A Review of the perspective on the implementation of evolutionary algorithms in cyber security on IoT infrastructure

Authors

  • Jesus E. Soto-Soto 1 División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Guadalupe, Nuevo León 67170, México. https://orcid.org/0000-0003-1428-5505
  • Jose Isidro Hernandez-Vega 1 División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Guadalupe, Nuevo León 67170, México. https://orcid.org/0000-0002-2634-8828
  • Alejandra Guadalupe Silva Trujillo Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Zona Universitaria, San Luis Potosi 78290, México https://orcid.org/0000-0002-2419-8379
  • Luis Alejandro Reynoso-Guajardo Departamento de Ingeniería en Sistemas Computacionales, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Guadalupe, Nuevo León 67170, México. https://orcid.org/0009-0006-3881-4327
  • Carlos Hernandez-Santos Departamento de Ingeniería Eléctrica y Electrónica, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Guadalupe, Nuevo León 67170, México. https://orcid.org/0000-0002-9334-1159
  • Mario Carlos Gallardo-Morales Departamento de Ciencias Económicas Administrativas, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Guadalupe, Nuevo León 67170, México. https://orcid.org/0009-0008-5743-9141

DOI:

https://doi.org/10.61467/2007.1558.2025.v16i4.1023

Keywords:

cybersecurity, Internet of Things, IIoT, Optimization, Evolutionary Algorithm

Abstract

The rapid growth of the Internet of Things (IoT) in industrial environments has increased efficiency but also heightened vulnerability to sophisticated cyber-attacks. Traditional cyber security approaches are insufficient to protect critical infrastructure, creating a need for dynamic, adaptive solutions. Evolutionary algorithms (EAs), owing to their ability to explore large search spaces and optimise parameters, offer a promising route to enhancing IoT security. This review highlights the integration of EAs with deep-learning techniques to improve intrusion detection and system resilience. Building on this background, we propose an adaptive cyber-security framework that leverages evolutionary optimisation and continual learning to detect, prevent and mitigate attacks in real time. The study emphasises the importance of validating hybrid models in real-world settings and of optimising computational efficiency. Future work should investigate autonomous response mechanisms and the scalability of solutions for large-scale Industrial IoT (IIoT) deployments, ensuring robust protection against emerging threats and aligning academic advances with industry needs.

Downloads

Published

2025-10-12

How to Cite

Soto-Soto, J. E., Hernandez-Vega, J. I., Silva Trujillo, A. G., Reynoso-Guajardo, L. A., Hernandez-Santos, C., & Gallardo-Morales, M. C. (2025). A Review of the perspective on the implementation of evolutionary algorithms in cyber security on IoT infrastructure. International Journal of Combinatorial Optimization Problems and Informatics, 16(4), 375–380. https://doi.org/10.61467/2007.1558.2025.v16i4.1023

Issue

Section

Advances in Computer Science