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Abstract. Medical simulators provide a safe environment for 

practising crucial procedures, particularly in virtual simulators 

where objective and quantitative data can be collected for 
developing machine learning algorithms for automatic expertise 

classification. This survey analyses 13 automatic evaluation 

systems used in medical simulators and identifies best practices 
for integrating ML algorithms. Among these systems, nine 

employed commercial simulators, particularly NeuroVR and the 
Da Vinci robotic systems, while four utilised custom simulators. 

The survey outlines the main steps in the integration of machine 

learning algorithms: data collection, metric generation and 
selection, training, and testing. Metric selection was identified as 

a crucial factor affecting both the accuracy of the algorithm and 

the comprehension of the evaluation. Typically, multiple machine 
learning algorithms were applied to the same dataset to compare 

results and identify the most effective model. Overall, this survey 

suggests that transparent algorithms are preferable, as they 
enhance physicians’ understanding. 
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1 Introduction 

 
Medical simulators provide a safe and controlled environment for practicing and evaluating complex procedures, as well as for 

acquiring clinical skills, without putting real patients at risk. These simulators may range from physical box trainers with realistic 

components that mimic physical interaction to fully virtual environments that simulate entire procedures (Oquendo et al., 2018). 

Virtual simulators provide a structured environment for skill acquisition and evaluation by collecting objective, high-fidelity data 

on user performance. 

However, the analysis of such data is time-consuming and susceptible to human bias. Conventionally, performance evaluation by 

expert observers relies on checklists for evaluating procedural steps, which are useful in identifying omissions among novices. 

Nevertheless, checklists may disadvantage experts’ practitioners, as they are time-consuming and can potentially undervalue 

expertise. Therefore, it is crucial to consider factors such as speed, efficiency, and overall performance in evaluations  (Gerard et 

al., 2013; Kelly et al., 2020). Moreover, evaluating medical procedural training that involves multiple skills using isolating metrics 

may not capture the complexity of skill acquisition. This limitation has driven the development of systems capable of processing 

quantitative data from multiple sources (Bissonnette et al., 2019). While theoretical knowledge is evaluated through objective 

testing, practical skills remain largely dependent on subjective evaluator judgements, highlighting the need for automation in 

assessment (Nguyen et al., 2019). 

In response to these limitations, Artificial Intelligence (AI), and specifically Machine Learning (ML), has emerged as a powerful 

solution for enabling automated and objective performance evaluation in medical simulators. AI is defined as a set of algorithms 

capable of taking intelligent decisions, and ML is a part of AI that identifies and learns patterns from different groups (Mirchi, 

Bissonnette, Ledwos, et al., 2020). The ML algorithms must be trained on real data to recognize and categorize new data 

accurately, with the objective to improve some activities, such as the disease detection (Castillo et al., 2024), risk factor analysis 
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(Vidal & Gordillo, 2023), agriculture improvement (Zavala-Díaz et al., 2024), and performance optimization in sports (Ruiz-

Vanoye et al., 2017).  

In medical simulators, the integration of ML enables automated evaluations by accurately classifying expertise, distinguishing 

between non-experts (novices) and experts (Winkler-Schwartz, Bissonnette, et al., 2019). Expertise in medical procedures 

correlates with improved clinical outcomes and decision-making. These skills can be quantified through metrics such as instrument 

motion, force application, and procedural efficiency, to obtain an objective evaluation (Mintz & Brodie, 2019). The analysis of 

these parameters enhances both training programs and patient safety. Additionally, integrating ML for assessing user performance 

helps understand the components of expertise and reduces skills gaps caused by disparity in training (Fazlollahi et al., 2022). 

Previous studies have demonstrated that exists a difference in hand motion patterns in individuals with different expertise in 

surgical skills, including open surgery (Genovese et al., 2016), laparoscopic surgery (Mason et al., 2013) and robot assisted 

minimally invasive surgery (Liang et al., 2018). Recent studies have proposed various approaches to skill and performance 

classification, differing in algorithm selection and methodological implementation. Despite these differences, most authors follow 

a common structure for developing automated evaluation systems. This general process involves four key steps: data collection, 

metrics generation and selection, training and testing (see Fig. 1). 

The contribution of this survey is to identify and analyze how ML algorithms are integrated into virtual simulators for medical 

training. It identifies best practices in data collection, feature selection, model training, and evaluation. For this survey a 

bibliographic search on the electronic Google Scholar database using the date intervals 2018 to 2024 was performed with the next 

keywords Machine learning, medical simulators, virtual reality simulators, classifiers, skills assessment, where only medical 

simulators for training medical skills were selected. Narrative data were extracted from each paper using the steps mentioned in 

the Fig. 1. 

The reminder of this paper is organized as follows; Section 2 presents the data collection process. Section 3 presents the metrics 

generation and selection. Section 4 describes the testing process. Section 5 provides a discussion and analysis of the advantages 

and disadvantages of machine learning-bases evaluation. Finally, Section 6 shows the conclusions. 
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Fig. 1. Steps for integrating an ML algorithm in medical simulators. 

2 Data collection  

The base of ML algorithms in medical simulators relies on the quality and diversity of the collected data. Data acquisition can be 

achieved through different sources, including commercial simulators, publicly available datasets and custom-designed sensor-

integrated systems.  

Several studies (Kelly et al., 2020; Funke et al., 2019; Gorantla & Esfahani, 2019; Khalid et al., 2020) have utilized publicly 

available datasets, with John Hopkins University and Intuitive Surgical Inc gesture and Skill Assessment Working Set (JIGSAWS) 

being the most frequently used. This dataset includes data extracted from three elementary surgical tasks (suturing, knot-tying and 

needle passing) performed using the DaVinci® surgical system.  

Another commonly used source is commercial simulators, such as the Neuro VR® simulator, which has been frequently applied 

in neurosurgical training research (Bissonnette et al., 2019; Winkler-Schwartz, Bissonnette, et al., 2019; Siyar et al., 2020). 

Alternatively, some researchers have opted to develop their own systems to collect data tailored to their specific evaluation needs. 

These systems are often integrated with sensors to collect specific task-metrics that may not be available in commercial platforms 

(Oquendo et al., 2018; Chen et al., 2021; Loukas et al., 2020; Uemura et al., 2018). 

Data collection forms the base for defining variables required to develop ML metrics. Generally, three main types of data are 

obtained: a) image or video data: captured through camera-based systems to analyze motion, gestures, and instrument usage; b) 

kinematic data: includes motion parameters such as velocity, acceleration, and trajectory, related to the physical attributes of the 

task; c) event data: records discrete actions such as button presses or instrument activation. 

Each of these data types plays a crucial role in shaping the performance metrics used to train ML algorithms. Properly structuring 

and processing these data sources ensures the reliability and accuracy of automated evaluation systems in medical simulators. 
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3 Metrics selection  

Metrics selection is a fundamental step in the development of ML algorithms for medical simulators. The accuracy and 

computational efficiency of ML-based evaluation systems depend on the relevance and quality of the metrics selected. These 

metrics serve as the quantitative representation of user performance, derived from the raw data collected during simulation sessions 

(Bissonnette et al., 2019). They not only enable the assessment of technical skills but also help create evaluation tools that are 

easy to understand for both teachers (medical experts) and medical students (Winkler-Schwartz, Bissonnette, et al., 2019). 

3.1 Metrics generation 

Metrics used in these systema can be originate from various sources, depending on the specific application of the ML algorithm 

and the medical procedure. The generation of these metrics typically follows three main approaches (Mirchi, Bissonnette, Yilmaz, 

et al., 2020, 2020): first, expert consultation, where physicians identify critical performance indicators based on clinical experience 

and components involved in safe procedures; second, literature review, which involves prior research of the state of the art to 

identify metrics that have been used by previous studies to create automatic evaluation systems with medical simulators; and third, 

development of new metrics, where new metrics are designed to help to identify the degree of expertise of physicians, particularly 

for procedures that lack standardized assessment criteria. Several studies categorize metrics into distinct groups such as efficiency, 

precision, safety, movement and motion of tools (Gerard et al., 2013; Bissonnette et al., 2019; Mirchi, Bissonnette, Ledwos, et al., 

2020; Gorantla & Esfahani, 2019; Yilmaz et al., 2022). Table 1 summarizes the most frequently used metrics across research 

studies, organized by categories. 

3.2 Metrics selection 

Once potential metrics are defined, a selection process is required to filter out redundant, irrelevant, or noisy data while preserving 

the most meaningful features. This step often involves data preprocessing, which includes eliminating erroneous entries, 

normalizing datasets, and applying statistical or algorithmics techniques to refine metric selection (Mirchi, Bissonnette, Yilmaz, 

et al., 2020). The most used methods for metric selection are in  

 

 

Various ML algorithms have been employed in medical simulators to classify expertise levels based on performance metrics. The 

selection of the algorithm depends on the complexity of dataset, computational efficiency and sample size. The most used include 

the Support Vector Machine, K-nearest neighbors, Naïve Bayes, Artificial Neural Networks, Random Forest, Boosting, and 

Discriminant analysis (see Table 3). Once the model has been trained, it must be evaluated to verify its ability to classify unseen 

data correctly, this step is detailed in the following section. 

4 Testing 

Once the algorithm with the best performance has been selected, the next step is to evaluate its effectiveness through testing. This 

step is essential to observe the utility and reliability in the context of medical simulators.  

Testing involves assessing the model’s ability to accurately classify new data into the predefined expertise groups. In general, this 

evaluation is conducted using 20% of data reserved from the original dataset. As detailed in Table 4, some studies used the same 

algorithm for training and testing, while others applied methods such as the LOOCV (described in Section 3) or 5-fold-cross 

validation (Brown et al., 2020). This algorithm consists of splitting all the data into five folds or subsets; during each iteration, 

four folds are used for training while the remaining one is used for testing. This process is repeated five times, using each fold to 

test the algorithm. The model´s overall performance is then computed by aggregating the results across all folds.  

Additional metrics such as sensitivity (recall), specificity and F1 score provide a more comprehensive evaluation (Loukas et al., 

2020). The sensitivity (see Equation 2) also known as recall (Khalid et al., 2020) is defined as ratio of TP divided by P, it indicates 

the proportion of positive instances that were correctly classified. Meanwhile, Specificity (see Equation 3) is the ratio of TN to the 

total number of Negatives (N). It measures the proportion of negative instances correctly classified divided by the total of the 

negative instances. The precision (see Equation 4) is a measure that represents the TP is divided by the sum of TP and FP (Khalid 
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et al., 2020). It represents the proportion of positive instances correctly identified out all the instances that are classified as positive. 

Finally, the F1 score is the representation of the balance between the sensitivity and precision scores (see Equation 5). 

Accuracy =  
TP+TN

P+N
    (1) 

Sensitivity =  
TP

P
  

(2) 

Specifity =  
TN

N
  

(3) 

Precision =  
TP

𝑇𝑃 + 𝐹𝑃
   (4) 

F1 score =  
2

1
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

+
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

  
(5) 

  

Table 2. 

The effectiveness of an ML algorithm is closely tied to the quality and relevance of the selected metrics. Studies have shown that 

selecting the right subset of metrics not only improves classification accuracy but also enhances the interpretability of evaluation 

results, making them more intuitive for medical professionals (Bissonnette et al., 2019; Loukas et al., 2020). 

Table 1. Metrics used in medical simulators and their categories (Gerard et al., 2013; Bissonnette et al., 2019; Mirchi, 

Bissonnette, Ledwos, et al., 2020; Gorantla & Esfahani, 2019; Yilmaz et al., 2022) 

 

 

 

Various ML algorithms have 

been employed in medical 

simulators to classify 

expertise levels based on 

performance metrics. The 

selection of the algorithm 

depends on the complexity of 

dataset, computational 

efficiency and sample size. 

The most used include the 

Support Vector Machine, K-

nearest neighbors, 

Naïve Bayes, Artificial 

Neural Networks, 

Random Forest, Boosting, and 

Discriminant analysis (see 

Table 3). Once the model has 

been trained, it must be 

evaluated to verify its ability to classify unseen data correctly, this step is detailed in the following section. 

5 Testing 

Once the algorithm with the best performance has been selected, the next step is to evaluate its effectiveness through testing. This 

step is essential to observe the utility and reliability in the context of medical simulators.  

Testing involves assessing the model’s ability to accurately classify new data into the predefined expertise groups. In general, this 

evaluation is conducted using 20% of data reserved from the original dataset. As detailed in Table 4, some studies used the same 

algorithm for training and testing, while others applied methods such as the LOOCV (described in Section 3) or 5-fold-cross 

Metric Category 

Force change in a tool (instrument) Safety  

Mean force applied on a tissue  Safety  

Maximum force applied on a tissue  Safety 

Number of times a tissue was touched  Safety  

Bleeding speed Safety 

Total blood loss  Safety 

Tissue volume removed  Safety & Quality  

Force used by a tool (N)  Safety & Efficiency 

Time no force is applied by any tool  Efficiency 

Sum of every change in position of a tool Efficiency 

The amount of time spent removing something Efficiency 

Time to completion  Efficiency 

Total path traveled by an instrument  Efficiency & Overall motion 

Instrument tip separation change  Bimanual cognitive 

Instrument tip separation distance Bimanual Cognitive  

Instrument choice  Cognition  

Tool acceleration  Movement 

Tool velocity  Movement   

Distance between 2 acceleration peaks Motion of tools 

Angular velocity  Motion of tools 

Mean acceleration  Motion of tools & Dynamic features 

Mean velocity  Motion of tools & Dynamic features 

Variance of angles of an instrument  Motion of tools & Turning angle features 

Coordination between two instruments Coordination  

Degree of smoothness  Dynamic features 
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validation (Brown et al., 2020). This algorithm consists of splitting all the data into five folds or subsets; during each iteration, 

four folds are used for training while the remaining one is used for testing. This process is repeated five times, using each fold to 

test the algorithm. The model´s overall performance is then computed by aggregating the results across all folds.  

Additional metrics such as sensitivity (recall), specificity and F1 score provide a more comprehensive evaluation (Loukas et al., 

2020). The sensitivity (see Equation 2) also known as recall (Khalid et al., 2020) is defined as ratio of TP divided by P, it indicates 

the proportion of positive instances that were correctly classified. Meanwhile, Specificity (see Equation 3) is the ratio of TN to the 

total number of Negatives (N). It measures the proportion of negative instances correctly classified divided by the total of the 

negative instances. The precision (see Equation 4) is a measure that represents the TP is divided by the sum of TP and FP (Khalid 

et al., 2020). It represents the proportion of positive instances correctly identified out all the instances that are classified as positive. 

Finally, the F1 score is the representation of the balance between the sensitivity and precision scores (see Equation 5). 

Accuracy =  
TP+TN

P+N
    (1) 

Sensitivity =  
TP

P
  

(2) 

Specifity =  
TN

N
  

(3) 

Precision =  
TP

𝑇𝑃 + 𝐹𝑃
   (4) 

F1 score =  
2

1
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

+
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

  
(5) 

  

Table 2. Methods for metric selection 

Method Description 

Forward or backward feature 

selection (Mirchi, Bissonnette, 

Yilmaz, et al., 2020) 

Iterative algorithms that evaluate model performance at each step. Forward selection 

begins with an empty set and adds one feature at a time. In contrast, backward 

selection starts with all the features and progressively removes them one by one. 

Connection Weight Algorithm 

(Mirchi, Bissonnette, Ledwos, et 

al., 2020) 

Assesses the contribution of each metric to the classification model, ranking them by 

importance. 

Leave-One-Out-Cross-Validation 

(LOOCV) (Winkler-Schwartz, 

Bissonnette, et al., 2019) 

Trains the algorithm on all available data except for one participant, whose data is used 

for testing. This process is repeated iteratively for all participants to determine the most 

robust metrics.  

Sequential Forward feature 

Selection (Gorantla & Esfahani, 

2019) 

Features are added one by one to an initially empty set of candidates. This algorithm 

continues until the addition of new features no longer improves the classification rate.   

Recursive Feature Elimination 

(Brown et al., 2020) 

This recursive algorithm ranks the metrics by importance, progressively reducing the 

number of features until a desired subset is reached. 

Statistical t-Test (Siyar et al., 

2020) 

This test helps to select features with statistical differentiation by comparing the means 

of different groups. 

Wilcoxon Rank-Sum test (Cuzick, 

1985) 

A statistical method for comparing two groups (smokers - non smokers) when 

apparently there is not a clear model. 

Semantic segmentation (Khalid et 

al., 2020) 

Used in image processing. This method identifies key points essential for estimating 

surgical performance, such as the orientation, position and size of surgical tools. It 

allows for outlining and labelling specific regions in an image. 

Table 3. ML algorithms employed in medical simulators 

Machine learning algorithms Description 

Support Vector machine (SV) 

(Bissonnette et al., 2019) 

Uses a hyperplane to separate data in 2 or more groups, maximizing the distance 

between the closest points of each group. 

K-nearest neighbors (KNN) 

(Bissonnette et al., 2019) 

Determines the class of a participant based on the closest neighbors using 

Euclidean distance. The parameter k represents the number of neighbors 

considered, and the classification is based on the relationship with the nearest 

participants in a multidimensional space. 

Naive Bayes (Bissonnette et al., 2019) Classifies participants with the probability that the chosen metrics belong to 

either experts or novice surgeons. It assumes that all the chosen metrics are 

independent from each other. 
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Artificial Neural Network (ANN) 

(Uemura et al., 2018) 
• Comprises multiple computing cells (neurons) that work in parallel to process input data 

and generate a result, often handling raw data. 
Random forest (Chen et al., 2021) This algorithm generates separate independent decision trees, with each tree 

contributing to the result. 

Gradient boosting (Chen et al., 2021) It is a boosting model that is used to train a series of weak classifiers. Each 

classifier learns from residual errors from the previous step. The final prediction 

is the sum of all previous predictions. 

Discriminant analysis (Bissonnette et 

al., 2019) 

This algorithm consists of projecting the data on a single dimension to maximize 

the distance between the means of the groups. 

AdaBoost (Chen et al., 2021) This boosting model updates the weights of data points by weighing each 

classifier based on the related errors in sequence. The final prediction is a 

weighted majority of all classifier's input. 

  

Statistical measures such as the coefficient of determination (R2) are also used to describe and evaluate how the model’s output 

fits the actual data (Kowalewski et al., 2019).  Additionally, the Root Mean Square Error (RMSE) (Zhang et al., 2020) quantifies 

the square root of the variance of the standard error between the desired and obtained value. The analysis of the variance (ANOVA) 

compares mean classification accuracy from different models and datasets (Chen et al., 2021). 

For visual interpretation, confusion matrices are commonly used to illustrate the relation between real and predicted instances 

(Bissonnette et al., 2019; Mirchi, Bissonnette, Ledwos, et al., 2020; Lee et al., 2020), as shown in Fig. 2. Alternatively, some 

authors (Nguyen et al., 2019) utilize a performance matrix to display metric values across different expertise groups, as seen in 

Fig. 3. Other evaluation strategies include balanced accuracy score (average of recall between training and testing data) and 

Matthews’s correlation coefficient that gives a value between -1 (poor prediction) and 1 (perfect prediction) (Brown et al., 2020). 

6 Discussion 

This section analyzes the automatic evaluation systems developed for classifying expertise medical simulators based on the review 

of relevant literature. It is important to mention that it is not possible to make a comparison between the automatic evaluation 

systems used in medical simulators since they use different metrics and different numbers of participants, which can be reflected 

in the results obtained; however, a discussion can be made regarding them to identify their most relevant characteristics. Table 4 

provides a summary of the main characteristics of these systems, it highlights aspects involved in the steps mentioned before, such 

as metric selection methods, the number of metrics proposed and the way that the results are shown. 

Among the 13 systems reviewed (see  

Table 4, Table 5 and  

Table 6), nine collected data from commercial simulators, with the NeuroVR shown in  

Table 4 (Bissonnette et al., 2019; Siyar et al., 2020; Winkler-Schwartz, Yilmaz, et al., 2019) and DaVinci robotic systems inTable 

5, where the data comes from the public dataset JIGSAWS (Khalid et al., 2020; Mirchi, Bissonnette, Yilmaz, et al., 2020; Brown 

et al., 2020; Lee et al., 2020; Ismail Fawaz et al., 2019). In contrast, four studies developed their own systems to collect specific 

data necessary for creating the metrics that they identified, all of them being box trainers for laparoscopic procedure (Oquendo et 

al., 2018; Loukas et al., 2020; Uemura et al., 2018; Kowalewski et al., 2019). As shown in  

Table 6 each simulator presents tasks that allow for evaluating surgical skills, line needle passing (NO), knot tying (KT) and 

suturing. 

The number of participants varied considerably across the studies (see Fig. 4). Three studies included fewer than 20 participants, 

six involved between 20 and 50 participants, two had between 51 and 100 individuals participated, and two studies included more 

than 100 participants. While the number of participants often depends on their availability, having a larger number of participants 

generally allows the ML algorithm to be trained with greater accuracy. This is because more data provides a better representation 

of different expertise levels, making the algorithm able to generalize. However, fields such as medicine, recruiting many 

participants can be particularly challenging due to time constraints, ethical considerations, and the specialized nature of the 

population.  
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Metric selection is a critical step in developing effective ML algorithms for medical simulators. The use of a larger number of 

metrics can increase computational costs, but the number of metrics also impacts the accuracy of the algorithm. Only one study 

selected metrics based on expert opinions ( 

Table 6), identifying metrics that distinguish between experts and novices (Gorantla & Esfahani, 2019). The methods for metrics 

selection used in the reviewed studies are presented in Fig. 5, some studies combine two methods for this selection (Bissonnette 

et al., 2019; Siyar et al., 2020), including the backward or forward selection algorithm, while another study selected metrics 

according to the Global Evaluative Assessment of Robotic Surgery (GEARS) and the Object Structured Assessment (OSATS) of 

Technical Skills, scales used in the medical education. Additionally, two studies consider the expert opinion in order to detect 

metrics related to a specific medical procedure. 

Although this survey presents the most used metrics of the 13 systems reviewed, the selected metrics will depend on the medical 

procedure the simulator is focused on. For instance, the metrics will not be the same for a diagnostic procedure where palpation 

is the basis, as for a procedure where one of the most relevant aspects is the use of instruments (such as robotic surgery). For this 

reason, during the metric selection process, it is important to consider input from medical experts. Their insights can provide 

valuable guidance on what aspects are essential in specific medical procedures. Additionally, involving medical experts helps 

ensure an understanding of how the metrics impact the evaluation of medical skills.  However, two systems that employed neural 

networks did not perform any metric selection (Uemura et al., 2018; Ismail Fawaz et al., 2019), likely relying on the neural 

network´s ability to process raw data. On the other hand, studies that used video data obtain the metrics through video analysis 

(Chen et al., 2021; Lee et al., 2020), dynamic time wrapping data (Kowalewski et al., 2019), and semantic segmentation (Khalid 

et al., 2020) (see Table 5 and  

Table 6). 

Regarding the metrics selection, the number of proposed metrics ranged from 9 to 369, depending on the data collected and the 

source. Studies proposing fewer than 20 metrics (Siyar et al., 2020; Loukas et al., 2020; Lee et al., 2020) generally did not perform 

metric selection, training and testing the algorithms with all the metrics. In contrast, studies proposing more than 20 metrics 

reduced the number of metrics through selection process, aiming to identify the most relevant and indispensable metrics for greater 

algorithm accuracy. 

Fourteen different algorithms were used across the reviewed studies, as shown in Fig. 6. The most common were different types 

of neural network (Khalid et al., 2020; Mirchi, Bissonnette, Yilmaz, et al., 2020; Kowalewski et al., 2019) such as fully 

convolutional (Ismail Fawaz et al., 2019) and deep neural network (Uemura et al., 2018). Four studies used Support Vector 

Machine (Bissonnette et al., 2019; Kowalewski et al., 2019; Lee et al., 2020; Winkler-Schwartz, Yilmaz, et al., 2019), the K-

nearest neighbors’ algorithm was also used in four  (Bissonnette et al., 2019; Siyar et al., 2020; Loukas et al., 2020; Yilmaz et al., 

2022). It is important to highlight that in various studies (Oquendo et al., 2018; Bissonnette et al., 2019; Winkler-Schwartz, 

Bissonnette, et al., 2019; Mintz & Brodie, 2019; Fazlollahi et al., 2022; Chen et al., 2021; Kowalewski et al., 2019; Lee et al., 

2020),  the same dataset is used for training and testing across different ML algorithms, with the same or varying metrics.  
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Fig. 2. Example of a Confusion Matrix. 

 
Fig. 3. Example of a Performance Matrix. 

 

As shown in Fig. 7, the results obtained from the ML algorithm, accuracy is the most common metric reported by all authors. 

Additionally, three studies reported sensitivity (Bissonnette et al., 2019; Khalid et al., 2020; Loukas et al., 2020), two reported 

specificities (Bissonnette et al., 2019; Loukas et al., 2020), and one reported precision and F1 Score (Khalid et al., 2020). Despite 

the relatively limited variety of reported metrics, it is important to emphasize that many additional performance indicators—such 

as sensitivity, specificity, precision—can be derived if the confusion matrix is available, even if these metrics are not explicitly 

stated in the publications. The confusion matrix provides the fundamental counts of true positives, true negatives, false positives, 

and false negatives, serving as the basis for calculating a comprehensive set of performance measures. However, as depicted in 

Fig. 8, only a small subset of the studies included in this review reported the confusion matrix as part of their results.  
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Fig. 4. Number of participants by study.  

 

Fig. 5. Methods used for metrics selection.  

 

In the context of medical education, ML-based systems have the potential to enhance objectivity, explainable and individualized 

performance feedback. However, to ensure these systems are effective and suitable for physicians and educational integration, it 

is crucial to align them with ethical principles such as interpretability, explainability, responsibility and trustworthiness. 

Explainability is essential for enabling physicians and experts to understand how the system evaluates performance and how to 

interpret its outputs. This transparency improves the acceptability of the system with the ML algorithm, promotes trust in the 

results, and can positively influence skill acquisition (Mirchi, Bissonnette, Yilmaz, et al., 2020). Furthermore, aligning AI-based 

systems with existing assessment frameworks, ethics and involving medical professionals in their design and implementation can 

ensure these tools are used responsibly and effectively (Rasheed et al., 2022).    
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Fig. 6. Algorithms used for training with the metrics selected. 

 

In addition, it is important to note that the reviewed systems focus primarily on accurately classifying expertise and identifying 

representative performance metrics. However, they do not report consistent integration into medical curricula. This reveals a 

critical gap: determining whether these systems are truly prepared to distinguish between users who possess true procedural skills 

and those who merely demonstrate technical ability to operate the simulator. Furthermore, most evaluations were conducted over 

short periods or involved only a single training session, limiting the evidence of long-term effectiveness. To eliminate this gap, 

ML-based teaching platforms must undergo rigorous validation processes involving experts and demonstrate that the skills 

acquired in simulators transfer effectively to real-world. 

 

Fig. 7. Evaluation of metrics for model performance. 
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Fig. 8. Number of studies reporting a confusion matrix as part of their results. 

7 Conclusions 

Automated evaluation systems in medical simulators are essential for providing standardized and objective assessments of 

expertise in specialized procedures such as laparoscopic and robotic surgery. These systems not only enable precise and consistent 

evaluations but also help physicians identify the key metrics necessary for effective training. By identifying these metrics, medical 

educators and simulation developers of medical procedures can design targeted strategies to enhance training programs, ultimately 

improving the overall quality of medical education. 

The studies presented in this article have shown different characteristics, varying from the type of simulated medical procedure to 

the algorithms employed for training and testing. However, a common aspect among these studies is the way results are presented: 

all report the accuracy of the algorithms used. While accuracy is a common measure in ML, it is less intuitive for physicians, who 

are more familiar with terms such as specificity and sensitivity (Winkler-Schwartz, Bissonnette, et al., 2019). Therefore, it is 

crucial to provide measures that are easily understandable for physicians and medical professionals, offering a comprehensive 

perspective on the evaluation tool. This includes not only correct classification (accuracy) but also misclassified data. In this 

regard, the confusion matrix serves as a visual representation of test outcomes, allowing physicians to analyze both classified and 

misclassified data in an easily understandable format.  

Regarding this situation, algorithms with non-transparent processes, such as neural networks, may not be the best option if 

physicians need to understand how results are obtained. Instead, using transparent algorithms with metrics selection can facilitate 

better comprehension and trust among medical professionals. A widely adopted approach in the development of automated 

evaluation systems for medical simulators involves testing multiple ML on a common dataset to identify the most effective model. 

This approach enables a direct comparison of the algorithm's performance, facilitating the selection of the most suitable algorithm 

based on the desired outcomes. 

Finally, following the appropriate steps for integrating a ML algorithm into a medical simulator enables significant improvements 

in the simulator's functionality. The integration of ML-based evaluation enables comprehensive post-training assessment, 

facilitating targeted feedback and skill refinement. Consequently, it opens the possibility of enhancing the feedback mechanism 

and correcting errors that occurred during the training. This iterative improvement will help make the simulator an effective tool 

for medical education and skill development. 

In summary, while ML-based assessment systems present promising characteristics for improving medical training, their 

successful implementation depends not only on technical performance but also on ethical integrity, curricular integration, and 

validation of real-world skill transfer. Addressing these aspects will be essential to ensure that such systems truly support medical 

education and contribute meaningfully to clinical competence development. 
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Table 4. Automatic evaluation systems for skill assessment with the Neuro VR simulator 

Studies Participants - 

Classification 

groups 

Metrics 

selection 

Data 

source 

MP 

(MS) 
Testing 

Algorithm 

training (MS) 
Results 

(Yilmaz et al., 

2022)  
50 - 

Neurosurgeons, 

Senior residents, 
Junior residents, 

medical students 

Backward and 

forward 
selection 

Simulator 
270 

(122) 
LOOCV 

K-nearest 

neighbors (6) 
A: 90% 

Naive Bayes (9) A: 84% 

Discriminant 

analysis (8) 
A: 78% 

SVM (8) A: 76% 

(Bissonnette et al., 

2019)  

 

41 - Senior and 
junior 

By spine 

surgeons and 
backward 

selection 

Simulator 
41 
(12) 

LOOCV 

K-nearest 

neighbors 
A: 92.7% 

Naive Bayes A: 70.7% 

Linear discriminant 
analysis 

A: 87.8% 

SVM 

A: 97.6%, S: 

100%, SP: 

94.7% 

Decision tree A: 70.7% 

(Siyar et al., 2020)   
115 - Skilled and 
novices 

Statistical and 

forward 

selection 

Simulator 
150 
(68) 

Cross 
validation 

K-nearest 
neighbors (6) 

A: ≈ 93% 

MP = Metrics proposed, MS = Metrics selected, A = Accuracy, S = Sensitivity, SP = Specificity, SVP = Support Vector Machine, LOOCV = 
Leave-out-one-cross-validation 

Table 5. Automatic evaluation systems for skill assessment with the DaVinci system 

Studies 

Participants- 

Classification 

groups 

Metrics 

selection 
Data source 

MP 

(MS) 
Testing 

Algorithm 

training (MS) 
Results 

(Khalid et al., 

2020) 

8 - Novice, 
intermediate and 

expert 

Semantic 

segmentation 

(image 
processing) 

JIGSAWS 

dataset 
------- 

Same 

algorithm 

used in 
training 

Neural network 

A: (ST, KT, 

NP) 36%; P: 

(ST) 100%, 

(KN, NP) 1%; 

S: (ST) 100%, 

(KT) 35%, 

(NP): 32%; 

F1: (ST) 

100%, (KT) 

13%, (NP) 3% 

(Lee et al., 

2020) 
 

52 - Novice, 

skilled and expert 

OSATS (O) and 

GEARS (G) 
score 

Video data 9 LOOCV 

Linear classifier 
A: (O) 58%, 

(G) 67% 

SVM 
A: (O) 75%, 

(G) 67% 

Random forest 
A: (O) 83%, 
(G) 83% 

(Ismail Fawaz 
et al., 2019) 

8 - Novice, 

intermediate and 
expert 

No apply 
JIGSAWS 
dataset 

76 
Spearman’s 
coefficient 

Fully 

convolutional 
neural network 

A: (ST) 100%, 

(NP) 100%, 
(KT) 92.1% 

(Brown et al., 

2020) 

>100 - Trainee, 

expert surgeon and 

training specialist 
 

Wilcoxon Rank 

and Recursive 

Feature 
elimination 

Video and 

Kinematic 

data from 
simulator 

43 (88-

117) 

Five-fold-
cross-

validation 

Logistic 
regression 

classifier 

A: 80.24-

98.27% 

(Chen et al., 

2021) 

17 - Super experts, 

ordinary experts, 

experts, novices 

 

Video analysis 
Previous 

dataset 
------- 

Same 

algorithms 

AdaBoost A: 69.87% 

Gradient boost A: 67.24% 

Random forest A: 72.75% 

MP = Metrics proposed, MS = Metrics selected, A = Accuracy, S = Sensitivity, P = Precision, ST = Suturing, KT = Knot Tying, NP = Needle 

Passing, F1 = F1 score, SVP = Support Vector Machine, LOOCV = Leave-out-one-cross-validation 
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Table 6. Automatic evaluation systems for skill assessment with diverse simulators 

Studies Simulator 

Participants and 

classification 

groups 

Metrics 

selection 

Data 

source 

MP 

(MS) 
Testing 

Algori-thm 

trai-ning 

(MS) 

Results 

(Loukas et al., 

2020) 

Laparoscopic box 

trainer 

32 - Medical 
students and 

surgical resident 

By an expert 
Video 

data 

10 
(each 

task) 

K-nearest 

neighbors 

K-nearest 

neighbors 

A:  

71-86%; S: 
80-100%; 

SP:    

60 - 80% 

(Uemura et 
al., 2018) 

Box trainer 
67 - Experts and 
non-expert 

No apply 
Box 
trainer 

NA 

Deep 

neural 

network 

Deep neural 
network 

A: 79% 

(Mirchi, 
Bissonnette, 

Ledwos, et al., 

2020) 

Sim-Ortho 

platform 

21 - Junior, 

senior, post 

resident 

 

Stepwiseft 

function 

Box 

trainer  

369 

(13) 

Neural 

network 

Neural 

network 
A: 83.3% 

(Oquendo et 

al., 2018) 

Pediatric 
laparoscopic 

box trainer 

32 - Medical 

students, 

residents, 
fellows 

The LASSO 

elastic net 

technique 

 

TD 
280 
(10) 

LOOCV 
Regression 

tree model 

A: 52% 

TD and 

GD 

280 

(48) 
A: 52% 

TD and 
TPD 

280 
(202) 

A: 46% 

TD, MD, 

and TVD 

280 

(214) 
A: 59% 

TD, MD 
and GD 

280 
(190) 

A: 54% 

TD, MD, 

TVD and 

GD 

280 
(184) 

A: 71% 

(Kowalewski 

et al., 2019) 

Laparoscopic box 

trainer 

28 - Beginner, 

intermediate, 
experts 

Dynamic time 

wrapping for 
video data 

Video 

data 
12 

Cross 

validation 

Decision 

jungle 
A: 62% 

Neural 

network 
A: 70% 

SVM A: 60% 

Boosted 

decision tree 
A: 66% 

MP = Metrics proposed, MS = Metrics selected, A = Accuracy, S = Sensitivity, SVP = Support Vector Machine, TD = Time Data, GP = Grip 

Data, TD = Tip Data, MD = Tip Data Motion, TVD = Tool Visibility Data. 
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