A Neighborhood Operator for Continuous Multi-Objective Optimization Problems

  • Alejandro Santiago Instituto Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero
  • José Carlos Soto Monterrubio Instituto Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero
  • David Terán-Villanueva Instituto Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero
  • Héctor Joaquín Fraire Huacuja Instituto Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero
  • Juan Javier González Barbosa Instituto Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero
  • Claudia Gómez Santillán Instituto Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero
Keywords: Multi-Objective Optimization Problems

Abstract

Path-metaheuristics have been used successfully in combinatorial optimization. However, in continuous optimization problems, the lack of neighborhood definitions makes them difficult to design and implement. This paper proposes a neighborhood operator based on first order linear approximation of the gradient. In order to adapt the linear approximation to multi-objective optimization, we use the multi-objective decomposition approach so the operator can be used for single and multi-objective continuous optimization problems. The proposed approach is validated using a Threshold Accepting algorithm based on decomposition and a set of benchmark problems for multi-objective optimization. Results show a significant improvement over Pareto lineal sets.

Published
2018-01-08
How to Cite
Santiago, A., Soto Monterrubio, J., Terán-Villanueva, D., Fraire Huacuja, H., González Barbosa, J., & Gómez Santillán, C. (2018). A Neighborhood Operator for Continuous Multi-Objective Optimization Problems. International Journal of Combinatorial Optimization Problems and Informatics, 8(1), 12-18. Retrieved from https://ijcopi.org/index.php/ojs/article/view/3
Section
Articles