Closed-Loop Control and Sensor Noise Reduction in a Low-Cost Aerodynamic Pendulum Using Digital PID and Kalman Filtering on Arduino Mega
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i1.1137Keywords:
Modular Design, Precision Potentiometer, Mathematical Model, Educational Prototype, ReplicabilityAbstract
This work presents the design, construction, and validation of a cost-effective aerodynamic pendulum as an alternative to commercial systems. The system employs a digital PID controller for real-time regulation of angular position, together with a Kalman filter to attenuate sensor noise. Its modular architecture is intended to facilitate the integration of hardware and software components, thereby supporting replication and experimentation without compromising measurement accuracy.
The prototype incorporates low-cost components, including an Arduino Mega 2560, a DC motor, a precision potentiometer, and an L298N H-bridge. A closed-loop configuration based on PID control is used to reduce the error with respect to a 90° reference angle, while the Kalman filter contributes to improved reliability of angular measurements. The mechanical structure, constructed from plywood and plastic materials, provides adequate stability for experimental operation. Motor voltage is regulated through a pulse-width modulation (PWM) signal.
The results indicate a rapid dynamic response and a degree of robustness to external disturbances. Overall, the project supports the feasibility of developing effective low-cost alternatives for control systems, particularly in educational and experimental contexts.
Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1137
References
Alvarado-Hernandez, J.-R., et al. (2025). Fuzzy-PID control with state estimation for the regulation of an aero-pendulum system. In 2025 11th International Conference on Mechatronics and Robotics Engineering (ICMRE) (pp. 187–192). IEEE. https://doi.org/10.1109/ICMRE64970.2025.10976289
Araújo, R. T. (2023). Modeling and control of an aeropendulum through Lagrangian neural networks (Final paper). Federal University of Campina Grande, Campina Grande, Paraíba, Brazil.
Aris, B., & Romadhon, D. (2023). Design of the aeropendulum angular position control system using a LabVIEW-based PID controller. Semarang State University.
Barros, S. N., & Lima, R. B. C. (2022). Optimal PID controller based on PSO applied to an aeropendulum. Annals of the Brazilian Congress of Automatics, 2(1), 1–6.
Carraro, S. A. (2023). Study and design of automatic control for an aeropendulum system (Final paper). São Paulo State University “Júlio de Mesquita Filho”, Faculty of Engineering of Ilha Solteira, Ilha Solteira, SP, Brazil.
Castillo, G., Gómez, E., Gonzaga, E., & Reyes, I. (2020). Tuning and comparing controllers for an aeropendulum. Journal of Electrical Engineering, 1(3), 16–26.
Díaz García, J. D., Prieto Jiménez, D. E., & Blanco Cañón, R. A. (2023). Design and implementation of PID controller and advance net for angle control in an aerodynamic rocker. Mutis, 13(2), 1–26.
Hernández Pérez, J., Gutiérrez Moreno, E., Ordaz Oliver, J. P., & Ordaz Oliver, M. O. (2024). LQR-based control with gravity compensation for a wind turbine pendulum system. International Journal of Combinatorial Optimization Problems and Informatics, 15(5), 161–180. https://doi.org/10.61467/2007.1558.2024.v15i5.428
Jiménez López, A., Sánchez Saquín, C. H., Gómez Hernández, A., Contreras Calderón, M. G., & Donjuán Carreño, M. E. (2023). Methodology for controlling a demountable aeropendulum with a PID. En Kaizen and Mechatronics (cap. 32, pp. 411–422). ISBN 978-607-9394-28-8.
Kagami, R. M., Angonese, M., Pereira, R. M., Von Ganter, S. P., Reynoso-Meza, G., & Freire, R. Z. (2020). Multiobjective optimization applied in the control of a nonlinear aeropendulum system. Annals of the Brazilian Congress of Automation, 2020. https://doi.org/10.48011/asba.v2i1.1173
Lamatenggo, M., Wiranto, I., & Ridwan, W. (2020). Design of balancing two-wheeled robots with an Arduino Nano-based PID control method. Jambura Journal of Electrical and Electronics Engineering, 2(2), 39–43. https://doi.org/10.37905/jjeee.v2i2.6906
Lucena, E. R., Luiz, S. O. D., & Lima, A. M. N. (2021). Modeling, parameter estimation, and control of an aero-pendulum. In XV Brazilian Symposium on Intelligent Automation (SBAI 2021) (pp. 1984–1988). Brazilian Society of Automatics.
Marashian, A. (2020). Modeling and control of mechatronic aeropendulum. Dynamical Systems & Control (DSC) Research Lab., Department of Electrical Engineering, Persian Gulf University.
Morales-Narciso, L.-M., et al. (2023). Design, construction and control of a seesaw system driven with a thrust propeller. In 2023 XXV Robotics Mexican Congress (COMRob) (pp. 122–127). IEEE. https://doi.org/10.1109/COMRob60035.2023.10349707
Oliveira, A., Aguiar, L., & Vargas, R. (2023). Loop-shaping H∞H_inftyH∞ control of an aeropendulum model. Journal of Control Engineering, 12(2), 8–14.
Paesani, M., & Sosa Visconti, A. (2020, June 21). Modelling, identification and control of the aeropendulum system [Practical work n.º 1]. National University of La Pampa, Balseiro Institute, Faculty of Engineering.
Pamuji, A. T., Hapsari, R. R., Tjahyaningtijas, A., Kholis, N., & Zuhrie, M. S. (2024). The design of the pendulum aero angle setting system using the PID and MPC methods. Journal of Electrical Engineering, 13(3), 219–226.
Romadhon, A. D., & Endryansyah. (2023). Design of the aero pendulum angle position adjustment system using a LabVIEW-based PID controller. Journal of Electrical Engineering, 1(1), 1–10.
Souza, W. A., Teixeira, M. C. M., Cardim, R., & Assunção, E. (2020). On switched regulator design of uncertain nonlinear systems using Takagi–Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems, 22(6), 1720–1727.
Valdés Olivares, A., Zoulagh, T., & Barbosa, K. A. (2023). LPV modeling and control for the aeropendulum system. In 2023 IEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) (pp. 1–6). IEEE. https://doi.org/10.1109/CHILECON60335.2023.10418622
Yamanaka, H. F., Bispo, C. A. de S., Breganon, R., Ribeiro, F. S. F., Almeida, J. P. L. S. de, & Alves, U. N. T. (2022). Construction and follower control via LQR of an aeropendulum system. Annals of the XXIV Brazilian Congress of Automatics, 137–140.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.