muslim, A. M., & Ali, H. A. (2023). ECG Signal Classification Based on Neural Network. Lecture Notes in Networks and Systems, 573 LNNS, 3–11. https://doi.org/10.1007/978-3-031-20429-6_1
Arias García, S., Hernández Torruco, J., & Hernández Ocaña, B. (2021). Imputación de datos de pacientes con arritmia cardiaca. Investigación Aplicada, Un Enfoque En La Tecnología, 6(2021), 351–359. https://scholar.google.com/citations?view_op=view_citation&hl=es&user=ABDCkcAAAAAJ&cstart=100&pagesize=100&citation_for_view=ABDCkcAAAAAJ:qxL8FJ1GzNcC
Ayar, M., & Sabamoniri, S. (2018). An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm. Informatics in Medicine Unlocked, 13, 167–175. https://doi.org/10.1016/j.imu.2018.06.002
Babatunde, O., Armstrong, L., Leng, J., & Diepeveen, D. (2014). A genetic algorithm-based feature selection. Edith Cowan University. https://ro.ecu.edu.au/ecuworkspost2013/653
Betancourt, G. A. (2005). Las máquinas de soporte vectorial (SVMs). (SVMs). Scientia Et Technica, XI(27), 67–72. https://doi.org/10.22517/23447214.6895
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Chakraborty, A., Chatterjee, S., Majumder, K., Shaw, R. N., & Ghosh, A. (2022). A comparative study of myocardial infarction detection from ECG data using machine learning. En Proceedings publicados por Springer (pp. 257–267). https://doi.org/10.1007/978-981-16-2164-2_21
Dash, M., & Liu, H. (2000). Feature selection for clustering. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1805, 110–121. https://doi.org/10.1007/3-540-45571-X_13
Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence, 151(1–2), 155–176. https://doi.org/10.1016/S0004-3702(03)00079-1
Elsayad, A. M. (2009). Classification of ECG arrhythmia using learning vector quantization neural networks. Proceedings - The 2009 International Conference on Computer Engineering and Systems, ICCES’09, 139–144. https://doi.org/10.1109/ICCES.2009.5383295
Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In Proceedings of the Fifteenth International Conference on Machine Learning (pp. 144–151).
Guvenir H., A. B. M. H., & Quinlan, R. (1998). Arrhythmia - UCI Machine Learning Repository.
Hall, M. A. (1999). Correlation-based feature selection for machine learning (Doctoral dissertation). University of Waikato.
Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Elsevier. https://doi.org/10.1016/C2009-0-61819-5
Hechenbichler, K., Schliep, K., & Lizee, A. (2016). Weighted k-nearest-neighbor techniques and ordinal classification (SFB 386 Working Paper). Ludwig-Maximilians-Universität München. http://www.stat.uni-muenchen.de/sfb386/papers/dsp/paper399.ps
Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning, 11(1), 63–90. https://doi.org/10.1023/A:1022631118932
Hornik, K. (2012). RWeka odds and ends (RWeka package vignette). Comprehensive R Archive Network (CRAN). http://ftp.arklinux.org/pub/cran/web/packages/RWeka/vignettes/RWeka.pdf
Jadhav, S. M., Nalbalwar, S. L., & Ghatol, A. (2010). Artificial neural network based cardiac arrhythmia classification using ECG signal data. In Proceedings of the 2010 International Conference on Electronics and Information Engineering (ICEIE). https://doi.org/10.1109/ICEIE.2010.5559887
Jangra, M., Dhull, S. K., Singh, K. K., Singh, A., & Cheng, X. (2021). O-WCNN: An optimized integration of spatial and spectral feature map for arrhythmia classification. Complex & Intelligent Systems. https://doi.org/10.1007/s40747-021-00371-4
Kadam, V. J., Yadav, S. S., & Jadhav, S. M. (2020). Soft-margin SVM incorporating feature selection using improved elitist GA for arrhythmia classification. En Advances in Intelligent Systems and Computing (Vol. 941, pp. 965–976). Springer. https://doi.org/10.1007/978-3-030-16660-1_94
Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05
Leng, S., Tan, R. S., Chai, K. T. C., Wang, C., Ghista, D., & Zhong, L. (2015). The electronic stethoscope. BioMedical Engineering Online, 14(1), 1–37. https://doi.org/10.1186/s12938-015-0056-y
Morganroth, J. (1983). Identification of the Patient at High Risk of Sudden Cardiac Death. In Cardiac Arrhythmias (pp. 13–19). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-68926-0_3
Nevill-Manning, C. G., Holmes, G., & Witten, I. H. (1995). The development of Holte’s 1R classifier. Proceedings - 1995 2nd New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, ANNES 1995, 239–242. https://doi.org/10.1109/ANNES.1995.499480
Pandey, S. K., & Janghel, R. R. (2019). ECG Arrhythmia Classification Using Artificial Neural Networks. In Lecture Notes in Networks and Systems (Vol. 46, pp. 645–652). Springer. https://doi.org/10.1007/978-981-13-1217-5_63
Parveen, A., Vani, R. M., Hunagund, P. V., & Soher-wardy, M. A. (2021). Classification of ECG Arrhythmia Using Different Machine Learning Approach (pp. 319–325). Springer, Singapore. https://doi.org/10.1007/978-981-33-4604-8_25
Roopa, C. K., Harish, B. S., & Aruna Kumar, S. V. (2018). A novel method of clustering ECG arrhythmia data using robust spatial kernel fuzzy C-means. Procedia Computer Science, 143, 133–140. https://doi.org/10.1016/j.procs.2018.10.361
Salzberg, S. L. (1994). C4.5: Programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993 [Book review]. Machine Learning, 16(3), 235–240. https://doi.org/10.1007/BF00993309
Scrucca, L. (2013). GA: A package for genetic algorithms in R. Journal of Statistical Software, 53(4), 1–37. https://doi.org/10.18637/JSS.V053.I04
Therneau, T., Atkinson, B., & Ripley, B. (2022). rpart: Recursive partitioning and regression trees (R package). Comprehensive R Archive Network (CRAN). https://cran.r-project.org/package=rpart
Xu, S. S., Mak, M. W., & Cheung, C. C. (2017). Deep neural networks versus support vector machines for ECG arrhythmia classification. 2017 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2017, 127–132. https://doi.org/10.1109/ICMEW.2017.8026250
Zheng, Z., Wu, X., & Srihari, R. (2004). Feature selection for text categorization on imbalanced data. ACM SIGKDD Explorations Newsletter, 6(1), 80–89. https://doi.org/10.1145/1007730.1007741
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.