Method for the Unification and Reduction of the Search Space of V Gene Segments in Sequence Alignments

Authors

  • Juan Miguel-Ruiz Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)
  • Javier Ortiz-Hernandez Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)
  • Jesus Martinez Barnetche Instituto Nacional de Salud Pública
  • Yasmín Hernández Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)
  • Juan Tellez-Sosa Instituto Nacional de Salud Pública
  • Manuel Erazo Valadez Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)

DOI:

https://doi.org/10.61467/2007.1558.2025.v16i4.1028

Keywords:

Clustering, data integration, reduction of search space

Abstract

The identification and characterisation of V genes poses a significant challenge due to the substantial number of alignments generated by diverse sequencing systems. This study proposes a method for the unification and reduction of the search space, with the objective of optimising the identification of V genes. The method integrates preprocessing, normalisation, and clustering using Gaussian Mixture Models. This approach facilitates data consolidation and reduces redundancy, thereby enhancing the efficiency and accuracy of the subsequent analysis. The elbow method was employed to determine the optimal number of groups, achieving a 98% reduction in the search space. The findings were validated through the use of metrics such as mean absolute error, mean squared error, and root mean squared error, thereby confirming the effectiveness of the method in improving the precision of gene identification.

Downloads

Published

2025-10-12

How to Cite

Miguel-Ruiz, J., Ortiz-Hernandez, J., Martinez Barnetche, J., Hernández , Y., Tellez-Sosa, J., & Erazo Valadez, M. (2025). Method for the Unification and Reduction of the Search Space of V Gene Segments in Sequence Alignments. International Journal of Combinatorial Optimization Problems and Informatics, 16(4), 156–175. https://doi.org/10.61467/2007.1558.2025.v16i4.1028

Issue

Section

Advances in Computer Science

Most read articles by the same author(s)