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Abstract. Cloud computing is essential for executing scientific 

workflows, offering scalable resources to process large volumes of 

data. However, efficient resource allocation remains challenging 
due to fluctuating demand and inadequate planning, which can 

increase makespan and, consequently, energy consumption. In this 

context, Infrastructure as a Service (IaaS) is primarily used, 
enabling the rental of virtual machines (VMs) with different 

characteristics. This study identifies the factors that influence 

makespan improvement when executing workflows from diverse 
disciplines and with varying characteristics. The factors evaluated 

are workflow size, workflow structure, and the number of virtual 

machines required. The algorithms considered include four 
heuristics and one metaheuristic, specifically a genetic algorithm 

(GA). Among the factors, the most influential in cloud computing 

is the number of VMs: increasing the number of VMs reduces 
makespan up to a point, exhibiting the law of diminishing returns. 
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1 Introduction 

 

Cloud Computing (CC) has established itself as a fundamental pillar supporting various work and social domains worldwide. 

Among these domains, science has particularly benefited from the management of scientific workflows in CC, offering scalable 

and flexible resources (Alam et al., 2024). 

 

A workflow (WF) can be defined as a set of activities that must be executed in a specific order to achieve a given objective. 

Scientific WF, in turn, are used to solve complex problems, process large volumes of data, conduct simulations, and perform 

intensive analyses, all with the aim of generating knowledge across various scientific disciplines or areas (Escott et al., 2022). 

 

In the context of implementing scientific WF in the cloud, Infrastructure as a Service (IaaS) is commonly employed. Under this 

model, those responsible for executing scientific WF can rent virtual machines (VM) of different types and costs, depending on 

their computational resource characteristics, such as RAM, storage, GPU, and bandwidth. These machines enable WF execution 

but also present significant challenges (Kamanga et al., 2023; Li et al., 2024; X. Zhang, 2024) 

 

One of the main challenges lies in the fluctuations in resource demand required to execute these WF. Such behavior can lead to 

resource shortages, forcing machines to operate for prolonged periods and creating the need to expand data centers. This 

expansion results in increased energy consumption, raising significant environmental and economic concerns (Al-Wesabi et al., 

2022; Thakur & Goraya, 2022). Consequently, current research focuses on optimizing WF management to improve energy 

efficiency and ensure a more effective allocation of available resources. 

 

These challenges highlight the need for efficient strategies to manage resource allocation in CC, particularly in the context of 

scientific WF. In this regard, makespan optimization emerges as a key objective, as it maximizes the utilization of available 

resources and minimizes execution time (Mikram et al., 2024; H. Zhang & Zheng, 2023). Therefore, although much of the 

literature has focused on comparing optimization strategies, this study is based on the premise that the performance of resource 
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allocation in cloud environments does not depend solely on the chosen algorithm but is deeply conditioned by structural factors 

of the problem, such as the topology of the Directed Acyclic Graphs (DAG), as well as by the characteristics of the 

computational environment, including the number and type of available virtual machines. Recognizing and integrating these 

elements into the experimental design is essential for obtaining robust conclusions and truly efficient solutions. 

 

In other words, the main contribution of this study lies in identifying the factors that directly influence performance, specifically 

the makespan, during the execution of WF with different topologies. The factors analyzed include the size of the WF, its internal 

structure or topology, and the number of VM required for execution. To achieve this, five algorithmic strategies were employed 

four heuristics widely recognized in the literature and a modified genetic algorithm (GA) specifically designed to address this 

problem. The goal is to establish a solid starting point that will enable future research to develop even more efficient solutions 

for optimizing scientific WF in CC environments. 

2 Fundamental Concepts 

As previously mentioned, this document analyzes five types of scientific WF corresponding to different disciplines. Each of 

these WF presents varying topologies according to their representation in DAGs, which can be observed in Fig. 1 to Fig. 5. 

 

2.1   Scientific workflows 
 

Cybershake, shown in Fig. 1 is a scientific workflow developed by the Southern California Earthquake Center (SCEC). Its main 

objective is to simulate and analyze seismic activity in specific regions by modeling how seismic waves propagate through 

different types of geological terrain (Bezdan et al., 2021; Bothra et al., 2021; Konjaang & Xu, 2021; Nasonov et al., 2015; Wang 

et al., 2020; Xie et al., 2024).  

 
Fig. 1. Scientific WF for the Cybershake application. 

 

Epigenomics, the graphical representation of the Epigenomics workflow is shown in Fig. 2. This benchmark is part of the 

projects conducted by the University of Southern California (USC). Originating in the field of bioinformatics, this scientific WF 

aims to analyze epigenomic data, focusing on genetic changes that do not involve modifications to the DNA sequence. These 

changes are considered essential for understanding cellular regulation and functions under different conditions (Wangsom et al., 

2019; Xie et al., 2024; Zeedan et al., 2023).  

 

 
Fig. 2. Scientific WF for the Epigenomics application. 

 

LIGO Inspiral, shown in Fig. 3, is a widely used workflow benchmark derived from the Laser Interferometer Gravitational-

Wave Observatory (LIGO) application. It focuses on the detection of gravitational waves—particularly those produced by the 

inspiral collision of black holes or neutron stars—and enables complex calculations and predictions rooted in general relativity 

and astrophysics (Nasonov et al., 2017; Rodriguez & Buyya, 2014; Wang et al., 2020; Wangsom et al., 2019; Xie et al., 2024; 

Zeedan et al., 2023). 
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Fig. 3. Scientific WF for the LIGO Inspiral application. 

 

Montage, the WF Montage shown in Fig. 4 is an astronomical application that enables the generation of image mosaics from 

astronomical observations covering large regions of the sky by combining data from multiple telescopes or observations. This 

process allows for the study of large-scale structures in the universe (Nasonov et al., 2017; Rodriguez & Buyya, 2014; Wang 

et al., 2020; Wangsom et al., 2019; Xie et al., 2024; Zeedan et al., 2023). 

 

 
Fig. 4. Scientific WF for the Montage application. 

 

Sipth, This WF in Fig. 5 originates from the SIPHT (Searching for Intergenic sRNA Pathways and Transcriptional 

Terminators) application, which aims to identify genes that encode small non-coding RNAs (sRNAs) in bacterial genomes 

(Rodriguez & Buyya, 2014; Wang et al., 2020; Wangsom et al., 2019; Xie et al., 2024; Zeedan et al., 2023). 

 

 
Fig. 5. Scientific WF for the Sipht application. 

 

It is worth noting that the selection of the five presented DAGs (Cybershake, Epigenomics, LIGO Inspiral, Montage, and Sipht) 

is not arbitrary; rather, it reflects their broad acceptance as representative benchmarks in the scientific WF literature (Nasonov 

et al., 2017; Rodriguez & Buyya, 2014; Wang et al., 2020; Wangsom et al., 2019; Xie et al., 2024; Zeedan et al., 2023). Each 

one covers a distinct domain seismic simulations, bioinformatics analysis, gravitational astrophysics, astronomical image 

processing, and bacterial genomics. These DAGs allow for the evaluation of algorithms under diverse graph structures and 

computational characteristics, including variations in parallelism, task sizes, internal dependencies, and levels of complexity. 

Detailing their elements is essential because they reflect different scenarios of cloud resource allocation, ensuring that the 

conclusions drawn are not limited to a single domain but are generalizable to high-demand computational problems across 

multiple disciplines. 

 

2.2   Cloud Simulator 
 

A widely used development framework in the literature as a CC simulator is WorkflowSim 1.0. Developed by the University of 

Southern California and based on CloudSim, it adds WF management features such as task clustering, as well as generation and 

real-time failure monitoring according to Bambrik (2020), it enables the study of WF scheduling (Andreoli et al., 2024; Chen & 

Deelman, 2012; X. Zhang, 2024). Due to its ability to model and simulate algorithms in CC, it can be characterized as an 

Infrastructure as a Service (IaaS) platform through the creation of VM (Konjaang & Xu, 2021).  
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2.3   Evaluated Algorithmic Strategies from the Literature 
 

The experimental study presented in this document was conducted using four heuristics widely cited in the literature Min-Min, 

Max-Min, First-Come, First-Served (FCFS), and Round Robin. These heuristics are available within the WorkflowSim 1.0 

development framework (Chen & Deelman, 2012; WorkflowSim/WorkflowSim-1.0, 2013/2025). Additionally, a genetic 

algorithm (GA) was evaluated, based on approaches found in the literature and specifically adapted for the makespan 

optimization problem in scientific WF. The following sections provide a detailed description of the five algorithms mentioned. 

 

Min-Min Algorithm for Scientific WF Optimization. As mentioned at the beginning of this section, the heuristics are part of 

the example developments within the WorkflowSim 1.0 framework. The implementation and interpretation of the Min-Min 

algorithm are presented in the algorithm. 

 

Algorithm 1. Min-Min (WorkflowSim/WorkflowSim-1.0, 2013/2025). 

 

Input: List of cloudlets, List of VM  
Output: List of scheduled cloudlets, set VM state to busy for VM executing tasks. 

1 Initialize hasChecked as an empty list. 
2 Get the size of the cloudlet list 
3 Clear the hasChecked list. 
4 For each i = 0 to the size of the cloudlet list: 
5 

 
 Set minIndex = 0 and minCloudlet = null. 

6 
 

 For each j = 0 to the size of the cloudlet list: 
7 

  
If hasChecked[j] == false, 

8 
   

cloudlet [j] = minCloudlet  
9 

   
j = minIndex   

10 
   

Break 
11 

 
If minCloudlet = = null,  

12 
  

Break 
13 

 
For each j = 0 to the size of the cloudlet list: 

14 
  

  If hasChecked[j] == true, continue. 
15 

  
  Get the length of cloudlet[j]. 

16 
  

 If cloudlet[j].length < minCloudlet: 
17 

   
cloudlet [j] = minCloudlet  

18 
   

j = minIndex   
19 

 
 hasChecked[minIndex] = true 

20 Get the size of the VM list. 
21   Initialize firstIdleVm = null. 
22   For each j = 0 to the size of the VM list: 
23 

 
If la VM [j] = = idle 

24 
  

VM j = firstIdleVm  
25 

  
Break 

26   IF firstIdleVm = = null 
27 

 
  Break 

28   For each j = 0 to the size of the VM list: 
29 

 
If VM[j] == idle && MIPS > firstIdleVm 

30 
 

   VM[j] = firstIdleVm 
31 Set firstIdleVm state to busy. 
32 Assign the VmId of firstIdleVm to minCloudlet. 
33 Add minCloudlet to the list of scheduled tasks. 

. 

In Algorithm 1, lines 1 to 3 initialize an empty list called hasChecked, as well as obtain the number of jobs. Meanwhile, lines 4 

to 19 identify the cloudlet with the smallest length that has not yet been scheduled; this can be considered the core process of the 

algorithm. It is important to highlight that the essence of the Min-Min algorithm lies in iteratively selecting the shortest task and 

assigning it to the most suitable available VM, aiming to optimize the overall completion time. Lines 22 to 25 identify idle VM, 

followed by the selection of the best available VM among all idle VM, which occurs in lines 28 to 30. Finally, in lines 31 to 33, 
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the selected cloudlet is assigned to the chosen VM, its state is updated to busy, and the assignment is restricted within the 

scheduled task list 

Max-Min Algorithm for Scientific WF Optimization. The interpretation of the Max-Min algorithm implementation is 

presented in Algorithm 2. 

 

Algorithm 2. Max-Min ((WorkflowSim/WorkflowSim-1.0, 2013/2025). 

 

Input: Task List (CloudletList), Virtual Machines List (VmList) 
Output: Scheduled Task List (ScheduledList), Task assignment to VM. 

1 Initialize the hasChecked list as an empty list. 
2 Obtain the size of the task list (CloudletList). 
3 Clear hasChecked. 
4 For each task in the task list:  
5 

 
hasChecked = false 

6 Repeat for each unprocessed task in CloudletList: 
7 

 
maxÍndice =0  

8 
 

maxTarea = null. 
9 

 
For each task in CloudletList: 

10 
  

If the task has not been marked as hasChecked 
11 

   
maxCloudlet = cloudlet  

12 
   

maxIndex = j 
13 

   
Break 

14 
 

End For 
15 

 
If maxCloudlet = = null 

16 
  

Break 
17 

 
For each remaining task in CloudletList 

18 
  

If cloudlet.length > maxTarea.length 
19 

   
maxCloudlet = cloudlet  

20 
   

maxIndex = j 
21 

 
End For 

22 
 

hasChecked.maxIndex = true. 
23 

 
Obtaining the size of the VM list 

24 
 

Initialize firstIdleVm = null 
25 

 
For each j = 0 to the size of the VM list: 

26 
  

If  VM [j] = = idle 
27 

   
  VM[j] = firstIdleVm  

28 
   

Break 
29 

 
  If firstIdleVm = = null 

30 
  

Break 
31 

 
  For each j = 0 to the size of the VM list:  

32 
  

If VM [j] == idle && y MIPS > firstIdleVm 
33 

  
    VM[j] = firstIdleVm 

34 
 

Set the state of firstIdleVm to busy. 
35 

 
Assign the VmId of the firstIdleVm to the maxCloudlet. 

36 
 

Add maxCloudlet to the scheduled task list 
37 End Repeat 

 

The core of Algorithm 2 (Max-Min) is in lines 4 to 21, where it identifies and selects the longest unprocessed task for execution, 

prioritizing the distribution of larger tasks to available resources. From lines 6-14, the algorithm identifies the first unprocessed 

task in the CloudletList, setting it as an initial point for determining the task with the longest length. 

 

In lines 17 to 21, the CloudletList is traversed again to check if the current task has not been processed (i.e., hasChecked[j] == 

false) and if its length is greater than the length of the task stored in maxTask. In the following lines (22 to 37), the task selected 

is assigned to the best available VM, and its state is updated to busy, completing the scheduling of tasks. 
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FCFS for Scientific Workflow Optimization. The defining characteristic of the FCFS algorithm is that it processes tasks 

strictly in the order they arrive in the queue, ensuring a first-come, first-served approach without considering task size or 

complexity. That is, the first task to arrive is the first to be executed, the second to arrive is the second to be executed, and so on. 

This is reflected in Algorithm 3, adapted to assign tasks to available resources as follows. 

Algorithm 3. FCFS ((WorkflowSim/WorkflowSim-1.0, 2013/2025). 

 

Input: List of Cloudlets (CloudletList), List of Virtual Machines (VmList). 
Output: List of Scheduled Cloudlets (ScheduledList). 

1 For each Cloudlet in CloudletList: 
2 

 
set stillHasVm = false 

3 
 

For each VM in VmList 
4 

  
If VM.state = IDLE 

5 
   

set stillHasVm = true 
6 

   
change VM.state to BUSY 

7 
   

Assign Cloudlet.VMId to VM.Id 
8 

   
Add Cloudlet to ScheduledList 

9 
   

Break 
11 

 
If stillHasVm = false 

12 
  

Break 

 

Lines 3 through 10 of Algorithm 3 begin by iterating over each VM in the VmList to find a VM that can run the current job. To 

do this, it verifies that the VM's state is IDLE; if so, the stillHasVm flag is set to true, indicating that a VM is available, and then 

the VM's state is changed to BUSY to be reserved for the current job. 

 

Then, the VM's identifier VM.Id is assigned to the cloudlet, linking the virtual machine to the job for execution. The Cloudlet is 

then added to the scheduled task list ScheduledList, marking it as scheduled. Once the job is assigned to a virtual machine, the 

algorithm exits the inner loop ParacadaVM, as it is no longer necessary to search for a virtual machine for the current task. 

 

Round Robin Algorithm for Scientific WF Optimization. The Round Robin algorithm is a preemptive scheduling method 

that treats all processes equally, assigning each a fixed time slice in a cyclic manner to ensure fairness and balance across tasks. 

This algorithm is presented below (Algorithm 4). 

 

Algorithm 4. Round Robin ((WorkflowSim/WorkflowSim-1.0, 2013/2025). 

 

Input: List of tasks (cloudletList) and list of virtual machines (vmList). 
Output: List of scheduled tasks (scheduledList), where each task is assigned to a virtual machine. 

1 Initialize vmIndex = 0. 
2 Get cloudletList and its size. 
3 size = cloudletList.size() 
4 Sort(cloudletList, CloudletListComparator()) 
5 vmList = getVmList() 
6 Sort(vmList,  VmListComparator()). 
7 For each cloudlet task in cloudletList, to size: 
8 

 
Obtain the current cloudlet task. 

9 
 

Initialize firstIdleVm = null. 
10 

 
For each VM in vmList: 

11 
  

If vm.state = VM_STATUS_IDLE: 
12 

   
Assign vm to firstIdleVm. 

13 
   

Break 
14 

 
If firstIdleVm is null: 

15 
  

Break 
16 

 
Change firstIdleVm.state to VM_STATUS_BUSY 

17 
 

Assign the ID of firstIdleVm to the current cloudlet task 
18 

 
Add the cloudlet to scheduledList. 

19 
 

 vmIndex = (vmIndex + 1) % size of vmList. 
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Lines 7 to 19 of Algorithm 4 perform task assignment to VM using the Round Robin approach. It iterates through the 

cloudletList, processing each task to assign it to an available virtual machine. For each task, it looks for a VM in an idle state in 

the vmList. If a free VM is found, it assigns it to the task, changes its state to busy, and binds the task to that machine. If no 

available VM is found, the task assignment is stopped. The assigned task is added to the scheduled tasks list, and the virtual 

machine index is updated in a circular manner, maintaining a balanced task assignment cycle. 

Genetic Algorithm. Is one of the most popular algorithms in the literature and, in the words of several authors, is considered 

one of the first stochastic algorithms inspired by Darwinian theory. This algorithm is regarded as suitable for solving 

optimization problems and, despite its stochastic nature, offers a probability-based approach that reliably approximates the 

global optimum by maintaining and evolving the best solutions across generations, thereby enhancing future outcomes. As 

mentioned earlier, the GA is based on Darwinian theory and consists of four important methods, described as follows 

 

Initial Population, in the literature, the initial population is commonly created randomly and is considered a set of solutions, also 

known as a set of individuals, where each individual is represented by a chromosome. In the words of Coello Coello (2016), this 

chromosome is traditionally represented as a binary string. Likewise, each position of the chromosome is called a gene, and the 

value within that position is called an allele. Selection, inspired by natural selection, it is mentioned that the fittest individuals 

have a greater probability of obtaining food and reproducing. Similarly, in GA, this mechanism is employed to provide a 

probability of selecting or rejecting an individual to create a new generation in a way that is favorable to the expected goal. 

 

Crossover (Recombination), this mechanism involves combining the alleles of the selected individuals. That is, the crossover 

method is performed with the individuals obtained from the selection, and the feature taken from nature is the mixing of genes 

from a pair of individuals to produce a new chromosome, traditionally involving two individuals (offspring solutions). Mutation 

it is an evolutionary operator that involves altering one or more alleles after the creation of the offspring solutions. The GA and 

its last three methods, also known as genetic operators, require parameters to control the probability with which certain 

processes are applied to the solution population. This is known as parameter configuration (Gómez Santillán, 2009). 

 

2.4   Parameter Configuration 
 

In the words of Gómez Santillán (2009), when addressing a specific problem through the implementation of a metaheuristic, it is 

essential to consider two main stages the representation scheme and the definition of the objective function. These stages allow 

the problem to be properly structured within the chosen metaheuristic framework and require the selection of appropriate values 

for the parameters involved, aiming for an optimal representation of the problem and efficient resolution. 

 

Additionally, the combination of the values assigned to the parameters is called the parameter configuration, while the process 

of identifying and selecting the best possible configuration is known as parameter tuning.Gómez Santillán (2009) explains that 

there are two types of parameter adaptation. The first is known as parameter tuning, which is set statically before the algorithm’s 

execution and remains constant throughout its operation. The second is called parameter control, which is applied dynamically 

during the algorithm’s execution, adjusting to the needs that arise in the process. 

 

Some authors in the literature, such as Romero-Ocaño et al. (2018), mention that parameter fine-tuning can be defined as an 

offline configuration, while parameter control is considered an online configuration. The classification of parameter tuning is 

shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. General parameter adjustment settings (Gómez Santillán, 2009). 
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As shown in Fig. 6, Gómez Santillán (2009) presents that parameter fine-tuning can be carried out using three different 

techniques manually, by testing various configurations and selecting the one that offers the best performance; through meta-

evolution, using an auxiliary algorithm for optimization; or with Design of Experiments (DOE), applying statistical tests to 

improve decision-making (Gómez Santillán, 2009). 

 

In general, although some authors in the literature, such as De Jong (2007) and Rosas et al. (2024), mention that the no free 

lunch theorem expresses that there is no optimal set of parameters that can solve all optimization problems, they also emphasize 

that at least having a good initial configuration is important, especially when addressing real-world problems. This is because 

algorithms tend to rely on specific configurations. 

 

2.5   Design of Experiments 
 

The design of experimental (DOE) allows for parameter tuning. Additionally, it is described as a highly relevant methodology in 

the literature, as it encompasses a set of statistical tools used to plan, execute, classify, analyze, and interpret experiments 

efficiently (Gómez Santillán, 2009; Jankovic et al., 2021; Montgomery, 2017; Wu & Hamada, 2011). Its main objective is to 

identify the environments and conditions that produce valid or optimal and impartial results. Moreover, (Gómez Santillán, 2009; 

Jankovic et al., 2021; Montgomery, 2017) mention that the process involves multiple steps, such as 

 

Identification and formulation of the problem this is the first step and allows defining the objective of the experiment, as well as 

identifying the variables of interest. Selection of factors, levels, and response variables in this step, the factors or independent 

variables to manipulate are selected, and the specific values (levels) of these factors are determined, while the response 

variables define how the experiment's result will be measured. Choice of experimental design in this phase, the most appropriate 

type of design for the experiment is selected, which depends on the experiment's objectives and constraints. 

 

Execution of the experiment as the name suggests, this is the phase where the experiments are carried out based on the factors 

selected in the previous phases. Analysis of statistical data with the data collected from the previous phase, this step involves 

analyzing it using statistical tools. Drawing conclusions and recommendations finally, conclusions are drawn from the data 

analysis, and recommendations are made to optimize the process or system, based on the obtained results. 

 

2.6   Experimental Strategy Factorial Design 
 

One of the experimental designs is the factorial design, which is an approach where two or more factors are studied 

simultaneously, rather than analyzing one factor at a time. This allows for evaluating not only the individual effects of each 

factor on the response variable but also their interactions (Gómez Santillán et al., 2009; Montgomery, 2017). According to 

Montgomery (2017), there are different types of factorial designs, such as full factorial design, fractional factorial design, and 2k 

factorial design.  

 

The full factorial design tests all possible combinations of factors and levels, providing the maximum amount of information 

about the main effects and interactions between factors. In other words, according to Romero- Ocaño et al. (2018), a full 

factorial design performs random executions of all possible combinations that can be formed from the levels of the factors under 

study, allowing for the analysis of both the individual impact of each factor on the response variable and the effects of 

interactions between factors on that variable (Gómez Santillán et al., 2009). The effect of a factor is defined as the variation in 

the response variable caused by a change in the level of the factor. This effect, known as the main effect, refers to the direct 

influence of each primary factor within the experiment (Gómez Santillán et al., 2009). 

 

2.7   Evaluation Metric 
 

In the literature, some authors, such as Alsadie (2021), Ghorbannia Delavar and Aryan (2014), and Zeedan et al. (2022), among 

others, mention that makespan is considered a key metric in optimization problems and is applicable to the case study presented 

in this experimental research, which focuses on the optimization of scientific WF. This metric reflects the total time required to 

complete a set of tasks or jobs in a system, ensuring that the available resources in CC are used optimally. In the context of 

cloud resources and scientific WF, the makespan is expressed as the finishing time of the last task within the workflow 

execution. Therefore, reducing the makespan directly contributes to improving system performance and enhancing the 

efficiency of resource utilization. Consequently, it is widely adopted as a benchmark to compare the performance of different 

scheduling algorithms. A shorter makespan indicates a faster completion of workflows, which is crucial in environments where 

time-sensitive results are required. Furthermore, reducing this metric contributes not only to efficiency but also to lowering the 

operational costs associated with cloud infrastructures. 
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Donde:  

: corresponds to the completion time of the last task on resource 𝑖  

3  Solution Methodology 

 

As mentioned in the introduction, the issue of fluctuations in the demand for resources required for the execution of these WF in 

a CC environment is a broad and significant topic of interest, as it directly impacts the fulfillment of service levels and other 

aspects. Additionally, this problem is considered NP-Hard (Farid et al., 2023; Xu & Abnoosian, 2022; X. Zhang, 2024). 

 

For this reason, we decided to conduct an experimental study that not only includes the heuristics presented in subsection 2.3 but 

also incorporates a metaheuristic, in this case, a genetic algorithm (GA). This choice is based on two main reasons 

methodological consistency the selected heuristics are already implemented and validated within WorkflowSim 1.0, ensuring 

uniformity in the experimental conditions. 

 

Complementarity of approaches while heuristics allow for fast and efficient decision-making, their main limitation is the 

tendency to become trapped in local optima. The GA, widely studied in the literature, offers an evolutionary approach that 

enriches the analysis by contrasting it with classical heuristics. 

 

We acknowledge that a more balanced set (for example, three heuristics and three metaheuristics) could provide a more 

comprehensive comparison. However, this initial setup aims to establish a solid baseline for future research. In subsequent work, 

we plan to include other evolutionary and bio-inspired algorithms, such as PSO, ACO, and DE, to broaden the study’s scope. 

 

Including these five algorithms enables an in-depth evaluation of critical factors such as resource scalability, WF size, or DAG 

topology. This approach is key to developing more efficient resource allocation strategies, making this study highly relevant in 

the field. Following the objective of this section, two subsections are presented. The first introduces the GA implemented within 

the WorkflowSim 1.0 development framework as Algorithm 5, while the second subsection presents the experimental design, 

which, as mentioned throughout this document, forms an essential part of the present study. 

 

3.1   Genetic Algorithm for Scientific WF Optimization 
 

In this subsection, we present the GA implemented in this work. Although its design is inspired by classical approaches reported 

in the literature, its implementation was specifically adapted to the problem of workflow scheduling in cloud computing 

environments. In particular, the modifications focus on the solution representation and the design of evolutionary operators, with 

the aim of minimizing the makespan, which is the central metric for evaluating system performance. 

 

As part of the details of the GA (Algorithm 5), it begins by retrieving the list of jobs (cloudletList), along with the creation of 

the VM in the simulation environment. This corresponds to lines 1 and 2. In lines 3 to 7, the initial population is created with 

random numbers corresponding to the existing VM. In general, lines 8 to 25 carry out the algorithm’s evolutionary procedure, 

which consists of three operators that can be seen as three stages 

 

Selection stage, the selection operator is applied, whereby, based on a defined percentage, a proportion of individuals from the 

population is chosen to be used as parents for the next generation. The crossover operator is applied, considering the crossover 

percentage, which determines how many of the selected parent individuals will participate in recombination and which genes 

will form the chromosomes of the offspring. The mutation operator is applied, whose goal is to maintain diversity within the 

population. Through a defined probability, it is determined whether a gene within a descendant individual will be altered. 

 

Finally, in line 26, each individual, both offspring and parents, is evaluated, and subsequently, in lines 28 to 35, the selected 

cloudlet is assigned to the chosen VM, its status is updated to busy, and the assignment is registered in the list of scheduled 

tasks. For the GA parameters, an offline parameter tuning was performed, with the values presented in Table 1. 
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Table 1. Configuration GA. 

 

 

 

 

 

 

 

 

 

 
Algorithm 5. Genetic algorithm. 

Input: Cloudlet list, VM list, population size, crossover rate Pc, mutation rate Pm, number of generations 
nGenerations 
Output: List of scheduled cloudlets, VM status set to busy for the VM executing tasks 

1. cloudletList []= getCloudletList () 
2. vmList = getVmList () 
3. Initialize populationList []. Length 
4. For i = 0 to populacition.lenght() 
5.  Para j = 0 hasta cloudletList. lenght () 
6.   Solution [j] = generate random solution (vmList) 
7.  Add population[i] = solution; 
8. For generation = 0 to nGeneraciones 
9.  initialize fitnessList [] 
10.  For each individual in the population  
11.   fitnessList = calculateFitness (individuo, cloudletList, vmList) 
12.  Initialize matingPool 
13.  For i = 0 to population.lenght 
14.   parent1 = matingPool[i] 
15.   parent2= matingPool[i+1] 
16.   child1, child2 = crossover (parent1, parent2, pc) 
17.   offspringList.add(child1) 
18.   offspringList.add(child2) 
19.  For child= 0 to offspringList.size() 
20.   Mutate (child, Pm, vmList.size()) 
21.  offspringFitnessList = [] 
22.  For child = 0 to offspringList.size() 
23.   Fitness = evaluateFitness(child,cloudletList,vmList) 
24.   offspringFitnessList.add(fitness) 
25.  populationList = replacePopulation (populationList, fitnessList, offspringList, offspringFitnessList) 
26.  bestIndividual = findBestIndividual(populationList, fitnessList) 
27.  scheduledCloudlets = [] 
28.  For i = 0 to cloudletList.size()-1 
29.   cloudlet = cloudletList[i] 
30.   vmIndex = bestIndividual[i] 
31.   vm = vmList[vmIndex] 
32.   assignVM(cloudlet, vm) 
33.   vm.state = BUSY 
34.   scheduledCloudlets.add(cloudlet) 
35.  Return scheduledCloudlets 

 

 

 

 

Parameter Detail 

Population Size 100 

Selection Operator Roulette 

Crossover Operator Uniform 

Mutation Operator Reciprocal 

Selection Percentage 0.5 

Crossover Percentage 0.5 

Mutation Percentage 0.05 
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3.2   Experimental Desing 
 

In the context of scientific WF and the research outlined in this document, Table 2 and Table 3 are presented below to detail the 

characteristics of each DAX, which in this work refers to a Directed Acyclic Graph expressed in XML. These XML-based 

workflow descriptions, introduced in subsection 2.1, are classified according to their size, serving as the basis to guide the 

presentation of the experimental results. Furthermore, within the WorkflowSim 1.0 development framework, a total of 20 VM 

and two data centers were established. The characteristics of these resources are presented in Table 4 and Table 5, respectively. 

 

Table 3. DAX size classification based on number of jobs. 

Jobs Size Classification 

24 - 30 Small 

46 - 60 Medium 

100 Large 

997 - 1000 Extra Large 

 

 

 

Table 2. Characteristics of DAX. 

DAX No. Jobs No. Task 

CyberShake 30 90 

50 154 

100 312 

1000 3004 

Epigenomics 24 69 

46 134 

100 297 

997 2969 

LIGO Inspiral 30 163 

50 278 

100 546 

1000 5549 

Montage 25 134 

50 290 

100 618 

1000 6472 

Sipht 30 1927 

60 3976 

100 6047 

1000 64174 

 

Table 4. Characteristics of each VM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VM Instance Number 

Image Size 10000 MB 

RAM 512 MB 

MIPS 1000 

Bandwidth 1000 

Number of CPUs 1 

VMM name Xen 
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4 Experimentation and Results 

 

This section presents the experimental design as well as the results obtained. The former allows us to describe the elements and 

characteristics that make up the experimentation, while the latter exposes the findings. Following the guidelines described in 

section three, the objective is to identify the relevant factors that could enable the design of more efficient strategies for resource 

allocation. 

 

4.1   Analysis and Results 
 

As the first part of the experimentation, we present a multifactorial analysis using the non-parametric Scheirer-Ray-Hare test 

(rank-based multifactorial ANOVA), applied to the normalized average makespan data. For this experimentation, the following 

main factors were established i) DAG Topology referred to as DAX; ii) DAG Size referred to in this article as DAXSize; iii) 

Number of VM referred to as NumVMs; iv) Algorithm Additionally, significant interactions between the factors were identified. 

A summary of the results is shown in Table 6. 

 

The results in Table 6 reveal that all algorithms show highly significant effects from the main factors, with p-values < 0.0001. 

This indicates that the type and size of the instance, as well as the number of VM, strongly influence algorithm performance. The 

DAX × DAXSize interactions are consistent and statistically significant across all algorithms, suggesting that the combination of 

problem characteristics affects how the methods behave. The DAX × Number of VM interactions are significant only for Min-

Min, Max-Min, and FCFS, but not for Round Robin or GA, possibly reflecting differences in how these algorithms exploit 

virtualized resources. The DAXSize × Number of VM interactions are significant for Max-Min, FCFS, Round Robin, and GA, 

but marginal for Min-Min, pointing to possible variations in scalability depending on the algorithm. 

 

 

Table 2. Summary of non-parametric multifactorial analysis results 

Effect / Algorithm Min-Min Max-Min FCFS RoundRobin GA 

C(DAX) p ≈ 2.7e-28 p ≈ 3.3e-32 p ≈ 1.7e-28 p ≈ 1.4e-27 p ≈ 1.4e-26 

C(DAXSize) p ≈ 2.5e-32 p ≈ 3.5e-36 p ≈ 9.9e-33 p ≈ 3.4e-31 p ≈ 2.1e-32 

C(NumVMs) p ≈ 1.3e-08 p ≈ 1.2e-14 p ≈ 7.8e-10 p ≈ 6.1e-08 p ≈ 3.2e-13 

DAX × DAXSize p ≈ 1.1e-09 p ≈ 3.9e-11 p ≈ 2.1e-09 p ≈ 1.1e-08 p ≈ 1.3e-10 

DAX × NumVMs p ≈ 0.025 p ≈ 0.0021 p ≈ 0.0165 p ≈ 0.359 p ≈ 0.095 

DAXSize × NumVMs p ≈ 0.095 p ≈ 1.0e-05 p ≈ 0.0126 p ≈ 0.0064 p ≈ 0.0039 

 

These findings highlight that not only individual factors but also their combinations differentially impact algorithmic 

performance. The analysis suggests that adjusting environment parameters (such as the number of VM) must be carefully 

considered, along with both the nature of the instance and the algorithm used. As the second part of the analysis, to detail the 

specific levels within each factor responsible for the differences, Dunn’s post-hoc tests were applied, adjusted with Holm’s 

correction for multiple comparisons. The results are shown in Table 7. 

 

DC Instance Number 

Storage 1000000 MB 

RAM 2048 MB 

MIPS 2000 

Bandwidth 10000 

Number of PEs per CPU core 20 

System Architecture x86 

Operating System Linux 

Hypervisor Xen 

Table 5. Characteristics of each data center. 



Franco et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(4) 2025, 399-415. 

411 

 

Table 3. Summary of post-hoc test results 

Factor Pairs with p < 0.05 
Min-Min  

p-value 

Max-Min  

p-value 

FCFS  

p-value 

RoundRobin  

p-value 

GA  

p-value 

DAX Epigenomics–CyberShake 0.009 0.0038 0.0202 0.0079 0.0266 
 Epigenomics–Montage 0.000025 0.000016 0.000016 0.000016 0.00023 
 Montage–Sipht 0.00091 0.0027 0.00088 0.00068 0.00396 
 LIGO–Montage 0.0495 0.0495 0.0607 0.053 0.0367 

DAXSize Extra Large–Large 0.00077 0.00029 0.00054 0.00047 0.00022 
 Extra Large–Medium 0.000002 0.000001 0.000002 0.000002 4.40E-07 
 Extra Large–Small 1.90E-09 3.70E-09 1.70E-09 3.50E-09 1.30E-09 
 Large–Small 0.0315 0.0795 0.0382 0.0577 0.0621 

NumVMs None (all p = 1.0) 1 1 1 1 0.56–1.0 

 

As shown in Table 7, the results indicate for DAX, the most differentiated pairs were mainly between Epigenomics and 

Montage, Epigenomics and CyberShake, and Montage versus Sipht; For DAXSize, the Extra Large group showed statistically 

significant differences against all other sizes, highlighting its role as an extreme case; For NumVMs, none of the algorithms 

showed significant comparisons between levels (all p-values ≥ 0.55), reinforcing that this factor was not decisive in the studied 

scenarios. To conclude the experimentation analysis, we also examined the main effects plots and interaction plots. 

 

Fig. 7 presents the main effects plots per algorithm, where the Y-axis represents the normalized average makespan using the 

Min-Max scaler strategy.In the first section, corresponding to DAX, we observe that the Epigenomics DAG exhibits a higher 

average makespan compared to the other scientific workflows, suggesting that Epigenomics has greater resolution complexity. 

This behavior is consistent across all evaluated algorithms. 

 

On the other hand, CyberShake and Montage show lower makespan values, indicating less complex applications, possibly due 

to shorter tasks or fewer interdependencies. For DAXSize, workflows classified as Extra Large have significantly higher 

execution times (makespan) compared to large, medium, and small sizes. This is expected given the greater number of tasks and 

dependencies in larger graphs, which increases both complexity and completion time. 

 

Finally, regarding the number of VM (NumVMs), we observe that as the number of VM increases, the average makespan 

decreases. However, this reduction becomes less pronounced beyond ten virtual machines, suggesting that the scalability benefit 

has a limit. This could be compared to the law of diminishing returns (Brue, 1993). This law states that, beyond a certain point, 

adding more resources to a system does not produce proportional benefits. In our experiments, this saturation occurs around 10 

VM, after which the benefits in makespan reduction stabilize. This phenomenon is due to the fact that additional resources do 

not eliminate the intrinsic complexity of the task graph or the critical dependencies between jobs. Additionally, the interaction 

plots were analyzed, as they allow us to understand how two or more factors jointly influence a response variable. 

 
Fig. 7. Main effects plot by algorithm 

 

In Fig. 8, the interaction between DAX type and size (DAXSize) is evaluated. We observe that for larger DAXsizes (Extra 

Large), the makespan increases significantly. Furthermore, the Epigenomics DAX consistently shows a higher makespan 

compared to other DAX, even at the same size. This reinforces the results seen in the main effects plots, where both 
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Epigenomics and larger DAXsizes already displayed higher makespan values. The interaction between DAXtype and size 

indicates that both factors jointly influence the makespan. 

 

In the second set of plots, the interaction between the number of VM and DAXtype is assessed. We observe that Epigenomics 

and LIGO Inspiral show improvements in average makespan as the number of virtual machines increases, but this improvement 

plateaus after ten virtual machines. This suggests that although increasing the number of virtual machines benefits all DAX, 

there is no strong interaction between DAX type and the number of VM. That is, the number of virtual machines has an effect 

independent of DAX type. 

 

The interaction between workflow size and number of virtual machines reveals that for larger DAXsizes (Extra Large), the 

makespan is significantly higher. However, the impact of increasing the number of virtual machines is greatest when moving 

from five to ten machines. Beyond ten virtual machines, the makespan stabilizes, suggesting that adding more resources does 

not provide meaningful improvements. This behavior exemplifies the law of diminishing returns, where scalability benefits have 

a limit. For smaller DAXsizes, the impact of adding more virtual machines is less significant, as the tasks are already well 

distributed. 

 

Finally, when evaluating all the interactions presented in Fig. 8, we can note that there is no significant synergistic relationship 

between the factors. In other words, although each factor (DAX type, DAX size, and number of virtual machines) individually 

influences the makespan, their combined effects do not generate strong interactions beyond what is already explained by the 

main effects. 

5 Conclusions 

 

As described throughout this document, the presented study focused on evaluating the factors that affect the performance of five 

optimization algorithms for resource allocation in CC using scientific WF from various disciplines. The main conclusions are as 

follows Impact of WFSize WF classified as Extra Large exhibit significantly higher execution times, regardless of the algorithm 

used. This highlights the need for more advanced strategies to handle the complexity of these cases. 

 

Algorithm Performance the Min-Min and Max-Min algorithms showed consistent performance in minimizing makespan 

compared to other approaches, making them ideal for workflows with tasks of variable length. The Round Robin algorithm 

demonstrated balanced performance but was less efficient in scenarios with more complex tasks. The GA stood out for its 

adaptability and superior performance in large and complex workflows, although at the cost of higher computational time. 

 

However, one notable takeaway is that when designing more efficient strategies, it is recommended to employ heuristics for 

small-sized DAGs due to their speed and simplicity. However, since large DAGs pose greater challenges, it becomes necessary 

to turn to more advanced metaheuristics. Additionally, a potentially interesting alternative Additionally, a potentially interesting 

alternative is the implementation of parallel algorithms, as the structure of the Epigenomics DAG tends to be the most complex 

to solve. We believe this is due to its high degree of parallelism, represented in its graph, which could be exploited to optimize 

workflow execution in CC environments. 
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Effect of the Number of VM: Increasing the number of VM significantly reduces the makespan up to a certain point, stabilizing 

around ten machines. This suggests that more efficient resource allocation could avoid unnecessary overprovisioning. Specific 

Workflows the Epigenomics workflow consistently showed the highest makespan values, underscoring the need for customized 

or adaptive algorithms to address its particular characteristics. Based on the above observations, we can emphasize that the 

importance of the factors influencing this kind of experimentation lies not only in the algorithm itself, but also in the 

fundamental characteristics of the problem, such as the topology of the DAG and the computing infrastructure, including the 

number and type of VM available. Ignoring these structural and contextual factors can significantly limit the potential 

improvements that any algorithm, no matter how advanced, can offer. Therefore, achieving truly efficient solutions requires a 

combined approach that balances algorithmic design with a careful understanding of workflow structure and cloud environment 

capabilities. 

 

a) b) 

c) d) 

e) 

Fig. 8. Interaction plot by algorithm. a) Interaction plot for GA, b). Interaction plot for Max-Min; c) Interaction plot for Min-

Min; d) Interaction plot for FCFS; e) Interaction plot for RoundRobin 
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Furthermore, we propose expanding the analysis toward coevolutionary strategies that could combine different optimization 

approaches working simultaneously, adapting to the changing characteristics of the workflows. By integrating multiple 

algorithms that evolve in parallel, efficiency in resource allocation could be improved, especially in complex scenarios. These 

coevolutionary strategies could be particularly useful for addressing large-scale, highly complex problems, such as those posed 

by workflows with a high degree of parallelism or more complex dependency structures. Additionally, combining different 

algorithms could allow a more thorough exploration of the solution space, reducing the likelihood of becoming trapped in local 

optima. 

 

Finally, regarding the experimental study, additional performance indicators could be incorporated, such as cost, resource usage 

efficiency, or impact on quality of service. It would be valuable to extend this study by incorporating other DAGs with different 

characteristics or even expanding the analysis by tuning the parameters in the GA, which could contribute to obtaining more 

precise and representative results of real-world operating conditions. 
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