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Abstract. Incomplete data poses a significant obstacle in data 

science and machine learning, influencing model outcomes and 

occurring commonly across domains such as health, nutrition, 

electricity, agriculture, chemistry and water resources. Missing 

data refers to the absence of information for one or more variables 
in a dataset. Accurate imputation is therefore crucial to ensure the 

reliability and validity of analyses and predictive models. This 

study proposes a Harmony Search Algorithm (HSA) to address 
missing-data imputation, emphasising its flexibility and 

adaptability. The approach seeks the best imputations by 

minimising error metrics such as MAE, MSE and RMSE. 
Computational tests indicate that HSA is a promising method for 

imputing missing data in a range of contexts. 
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1 Introduction 
 

Incomplete data poses a significant obstacle in data science and is prevalent across various domains. These missing data represent 

the lack of information on one or more variables within the set. The problem is due to several factors, the main one being human 

error in recording information, the omission of complete records, and several failures in measuring devices, among others, that 

affect the information of a dataset. Ignoring the incomplete data leads to low-quality estimates with possible biases. State-of-the-

art catalogs them into three categories: Missing Completely at Random MCAR, Missing At Random MAR, and Missing Not At 

Random MNAR. In the MCAR approach, the data does not depend on a category or its intrinsic value; the mechanism is random. 

Therefore, allows the use of several imputation techniques. While the Missing At Random MAR approach, the data depend on 

other values but not specifically on itself, allows the use of several imputation techniques. Finally, in the case of Missing Not At 

Random MNAR, the absence of data is directly linked to the values of the variable itself, which complicates imputation and 

requires the use of more advanced methods. 

 

It is essential to recognize missing data approaches to analyze and apply various imputation techniques (Rubin et al., 1995; Memon 

et al., 2022; Wells et al., 2013; Dong & Peng, 2013; Rubin, 1976). Most machine learning algorithms cannot work with incomplete 

data sets. Therefore, the data set receives treatment in different ways, such as erasing incomplete information or using imputation 

techniques. The treatment consists of filling in a value using data predicted through imputation strategies. These methods utilize 

the existing values within the dataset to substitute the missing entries. 

 

We will address the main techniques for managing incomplete data through imputation, such as Simple Imputation, the K-Nearest 

Neighbors method, Random Forest, and Multiple Imputation by Chained Equations. The Simple imputation method substitutes 

missing values by leveraging all non-missing entries in the dataset. It employs strategies such as using the mode, mean, or median 

values to fill in the gaps. However, when applied to high-dimensional datasets, simple imputation might introduce bias or lead to 

unrealistic outcomes (Jerez et al., 2010). The K-Nearest Neighbors method groups the available values into clusters and substitutes 

the missing entries with those obtained from the closest neighbors. The assessment of proximity uses the distance measures, 

including the Minkowski, Manhattan, Cosine, Jaccard, Hamming, and Euclidean distances (García-Laencina et al., 2009). The 

Random Forest is a collection of decision trees designed to improve prediction accuracy and minimize overfitting. The algorithm 

iteratively predicts missing values using observed data and refines the estimates at each step until it reaches satisfactory results 

(Stekhoven & Bühlmann, 2012). Finally, the Multiple Imputation by Chained Equations (MICE) uses the regression techniques 

to predict missing values, generating multiple imputations and producing several versions of the dataset. The approach combines 
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the resulting versions to obtain robust estimates. The MICE model stands out for its great versatility in dealing with a wide variety 

of variable types (van Buuren & Groothuis-Oudshoorn, 2011). 

 

This study explores the application of the Harmony Search Algorithm (HSA) as an alternative to impute missing values.  HSA is 

a metaheuristic technique with inspiration in the musical process to obtain the perfect harmony. This method addresses 

optimization challenges and finds extensive applications across diverse domains, including Operations Research (Geem et al., 

2001), Artificial Intelligence and Evolutionary Computing, Engineering (Goh et al., 2020; Zhang & Zhang, 2018), Data Science 

(Shuai et al., 2022), Health Research and Bioinformatics (Abdulkhaleq et al. 2022), Business (Abu Doush et al., 2022), among 

other areas (Siddique & Adeli, 2015). 

 

2 State of the art 
 

Little and Rubin (2002) developed a transformer neuronal network to impute incomplete data in energy demand profiles. Their 

methodology integrates the K-means algorithm to handle the replacement of missing values. The model was tested on two case 

studies involving residential houses located in Cornwall and Fintry, UK. Its performance was assessed across three typical 

scenarios: MCAR, MAR, and MNAR. The proposed method demonstrates notable advancements in both scenarios: in Cornwall, 

it achieves performances of 57.52% MCAR, 49.71% MAR, and 50.21% MNAR with 30% missing data, outperforming the linear 

approach. Similarly, in Fintry, the performance enhancements are 46.45% for MCAR, 48.71% for MAR, and 54.87% for MNAR. 

The authors emphasize that this methodology has profound implications for end users, energy providers, and policymakers, as it 

facilitates more precise data and better-informed decisions for energy demand analysis and strategic planning. 

 

Ferri et al. (2023) analyze diverse imputation techniques and classification workflows aimed at repurposing highly incomplete 

Electronic Health Records (EHR) for Machine Learning (ML) applications. The study focuses on identifying imputation methods 

for managing missing data and assessing ML models that address significantly incomplete numeric values in EHR. The research 

evaluates 30 different combinations of imputation approaches and classification algorithms, utilizing Complete Blood Count, 

Census, and Life expectancy data in hospital admissions associated with COVID-19, specifically considering characteristics with 

a 95% missing data rate. These combinations incorporate methods like average imputation, K-Nearest Neighbors, Bayesian 

regression, Generative Adversarial Imputation Networks (GAIN), logistic regression, random forest, gradient boosting, and deep 

neural networks with multiple layers. Computational experiments demonstrates that the integration between transformation and 

encoding imputations using tree ensemble models surpasses advanced imputation strategies. 

 

Memon et al. (2023) assess various imputation techniques for addressing incomplete categorical data, using health records sourced 

from Kawempe National Referral Hospital, Uganda. The study examines five techniques: Mode, KNN, Random Forest, Sequential 

Hot-Deck (SHD), and MICE. The computational results indicate that KNN attains the highest precision in estimating missing 

values within categorical data, especially when the missing data rate ranges from 5% to 50% MCAR. Random Forest ranks place, 

delivering superior results at lower percentages of missing data (10%, 15%, 20%). Conversely, SHD exhibits the lowest accuracy 

across all levels of incomplete data. The study concludes that KNN is the most effective method for imputing missing values 

across several categories. 

 

Emmanuel et al. (2021) analyze two approaches for imputing missing values, utilizing KNN and Random Forest on the power 

plant fan dataset and the Iris dataset, with missing rates ranging from 5% to 20%. The computational experiments reveal that KNN 

imputation performs better than Random Forest in the Iris dataset, while Random Forest demonstrates superior performance over 

KNN in the power plant fan dataset. The study concludes that both KNN and RF are capable of effectively handling datasets with 

missing values. 

 

Kabir et al. (2020) examine incomplete values within the municipal water network database from Calgary City, Canada. The study 

analyzes the effectiveness of single imputation methods, including mean, median, and linear regression, in comparison to advanced 

multiple imputation techniques such as IRMI, AMELIA, and sequential imputation for missing values (IMPSEQ). The findings 

from their computational tests reveal that IMPSEQ delivers superior performance compared to both the single imputation 

approaches and other multiple imputation strategies. 

 

Aljuaid et al. (2017) evaluate five imputation methods for handling incomplete data: KNN, Hot-Deck, and C5.0. Their analysis is 

based on synthetic datasets of varying sizes, comparing classification accuracy between the original and imputed data. The findings 

reveal that these techniques perform effectively, even with higher levels of missing data, such as 10% in the credit card dataset 

and 25% in the adult dataset. 
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Elasra et al. (2022) apply multiple imputation techniques utilizing the Markov Chain Monte Carlo (MCMC) framework and the 

Gibbs sampling algorithm on longitudinal educational data. The study evaluates three iterations—2, 50, and 100—and 

demonstrates that 25 iterations are optimal for effectively imputing incomplete data and achieving a complete longitudinal dataset. 

The findings conclude that this approach efficiently imputes missing values, enabling more accurate estimation of educational 

production functions while minimizing biased results. 

 

3 Methodology 
 

To ensure the quality, consistency, and adequate preparation of the data for the imputation process of missing values and subsequent 

analysis, we implement a rigorous and standardized preprocessing process on all datasets used in this study: Breast Cancer, Salaries, 

Diabetes, and Wine Dataset, all sourced from the Kaggle platform. This process was essential for transforming the raw data into an 

optimal format for algorithmic modeling. 

 

The initial phase involves cleaning and structuring each dataset, removing irrelevant columns to ensure the data starts from a 

complete state before the controlled introduction of missing values for experimentation. Subsequently, categorical variables were 

converted to numerical representations using direct mappings, while numerical variables were normalized using Min-Max scaling 

to transform their values to the range [0, 1]. This process uses Equation 1: 

 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (1) 

 

Where X is the original feature value, Xmin and Xmax are the minimum and maximum observed values for that feature, respectively. 

This transformation prevents features with wide ranges from dominating the learning of scale-sensitive algorithms. 

 

As a central step for the evaluation, the procedure simulates missing values in a controlled manner by randomly introducing defined 

percentages of NaNs (10%, 20%, 30%, 40%, and 50%) into the predictor variables. This simulation was replicated 20 times with 

1000 runs to generate varying sparsity conditions and thus robustly evaluate the performance of the Harmony Search Algorithm 

HSA against standard imputation techniques. 

 

Performance evaluation uses widely recognized quantitative metrics, such as Mean Square Error MSE, Mean Absolute Error MAE, 

and Root Mean Square Error RMSE, which measure the difference between imputed values and known actual values. These metrics 

allow for a comprehensive evaluation of the precision and accuracy of imputations. Furthermore, to statistically validate the 

significance of the observed differences between HSA and other techniques, nonparametric tests such as the Wilcoxon test and 

Friedman analysis were applied, providing robustness and rigor to the comparative analysis. Finally, the combination of meticulous 

preprocessing, controlled simulation of missing values, evaluation using standard metrics, and statistical validation ensures the 

robustness and reliability of the results presented in this study. 

 

3.1 Interpreting Distributions 
 

Analyzing feature distributions in data sets on Breast Cancer, Salaries, Diabetes, and Wine reveals crucial patterns and properties 

for understanding their nature and preparing them appropriately for imputation and modeling.  

 

Fig.1 and Fig. 2 displays the distribution of the Breast Cancer dataset and the Salaries dataset. Fig.1 presents the Cancer distribution 

with binary or discrete categorical variables that predominate, such as Menopause, Breast, Diagnosis Result, and Breast Quadrant, 

which display count distributions. The age variable presents a more continuous and closer to normal distribution. There is a 

considerable imbalance in the target variable, Diagnosis Result.  

 

Fig.2 presents the distribution of the Salaries dataset, which uses numeric, categorical, and ordinal attributes, experience_level, 

employment_type, remote_ratio, and company_size, demonstrating clear concentrations across several attributes. The salary 

variables exhibit strong positive skewness, with a concentration of low values and a long tail toward high values. Furthermore, 

some categories, such as employment_type and remote_ratio, show extremely high frequencies in certain classes. 

 

Analysis of the datasets reveals distinct challenges in imputation. The Cancer dataset requires methods that handle categorical 

variables and data imbalance. The Salaries dataset, on the other hand, requires robust algorithms that can handle a mix of variable 

types and strong value skew. 
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Fig. 1. Cancer distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Salary distribution 

 

Fig.3 and Fig.4 presents the distributions of the Diabetes and Wine datasets. Fig.3 shows the distribution of the Diabetes dataset, 

which consists primarily of continuous numerical variables. Several critical values, such as blood pressure, skin thickness, insulin, 

and BMI, require special handling during imputation. Most other numerical variables are positively skewed, and the target variable 

also exhibits class imbalance.  

 

Finally, Fig. 4 presents the Wine distributions, which are characterized by continuous numerical variables, many with skewed or 

bimodal distributions, such as Malic Acid, Flavonoids, and Proline. Variables such as Alcohol and Ash have near-normal 

distributions. The target variable Customer_Segment is categorical with multiple classes, which display an imbalance in the 

distribution of instances. In summary, the distributions confirm the mixed nature of the data, the presence of skewness, and 
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imbalances common in real-world data. These observations inform decisions regarding normalization, imputation, and the selection 

of appropriate models for each set. 

 

The analysis of the Diabetes and Wine datasets confirms the complexity of the real data. The Diabetes dataset contains continuous 

variables with positive skewness and class imbalance, while the Wine dataset exhibits skewed and bimodal distributions, as well as 

imbalance in its target variable. These characteristics demonstrate the necessity for robust imputation and normalization methods 

to ensure reliable results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Diabetes distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Wine distribution 
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4 Harmony Search Algorithm Approach 

 
Harmony search algorithm (HSA) is an optimization technique introduced by Zong Woo Geem et al. (2001). This method draws 

inspiration from musical harmony, modeling the process of generating and refining solutions after how musicians craft harmonious 

chords. The algorithm leverages a harmony memory to store and refine solutions, assessing new candidates based on the objective 

function. Its goal is to identify the optimal solution for various complex problems. 

 

HSA is a metaheuristic technique inspired by musical improvisation processes, demonstrating its effectiveness in solving 

optimization problems in large, nonlinear search spaces. Its design allows for an efficient balance between exploration and 

exploitation of the solution space, which is particularly useful for issues such as missing data imputation, where the search for 

plausible values must consider multiple variables and constraints. This feature, coupled with the fact that, unlike other methods, 

HSA does not require large populations or complex operators, simplifies its implementation and reduces the computational burden, 

making it a flexible and adaptable option for imputation, where the process finds a combination of imputed values that minimizes 

reconstruction error without falling into a local optimum. Furthermore, its stochastic nature and its ability to explore different 

regions of the solution space make this method a promising alternative to traditional techniques and other heuristics, especially in 

datasets with varied characteristics and heterogeneous levels of missing values. For these reasons, we select the HSA method as the 

basis for developing the imputation method presented in this study. 

 

Algorithm 1 shows our proposed procedure to impute missing data; the process generates the solutions with a defined number of 

iterations. The algorithm input includes initial variables such as Harmony Memory (HM), best score (best), current solution (Sol), 

dataset (Ds), current score (score), solution scores (Scores), and worst score (WorstScore). Algorithm parameters such as Harmony 

Memory Size (HMS), Harmony-Memory Considering Rate (HMCR), Pitch-Adjusting Rate (PAR), and Bandwidth (BW) are also 

used. 

 

Algorithm 1 HSA Imputation General Procedure  

1 Input:HM, Sol, Bestsol, Ds, Scores ← ∅ ▷ Empty Sets/Lists  

2 best, score, WorstScore ← 0  

3 Ds ← LoadPreparedDataSet()   ▷ Setup  

4 InitializeParam (HMS, HMCR, PAR, BW)  

5 InitializeHarmonyMemory (HM)  

6   for i = 1 to MaxIter do ▷ Main Iteration Loop  

7         Sol ← Generate Solution (HM, Ds, HMCR, PAR, BW)  

8         score ← objective function (Ds, Sol)  

9         Add score to Scores  

10         WorstScore ← Max (Scores)  

11        if score < WorstScore then  

12             HM [findworstidxF(Scores)] ← Sol  

13         end if  

14         if score < best then  

15             best ← score  

16             Bestsol ← Sol  

17         end if  

18     end for  

19 Output: best, Bestsol  

 

The method starts with the LoadPreparedDataSet function, which loads the dataset for preprocessing and amputation. The 

InitializeParam function initializes the main parameters to use in HSA, receiving values for these elements: HMCR and PAR, 

with values between 0 and 1; HMS, which determines the number of solutions to save in memory during the searching process; 

and BW, which adjusts the range for the selected values in the HM with a range from 0 to 100. InitializeHarmonyMemory generates 

an initial solution set, in which each solution is a copy of the original data and imputes missing values with random values within 

the ranges observed in the existing data. The Generate Solution function produces possible imputations for missing data that are 

close to the original data set, while minimizing the error between the imputed data and the original information. Finally, the 

objective function process evaluates and compares the accuracy of the solutions, measuring the error between the imputed values 
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and the original values, guiding the algorithm to improve and identify the most precise imputations. The algorithm output consists 

of two values, best and BestSol, which correspond to the best current solution and the best solution, respectively. 

 

4.1 Initialize Memory 
 

Algorithm 2 shows the initialization procedure for the HSA harmony memory. The input for this algorithm is data (the dataset) 

and HMCR (Harmony Memory Considering Rate). The output is HM (Harmony Memory). This memory is a list of possible 

solutions for the missing data. The harmony memory is optimized iteratively, where each solution is a version of the original 

dataset with missing values imputed randomly, using the existing values of the columns with complete data. Using a range of 

minimum and maximum values ensures that the imputed values are reasonable in the context of the existing data, which is critical 

to maintaining the integrity of the dataset throughout the imputation process. Therefore, the process generates an initial harmony 

memory with candidate solutions for imputed values, allowing the algorithm to continue iterating and refining the solutions with 

a range of values in the dataset, making it a simple but effective approach to generating viable initial solutions. 

 

Algorithm 2 HSA Initialize Memory Process  

1 Input: data, HMCR  

2 HM ← ∅                  ▷ Initialize Harmony Memory  

3 for k = 1 to HMCR do  

4    sol ← data     ▷ Initialize solution with input data  

5    for j = 1 to data.Columns do  

6     if IsNull(dataj) then  

7         getMaxMin (minv, maxv, dataj)  

8         adjustmentF(minv, maxv)  

9         fill values ← addrandomvF(minv, maxv, data)  

10         solj ← addF(fill values)  

11     end if  

12    end for  

13  HM ← addF(sol) ▷ Add the solution to the Harmony Memory  

14  end for  

15 Return: HM  

16 Output: HM  

 

4.2 Imputation Process 

 
The main contribution is the use of this approach to impute missing data due to its capacity to explore a wide range of possible 

solutions, which allows finding imputations that minimize the error concerning the original values. Specifically, the initial 

solutions are not generated randomly as in traditional HSA. The basis of the solutions is the observed values in the columns of 

the dataset, thus ensuring a realistic and consistent imputation with the existing data. 

 

Algorithm 3 displays the improvisation process that imputes the missing data; the goal is to create a candidate new solution. The 

input for this algorithm is HM (Harmony Memory), data (the dataset), HMCR (Harmony Memory Considering Rate), PAR (Pitch-

Adjusting Rate), and BW (Bandwidth). The procedure output is Newsol (the new solution generated). The solution uses the 

information from Harmony Memory, applying several random rules, combining the exploitation of existing solutions with the 

exploration of new allocations, controlled by the parameters Harmony Memory Considering Rate (HMCR) (See lines 8 and 12), 

Pitch Adjustment Rate (PAR), and Bandwidth (BW) (See line 16). The function loops through each column in the dataset to check 

if it contains missing values. If so, we perform a row-by-row iteration to impute null values. 

 

For each missing value, the function evaluates using HMCR values if the random value is less than HMCR, where the process 

selects a value from harmony memory. The procedure imitates the memory of musicians in improvisation, in which we reuse the 

previous solutions that have been effective. Otherwise, if it is higher than HMCR, the method generates a random value within a 

defined range between the maximum (𝑚𝑖𝑛𝑣) and the minimum (𝑚𝑎𝑥𝑣) values of the current column in the original data, allowing 

the exploration of new solutions by imputing values not present in previous solutions. Eq. 3 shows the condition of HMCR, where 
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selected 𝑠𝑜𝑙𝑟𝑐  represents the initial solution from Harmony Memory (HM) that iteratively loops through rows (r) and columns (c) 

𝐻𝑀 =  {ℎ𝑚01, ℎ𝑚𝑖𝑗 , . . . , ℎ𝑚𝑟𝑐}. 

 

𝑁𝑒𝑤_𝑠𝑜𝑙𝑟,𝑐 = {
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑠𝑜𝑙𝑟.𝑐

, 𝑟𝑎𝑛𝑑(0,1) < 𝐻𝑀𝑅𝐶

𝑟𝑎𝑛𝑑𝐹 (𝑚𝑖𝑛𝑣, 𝑚𝑎𝑥𝑣), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (3) 

𝑁𝑒𝑤𝑠𝑜𝑙𝑟,𝑐
=  𝑁𝑒𝑤𝑠𝑜𝑙𝑟.𝑐

+ 𝑟𝑎𝑛𝑑(−𝐵𝑊, 𝐵𝑊 ), 𝑟𝑎𝑛𝑑𝐹 (0, 1) <  𝑃𝐴𝑅 (4) 

Upon obtaining the new value (either with the harmony memory or randomly), the function makes a new decision using the PAR 

value. This decision evaluates if a new random value is less than the PAR value, where the function adjusts the imputed value by 

adding or subtracting a small random value within a range defined by BW (see Eq. 4). This adjustment introduces variations in 

the selected values, emulating the fine-tuning in musical improvisation. The objective is to explore close solutions that can 

improve the overall quality of the imputation. 

 

Algorithm 3 HSA Improvisation Process  

1 Input: HM, data, HMCR, PAR, BW  

2 New sol ← data ▷ Initialize new solution with input data  

3 for c = 1 to data.Columns do  

4   if IsNull(datac) then ▷Check nulls in original data columns  

5  for r = 1 to New_ sol.Index do ▷Iteration elements/rows  

6    if IsNull(New_solr,c) then ▷Is the current element null?  

7         if randomF (0, 1) < HMCR then ▷HM Consideration  

8           New_solr,c ← randomF(HM) ▷ Assign random HM  

9         else  ▷ Improvise new value  

10          getMaxMin(minv, maxv, datac)  

11          adjustmentF(minv, maxv)  

12          New solr,c ← randomF(minv, maxv)  

13        end if  

14    end if  

15     if randomF(0, 1) < PAR then ▷ Pitch Adjustment  

16       New_solr,c ← New_solr,c − randomF(-BW, BW)  

17    end if  

18    end for  

19   end if  

20 end for  

21 Return: New_sol  

22 Output: New_sol  

 

5 Experimental Results 
 

5.1 Configuration and Instances 
 

Computational tests were performed on a computer with an AMD Ryzen 7 4000 series processor at 2.90 GHz and 8 GB of RAM, 

running Windows 10, using PyCharm and Python as the programming language. Given the stochastic nature of the HSA algorithm, 

we perform 20 independent runs of 1000 iterations. We report the average values of the results to ensure the stability and reliability 

of the metrics. To evaluate the performance of the methods, we use the MAE, MSE, and RMSE metrics. The results are presented 

in graphs showing these metrics on the Y-axis and the percentages of missing data (10%, 20%, 30%, 40%, and 50%) on the X-axis. 

The instances and code are available at csalas07 (n.d.) GitHub repository. 

 

For comparative imputation methods, we use the Scikit-learn library for standard implementations. The experts widely recognize 

it for its efficiency and robustness in machine learning. For methods as the Mean, Median, and Mode imputers, we use the 

SimpleImputer library, setting the strategy to mean, median, and most frequent, respectively. KNN procedure, employing the 

KNNImputer class, with five nearest neighbors for imputation. For the MICE imputer, the IterativeImputer class was used, with 
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random state = 0 to ensure reproducibility, and the other parameters using their library default values. Finally, the Random Forest 

imputer made use of the RandomForestRegressor class, using the library’s default parameters for its configuration. 

Assessing the generality of the proposed approach, we selected four Kaggle datasets widely used in the literature (Cancer, Salary, 

Diabetes, and Wine) with diverse characteristics in terms of domain, size, and type of variables. Each set comes from different 

domains, which contributes to demonstrating the versatility and robustness of the algorithm. The Cancer and diabetes represent 

biomedical problems with complex and sensitive data, where imputation quality is crucial. Furthermore, Salary and Wine allow the 

method to be evaluated in socioeconomic and agro-industrial contexts, broadening its application spectrum. 

 

Simulating the presence of missing data, random imputation was applied to the original datasets, uniformly removing values from 

continuous variables according to predefined percentages MCAR. This technique reproduces common scenarios where missing 

data occur without a specific pattern, allowing an objective and consistent evaluation of the performance of imputation methods 

under realistic and controlled conditions. Table 1 summarizes the key properties of each dataset: name, number of attributes, number 

of instance elements (n), and number of classes. 

 
Table 1. Instance set 

 

 
 
 
 
 
 
 

5.2 Analysis of missing data for Cancer dataset 
 

Fig. 5 presents the performance of the Mean, Median, Mode, KNN, MICE, Random Forest, and HSA imputation techniques on the 

Cancer dataset, evaluated using Mean Absolute Error MAE, Mean Squared Error MSE, and Root Mean Squared Error RMSE, 

respectively. Visually, the HSA method exhibits consistently competitive behavior across all three percentages of missing data (from 

10% to 50%), maintaining relatively low and stable error values. HSA performs comparable to or better than several methods under 

various conditions, even approaching the performance of Random Forest, a state-of-the-art algorithm, in terms of MAE and MSE. 

In contrast, the Mean method generally shows the highest MAE, MSE, and RMSE values. Methods such as KNN and MICE exhibit 

fluctuations, with KNN showing a remarkable initial performance that deteriorates markedly as the percentage of missing data 

increases, and MICE exhibiting variability and error spikes at several points. 

 

Table 2 presents the Friedman test, which measures performance through average ranks. The Harmony Search Algorithm HSA 

imputation method is a tool with intermediate potential. HSA's ranks consistently rank moderately or highly, indicating that, while it 

does not perform as well as the Mean method, it does outperform other methods, such as the Median and Mode, in some levels of data 

loss. The HSA ranking suggests that it is a more robust alternative than other simplistic approaches, although the Mean appears to be 

the most effective. Therefore, although HSA does not stand out as the best, its competitive performance positions it as a viable option 

and a starting point for consideration. 

Table 2. Friedman Test Cancer Average Range 

 

 

 

 

 

 

 

Subsequently, Table 3 displays the Wilcoxon test; the analysis suggests that the HSA imputation method is a potentially valuable 

tool in the field of data analysis. The HSA relevance is notable when compared to conventional methods such as Mean and MICE, 

as the consistently low p-values demonstrate that HSA produces significantly different results, offering a unique perspective that 

could be crucial for several research objectives. While its results become statistically similar to those of Median, Mode, and, in 

various ranges, KNN and RF, this does not diminish its potential, which demonstrates that its performance is comparable to methods 

considered reliable. HSA's ability to generate results distinct from those of simple techniques, such as Mean, positions it as a 

Name Attributes n Class 

Cancer 9 1917 2 

Diabetes 9 6912 2 

Salary 6 3642 0 

Wine 14 2492 1 

Cancer 9 1917 2 

Loss (%) HSA KNN MICE Mean Median Mode RF 

10 5.75 3.67 3.15 1.75 4.85 5.05 3.77 

20 4.3 4.10 3 1.5 4.95 5.25 4.90 

30 4.9 3.65 2.5 1.05 5.05 5.95 4.90 

40 4.75 3.77 3.15 1.00 5.10 6.05 4.17 

50 4.75 3.52 2.92 1.05 5.05 5.75 4.95 
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sophisticated and potentially superior alternative for tasks where more robust imputation is required. 

Table 3. Wilcoxon Test Cancer P-Value HSA vs Imputers 

 

 

 

 

 

 

 

In addition to directly evaluating accuracy of imputation, the impact of the HSA method on the performance of a subsequent 

classification task on the Cancer dataset with the imputed values was analyzed. Table 4 presents the key classification metrics 

(Accuracy, Recall, F1-Score, ROC AUC) for the HSA method at different percentages of missing data. 

Table 4. Precision Test Cancer 

 

 

 

 

 

 

 

The results show that HSA maintains high accuracy (Accuracy) in the classification task, ranging from 0.8710 to 0.9032 as the 

percentage of missing data increases from 10% to 50%. Recall remains consistently high (between 0.9429 and 1.0000), indicating 

an excellent ability to correctly identify positive cases. Similarly, the F1 score remains within a robust range (0.8919 to 0.9211), 

and the area under the ROC curve AUC also demonstrates high discriminatory power (0.8958 to 0.9381). These values suggest that, 

despite the presence of missing data and their subsequent imputation with HSA, the resulting dataset retains the information necessary 

for effective classification, which is crucial for practical applications. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Cancer comparison. 

Loss (%) KNN MICE Mean Median Mode RF 

10 0.0008507 0.0002098 0.0000019 0.6215134 0.5958195 0.0003948 

20 0.4897449 0.0239506 0.0000629 0.1429062 0.1230927 0.3488102 

30 0.1893482 0.0007076 0.0000019 0.1429062 0.0637226 0.7561665 

40 0.2942524 0.0440540 0.0000019 0.0761531 0.0695801 0.2161674 

50 0.0239506 0.0016899 0.0000019 0.0758514 0.0531693 0.7841263 

Loss (%) Accuracy Recall F1-Score ROC AUC 

10 0.9032 1 0.9211 0.9275 

20 0.9032 0.9714 0.9189 0.9381 

30 0.8871 0.9714 0.9067 0.9079 

40 0.9032 1 0.9211 0.937 

50 0.871 0.9429 0.8919 0.8958 



Oviedo-Salas et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(4) 2025, 381-398. 

391 

 

Analysis of the results for the Cancer set reveals that while HSA exhibits remark- able visual competitiveness and stability in 

imputation (Fig.5), statistical vali- dation (Table 2, 3) offers nuances. The Wilcoxon test indicates that, for RMSE, HSA is 

statistically inferior to KNN, MICE, and Mean, possibly due to the characteristics of this dataset favoring methods that capture more 

direct relationships or the robustness of the mean. However, no statistically significant difference was found between HSA and the 

Median, Mode, and Random Forest methods, validating HSA ability to compete with advanced algorithms. Crucially, HSA’s 

performance on the downstream classification task (Table 4) consistently shows high levels of Accuracy, Recall, F1-Score, and ROC 

AUC, indicating that, despite the lower accuracies in direct imputation, HSA manages to pre- serve the structural quality of the data 

for effective classification. This suggests that HSA primary value lies in its ability to generate high-quality imputed datasets for 

downstream machine learning tasks, making it a robust alternative for applications where the ultimate goal is prediction or decision-

making, especially in scenarios with higher data complexity. 

 

5.3 Analysis of missing data for Diabetes dataset 
 

Fig. 6 presents the performance of the imputation techniques Mean, Median, Mode, KNN, MICE, Random Forest, and HSA on the 

Diabetes dataset, evaluated using Mean Absolute Error MAE, Mean Squared Error MSE, and Root Mean Squared Error RMSE, 

respectively. Visually, the HSA method exhibits competitive and relatively stable behavior across all three percentages of missing 

data (from 10% to 50%). Its performance consistently remains among the lowest error methods at most points. For MAE, HSA 

ranks as the method with the lowest or near-lowest error at all percentages, demonstrating remarkable robustness. For MSE and 

RMSE, HSA also presents a solid performance, remaining among the two or three lowest error methods, frequently surpassed by 

Random Forest and MICE, but with very controlled error growth as missingness increases. 

The Random Forest method generally shows excellent performance, often achieving the lowest MAE, MSE, and RMSE, with a 

very flat and stable error curve. MICE also present very competitive performance, staying close to Random Forest and HSA, and 

outperforming simpler methods in most scenarios. In contrast, the means, median, and mode methods consistently show higher 

error values than HSA, Random Forest, KNN, and MICE, and their errors increase as missing data increases. KNN shows 

intermediate performance, with a gradual increase in its error metrics. 

 

Table 5 presents the Friedman test; the HSA method shows considerable potential, albeit with a critical dependence on the percentage 

of missing data. Initially, with only 10% missingness, HSA proves to be an undisputed leader with the lowest average rank (1.15), 

suggesting that it is the most effective method in scenarios with little data loss. However, this superior performance is volatile. As 

data loss increases, HSA's performance gradually deteriorates, yielding its leading position. At the highest levels of missingness, 

Random Forest (RF) emerges as the most robust and consistent method, outperforming all others. Therefore, HSA emerges as a 

potentially high-impact tool for scenarios with minimally incomplete data, although its reliability decreases significantly as the 

amount of missing data grows. 

Table 5. Friedman Test Diabetes Average range 

 

 

 

 

 

 

 

Table 6 presents the Wilcoxon test, demonstrating that the Harmony Search Algorithm is a tool with significant and nuanced 

potential. Consequently, a significant statistical difference exists between the Mean and MICE methods, evidenced by consistently 

low p-values, which highlights HSA's ability to generate unique solutions. This finding validates HSA as a robust alternative. 

However, the picture becomes more complex when noting the absence of statistical differences with simpler methods, such as 

Median and Mode, in most scenarios. This similarity does not detract from HSA's merit, which suggests that its performance is 

comparable to that of established and reliable solutions. 

 

In addition to directly evaluating accuracy of imputation, the impact of the HSA method on the performance of a subsequent 

classification task on the Diabetes dataset with the imputed values was analyzed. Table 7 presents the key classification metrics 

(Accuracy, Recall, F1-Score, ROC AUC) for the HSA method at different percentages of missing data. 

 

Accuracy remained within acceptable ranges, reaching its highest point at 0.7706 for 20% missing data. Although a slight decrease 

in performance was detected for the metrics; Accuracy, Recall, F1-Score, and ROC AUC; as the percentage of missing data increased 

Loss (%) HSA KNN MICE Mean Median Mode RF 

10 1.15 3.25 2.4 4.8 6 7 3.4 

20 3.55 3.15 2.05 4.65 5.65 6.95 2 

30 5.55 2.85 1.55 4 5.6 6.8 1.65 

40 6.35 2.65 1.7 4 5.05 6.6 1.65 

50 6.45 2.65 1.7 4 5.05 6.5 1.65 
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from 10% to 50%, the ROC AUC, by consistently remaining above 0.76 in all cases, indicates that the imputation performed by HSA 

preserves the underlying predictive power of the model. This suggests that HSA performs effective imputation that significantly 

contributes to maintaining the inherent structure of the data, which is essential for robust and accurate classification. 

 
Table 6. Wilcoxon Test Diabetes P-Value HSA vs Imputers 

 

 

 

 

 

 

 

 
Table 7. Precision Test Diabetes 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Diabetes Comparison. 

Loss (%) KNN MICE Mean Median Mode RF 

10 0.000001907 0.00029280 0.0000019 0.00000191 0.00000191 0.00000191 

20 0.27892307 0.00271225 0.0019855 0.00036262 0.00000381 0.00485992 

30 0.00000191 0.00000191 0.0000019 0.20244980 0.00013351 0.00008845 

40 0.00008845 0.00000191 0.0000019 0.00012026 0.47490501 0.00000191 

50 0.00008845 0.00000191 0.0000019 0.00001907 0.97021716 0.00000191 

Loss (%) Accuracy Recall F1-Score ROC AUC 

10 0.7619 0.7619 0.7554 0.7986 

20 0.7706 0.7706 0.7643 0.7935 

30 0.7489 0.7489 0.7364 0.7865 

40 0.7446 0.7446 0.7311 0.7691 

50 0.7186 0.7186 0.7021 0.7222 
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In the Diabetes dataset, the combined results of the Friedman test and Wilcoxon post-hoc analyses delineate a key performance 

pattern among the imputation techniques. HSA proved to be an exceptionally robust and reliable method in scenarios with a low 

proportion of missing data (10% RMSE), establishing itself as the gold standard under these high completeness conditions. Its 

consistent performance across this initial loss range positions it as an invaluable and highly promising tool for applications where 

source data quality is paramount. While its effectiveness decreased as loss increased, the robustness of MICE and Random Forest 

proved superior and more versatile under higher uncertainty scenarios. Both methods consistently maintained the lowest missingness 

ratios and exhibited significant superiority under higher loss conditions. This suggests that, for this dataset, the choice of the optimal 

method depends largely on the level of data completeness, making HSA a potential tool for near-complete data. 

 

5.4 Analysis of missing data for Salary dataset 
 

Fig. 7 presents the performance of the Mean, Median, Mode, KNN, MICE, Random Forest, and HSA imputation techniques on the 

Salary dataset, evaluated using Mean Absolute Error (MAE), Mean Squared Error MSE, and Root Mean Squared Error RMSE, 

respectively. Visually, the HSA method obtains the lowest MAE, MSE, and RMSE values at 10% missing data, suggesting superior 

initial performance. However, as the percentage of missing data increases (from 10% to 50%), HSA’s error metrics; MAE, MSE, 

RMSE display a steady and steep upward trend, outperforming most other methods and ending with the highest or among the 

highest errors at 50%. In contrast, Random Forest and MICE prove more robust in handling high percentages of missing data in 

these metrics, maintaining comparatively low errors. The mean, median, mode, and KNN methods all show gradual increases in 

their errors, with the mean and median generally lagging behind the HSA by high percentages. 

 

Table 8 presents the Friedman test of the Salary dataset. The test reveals Harmony Search Algorithm HSA as a tool with great 

potential, particularly in scenarios with a low amount of missing data. At 10% and 20% loss, HSA emerges as the clear leader, 

obtaining the lowest average ranks and demonstrating superior effectiveness to all other methods. This initial lead is a strong 

indicator of its value in contexts where accurate imputation does not require a high rate of data incompleteness. Although HSA's 

performance degrades as data loss increases, yielding the top spot to methods such as MICE and Random Forest RF, its ability to 

excel in low-loss conditions cements it as a highly relevant option. Therefore, HSA is an invaluable potential tool, especially for 

data imputation in data sets with minimal to moderate loss. 

 
Table 8. Friedman Test Salary Average range 

 

 

 

 

 

 

 

 

Table 9 presents the Wilcoxon test of the Salary dataset. The test highlights the potential of the HSA as an adaptive tool whose 

relevance changes with the amount of missing data. Initially, at 10% and 20% loss, HSA markedly differentiates itself from all other 

methods, suggesting its ability to generate unique results in scenarios with few missing data. However, as the loss increases to 30% 

and 40%, HSA starts to converge with the performance of most state-of-the-art methods, such as KNN, MICE, and RF, becoming 

statistically indistinguishable from them, demonstrating its compatibility and ability to align with robust results. It is particularly 

notable that at the 50% level, HSA differentiates itself from all state-of-the-art methods but becomes indistinguishable from Median 

and Mode, suggesting a change in its behavior. 

 
Table 9. Wilcoxon Test Salary P-Value HSA vs Imputers 

 

On the Salary dataset, the combined Friedman test and Wilcoxon results reveal a distinctive performance pattern. HSA demonstrated 

Loss (%) HSA KNN MICE Mean Median Mode RF 

10 1.00 4.05 3.35 3.65 6.20 6.20 3.55 

20 1.05 3.95 2.77 3.98 6.20 6.50 3.55 

30 2.85 3.60 1.90 3.30 6.25 6.35 3.75 

40 3.55 3.90 1.85 2.70 6.40 6.60 3.00 

50 5.70 3.22 1.35 2.70 6.12 5.97 2.92 

Loss (%) KNN MICE Mean Median Mode RF 

10 0.000001907 0.000001907 0.000001907 0.000001907 0.000001907 0.000001907 

20 0.000001907 0.000001907 0.000001907 0.000001907 0.000001907 0.000003815 

30 0.278797395 0.112563231 0.537866329 0.000026703 0.000026703 0.545875549 

40 0.910817249 0.003182496 0.026641846 0.000001907 0.000001907 0.311794281 

50 0.000013351 0.000003815 0.000103203 0.262680669 0.261098862 0.000001907 



Oviedo-Salas et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(4) 2025, 381-398. 

394 

 

exceptionally robust and reliable performance in scenarios with a low proportion of missing data (10% RMSE with an average rank 

of 1.00 and 20% RMSE with 1.05), establishing itself as a potential and practically unmatched tool in these conditions of high data 

integrity. Its consistent performance at this initial loss range positions it as an invaluable and very promising option for applications 

where the quality of the source data is paramount. While its effective- ness decreased as the loss increased, reaching average ranks 

of 5.70 at the 50% loss level, the robustness of MICE and Random Forest proved superior and more versatile in scenarios of greater 

uncertainty. Both methods consistently maintained the lowest ranges; MICE with 1.35 at 50% and RF with 2.92 at 50%; and 

exhibited significant superiority under higher loss conditions, with MICE even significantly outperforming HSA above 40% RMSE. 

This suggests that, for this dataset, the choice of the optimal method depends largely on the level of data completeness, making HSA 

a potential tool for near-complete data. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Salary comparison. 

 

5.5 Analysis of missing data for Wine dataset 
 

Fig. 8 displays the performance of the imputation techniques (Mean, Median, Mode, KNN, MICE, Random Forest, and HSA) on 

the Wine dataset, evaluated using Mean Absolute Error (MAE), Mean Squared Error MSE, and Root Mean Squared Error RMSE, 

respectively. Visually, the HSA method exhibits competitive and relatively stable behavior across all three percentages of missing 

data (from 10% to 50%). Its performance consistently remains among the lowest error methods at most points. For MAE, HSA 

ranks among the two or three lowest error methods at most percentages, demonstrating good robustness. For MSE and RMSE, HSA 

also shows a solid performance, remaining among the best methods, with very controlled error growth as missingness increases. 

 

The Random Forest method generally presents a solid performance, often achieving the lowest MAE, MSE, and RMSE, with a 

very flat and stable error curve, indicating its robustness to increasing missing data. MICE also present very competitive 

performance, remaining close to Random Forest and HSA, and outperforming simpler methods in most scenarios. In contrast, the 
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Mean, Median, and Mode methods consistently exhibit higher error values than HSA, Random Forest, KNN, and MICE, and their 

errors increase more steeply as the amount of missing data increases. KNN shows intermediate performance, with a gradual increase 

in its error metrics. 

Table 10 presents the Friedman test for the Wine dataset; the test demonstrates that HSA is an imputation tool with great potential. 

At 10% and 20% loss, HSA establishes itself as the leading method, achieving the lowest average ranks and outperforming all its 

competitors. This initial performance underscores its exceptional effectiveness in scenarios with low to moderate amounts of 

missing data. Although its main rival, Random Forest RF, demonstrates greater robustness and outperforms it at higher loss levels, 

HSA's consistency at intermediate ranks and its initial lead consolidates it as a highly relevant option. The results suggest that 

HSA is a high-value alternative, capable of delivering outstanding performance in data imputation, especially in contexts with 

relatively high data integrity. 

 

The Wilcoxon test in Table 11 describes the performance for the Wine dataset, demonstrating a changing dynamic of the approach. 

At low to moderate loss levels (10% to 40%), HSA consistently stands out as a distinctive method, producing results that are 

significantly different from almost all other imputers. This behavior underscores HSA's ability to generate unique and potentially 

superior solutions, validating its relevance in scenarios where accurate and differential imputation is needed. The situation evolves 

at 50% of missing data, where HSA becomes statistically indistinguishable from KNN and MICE, suggesting that, under conditions 

of high data loss, HSA's performance converges with that of other robust methods. 

 

Analysis of the precision metrics for the Wine dataset (Table 12) reveals the remarkable robustness of the predictive model against 

data loss. In low-loss scenarios (10% and 20%), the model exhibits near-perfect performance, with Accuracy, Recall, and F1- Score 

values of 1.0000 and an ROC AUC that remains at 1.0000 and 0.9995 respectively. As the percentage of missing data increases to 

30%, the metrics experience a slight reduction, but remain exceptionally high; Precision at 0.9815 and ROC AUC at 0.999. Even 

with significant losses of 40% and 50%, the model demonstrates surprising resilience, stabilizing its metrics above 0.94 for 

Accuracy, Recall, and F1-Score, and an ROC AUC above 0.98. This consistent high performance underscores the effectiveness 

of the imputation techniques applied on the Wine dataset, allowing the model to maintain robust predictive capability even when 

half of the data are missing. 

 

Table 10. Friedman Test Wine Average range 

 

 

 

 

 

 

 

 
Table 11. Wilcoxon Test Wine P-Value HSA vs Imputers 

 

 

 

 

 

 

 

 
Table 12. Precision Test Wine 

 

 

 

 

 

 

 

Loss (%) HSA KNN MICE Mean Median Mode RF 

10 1.00 3.15 3.20 5.65 5.80 6.55 2.65 

20 1.00 3.15 3.05 5.35 5.70 6.95 2.80 

30 1.05 3.10 3.40 5.55 5.55 6.90 2.45 

40 1.60 2.80 3.40 5.25 5.85 6.90 2.20 

50 2.65 2.20 3.30 5.20 5.80 7.00 1.85 

Loss (%) KNN MICE Mean Median Mode RF 

10 0.00000191 0.00000191 0.00000191 0.00000191 0.00000191 0.00008845 

20 0.00000191 0.00000191 0.00000191 0.00008845 0.00000191 0.00000191 

30 0.00000191 0.00000191 0.00008845 0.00000191 0.00000191 0.00012026 

40 0.00070763 0.00089088 0.00008845 0.00000191 0.00000191 0.02395058 

50 1.00000000 0.23051262 0.00000191 0.00000191 0.00000191 0.78412628 

Loss (%) Accuracy Recall F1-Score ROC AUC 

10 1.0000 1.0000 1.0000 1.0000 

20 1.0000 1.0000 1.0000 0.9995 

30 0.9815 0.9815 0.9814 0.999 

40 0.9444 0.9444 0.9448 0.983 

50 0.9444 0.9444 0.9449 0.9851 
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Fig. 8. Wine comparison. 

 

Analysis of the Wine dataset, the Friedman test confirmed a statistically significant difference between the imputation techniques. 

HSA demonstrated exceptional performance, with average ranks of 1.00 at 10% and 20% loss, and 1.05 at 30%, proving to 

be a robust and highly reliable tool specifically in low-to-medium data loss and high integrity scenarios. Although its 

performance faltered at higher losses, Random Forest showed complementary robustness in those cases, reaching a rank of 1.85 

at 50% loss. Thanks to the effectiveness of these imputations, the overall predictive model for Wine demonstrates astonishing 

resilience even with 50% missing data, it maintained extraordinarily high precision metrics; Accuracy and Recall at 0.9444, F1-

Score at 0.9449, and ROC AUC at 0.9851, validating HSA high efficacy in preserving data quality. 

 

5.6 Practical Importance 
 

Finally, the robustness and accuracy of the Harmony Search algorithm in imputing missing data, demonstrated in diverse domains 

such as healthcare, finance, and product quality, transcends purely technical metrics. More complete and reliable data directly 

results in the construction of more accurate predictive and classificatory models. This, in turn, can lead to more accurate and 

timely diagnoses in the clinical setting, fairer and more efficient economic and human resource decisions in the financial sector, 

and more rigorous quality control and product characterization in industry. In this context, HSA emerges as a promising tool to 

address the challenge of incomplete data, potentially enabling more informed decision-making and greater positive impact in 

various real-world applications. 
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6 Conclusions 

In this research, we propose a Harmony Search Algorithm to impute missing data in percentages of 10%, 20%, 30%, 40%, and 

50%, comparing the proposal with other imputation techniques; Mean, Median, Mode, KNN, MICE, Random Forest. 

For classification datasets such as cancer and diabetes, HSA has exhibited re- markable performance. In terms of reduction in 

imputation error RMSE, although it was occasionally slightly outperformed by more complex machine learning algorithms such 

as Random Forest or MICE, its ability to preserve the inherent structure of the data was consistently robust. This was evidenced 

by the preservation of classification metrics; Accuracy, F1-Score, ROC AUC in models trained on HAS imputed data, confirming 

its effectiveness in preserving crucial discriminative information for downstream predictive tasks. In these scenarios, HSA 

consistently emerged as a potential option to basic mean, median, or mode imputations. 

On the other hand, on the Salary regression dataset, the results indicated that HSA did not always outperform decision tree-based 

methods or even simpler imputations. This could suggest that, for certain types of regression problems with more direct or less 

intricate relationships, the search strength of a general metaheuristic like HSA might not translate into a significant advantage 

over algorithms optimized for such data structures. 

In summary, the Harmony Algorithm is established as a valuable metaheuristic for data imputation, demonstrating particular 

effectiveness in classification contexts where the structural integrity of information and predictive capacity are paramount. Its 

ability to explore complex search spaces and find estimates of missing values while maintaining data consistency positions it as a 

robust and viable tool in the field of data preprocessing. 

 

7 Future Work 
 

This research has thoroughly evaluated the performance of the Harmony Algorithm (HSA), a leading bio-inspired metaheuristic, in 

the task of imputing incomplete data. The findings provide a solid foundation for understanding its applicability to traditional and 

machine learning methods. Based on these results, several crucial avenues for future research are outlined that will further exploit 

the potential of HSA and metaheuristics in the field of imputation. 

 

First, and in line with the interest in the applicability of advanced approaches, a priority area for future work is the comprehensive 

and systematic comparison of HSA with other evolutionary or bio-inspired metaheuristics algorithms and the current techniques 

from state-of-the-art. This direct comparison, conducted under controlled and replicable experimental conditions, would identify 

which design features of these heuristics are most advantageous for addressing the specific challenges of data imputation in diverse 

structures and types of missing values. 

 

A second line of research will focus on the adaptive optimization of HSA internal parameters. Calibration of parameters such as 

the Harmony Recognition Rate HAR, Pitch Matching Rate PAR, and Number of Harmonies HM is critical for performance. Future 

studies could employ meta-optimization techniques or automatic parameter tuning algorithms to discover optimal configurations 

that maximize HSA imputation accuracy on different types of datasets. Furthermore, it is critical to evaluate HSA performance in 

more complex and demanding data scenarios. This includes imputation on very high-dimensional datasets, the presence of highly 

nonlinear relationships between features, and, crucially, the ability to handle various missing data patterns, such as Missing Not At 

Random MNAR, where most traditional methods typically face significant limitations. In these contexts, HSA strength as a 

metaheuristic, capable of exploring large search spaces and avoiding local optima, could prove to be a competitive advantage. 

Finally, the development of hybrid strategies that combine HSA global search capabilities with elements of other imputation 

algorithms represents a promising avenue. Such hybridizations could enhance the robustness and accuracy of imputation. 

Furthermore, research into the scalability and computational efficiency of HSA, through its implementation in parallel or distributed 

processing architectures, will be vital for its effective application in massive volumes of data. 
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