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Abstract. Recommender Systems are useful tools for 

helping users find items of interest within a universe of 

options in the Big Data 3.0 era. Singular Value 

Decomposition models have proven useful in e-commerce. 

However, these models do not consider popularity biases 

arising from the Matthew effect present in the data 

structure, which leads to unfair recommendations. To 

address this problem, strategies that compensate for long-

tail items to increase their recommendation probability 

have been proposed, as well as approaches that use the Zipf 

distribution to generate predictions without prior 

knowledge of the data. However, these proposals have not 

been widely accepted because they do not consider user-

item interactions in the training process. In this paper, we 

present a strategy that uses the Zipf distribution in a Matrix 

Factorization model based on Singular Value 

Decomposition that considers user and item biases in 

personalized recommendation tasks, to incorporate 

popularity biases and improve the fairness of 

recommendations. Experimental results demonstrate the 

validity of this strategy. 
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1 Introduction 
 

In this era of Big Data 3.0, where digital information is generated from multiple sources within e-commerce, social networks, and 

IoT technologies, it is increasingly important to create computer tools that help to lighten the large volumes of information that 

are generated. Users need valuable information from this large amount of data, so building computational mechanisms through 

which to achieve this goal is a real challenge (Lee, 2017). In this context, Recommender Systems (RS) aim to provide valuable 

recommendations to users by suggesting items that best match their profiles. RS of Collaborative Filtering (CF) have been widely 

used in the e-commerce industry; in this RS the list of recommendations generated depends on the ratings that neighbors have 

given to items that the active user is unaware of (Lucero-Alvarez et al., 2021). Because the possibilities for user-item interactions 

are so large, many RS use Matrix Factorization (MF) techniques to reduce the dimensions of the data. Singular Value 

Decomposition (SVD) is an MF method in which predictions are made by taking the dot product of the vectors representing users 

and items. Driven by the Netflix prize in 2009, CF-based RS began their golden age, giving rise to classic models such as 

Regularized-SVD, Bias-SVD, SVD++ and their variants. These models basically follow the original proposal of Simon Funk to 

approximate the ratings matrix 𝑀𝑟 by the product of two matrices 𝑈 ∙ 𝑉𝑇 in such a way that the dimensions of the original system 

are reduced (Koren, 2008; Koren et al., 2009; Sharifi et al., 2013; Gower, 2014; Paterek, 2007; Kumar et al., 2014; Lucero-Alvarez 

et al., 2023). This approach is based on the mathematical idea that 𝑀𝑟 =  𝑈𝛴𝑉𝑇 where 𝛴 is considered multiplied proportionally 
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in both 𝑈 and 𝑉. The idea is to start 𝑈 and 𝑉 with random values and approximate 𝑀𝑟 at each training stage by minimizing the 

Mean Square Error (MSE) using Stochastic Gradient Descent (SGD). The Bias-SVD model has gained acceptance due to its ease 

of implementation and the accuracy shown. Bias-SVD variants have to do with the incorporation of implicit feedback and with 

the way of dealing with different biases in the training stage, such as biases referring to the deviation of each user-item interaction 

with respect to the global mean, biases due to context, biases due to temporality, and demographic biases (Koren, 2008; Koren et 

al., 2009; Chen et al., 2023). However, these models and variants do not guarantee fairness in their recommendations, because 

they were designed with the focus on minimizing the error in the loss function, and consequently they recommend popular items, 

leaving aside unpopular items that are also relevant to the active user. These models do not address popularity biases since they 

do not consider during training that the original structure of the data is biased towards elements that have historically received 

greater exposure and coverage, which is why they end up recommending biased elements, overexposing them more, and at the 

same time generating greater bias. This phenomenon is known as the snowball effect, preferential attachment, or Matthew effect 

(Perc, 2014). However, researchers know that recommending popular items is contrary to the fundamental goal of RS, which is 

to recommend based on user profiles. To address this lack of fairness, researchers have proposed graph-based models, such as in 

the work of Wei et al. (2021), where popularity biases are explored using a strategy that models a causal graph to describe cause-

effect relationships in the recommendation process. The objective was to investigate how the popularity of each element affects 

each interaction through its cause-effect model, with encouraging results. Along the same line, cause-effect approaches have been 

proposed that seek to counteract the importance of items with overexposure biases by increasing the recommendation probability 

of items in the long tail of the distribution in the training process and that make use of implicit information from the interaction 

of users with the system to estimate unknown ratings on rarely evaluated elements (Liang et al., 2016; Wang et al., 2019). Although 

these methods work, they do not explain how the biases of each rating interact with respect to compensation; that is, they blindly 

privilege the elements of the long tail without considering whether they are within the user's profile. Other approaches focused on 

user-item interaction use neural networks, with good results, but they also do not explain how popularity biases affect interactions 

(He et al., 2017; Zheng et al., 2016). Approaches that make use of Zipf's law have also been proposed: Models such as Zipf Matrix 

Factorization (ZMF) and ZeroMat are among the best known; they use Zipf's law without historical neighborhood information to 

make predictions, but they have proven to be effective in reducing the Matthew effect and improving equity (Wang, 2021a; Wang, 

2021b). 

 

This article presents research inspired by previous work in Information Retrieval (IR) within Natural Language Processing (NLP), 

which were focused on the automatic indexing of documents using Goffman's Transition Point (TP) and Zipf's law. The objective 

was to explore whether, by incorporating popularity biases derived from Zipf's law, it is possible to provide classical SVD models 

with a mechanism that improves the fairness of recommendations, and if so, propose variants that address the problem of inequity 

while maintaining the benefits of the base framework. For this purpose, three variants are proposed, and a comparison is made 

with the Bias-SVD model. Two MovieLens datasets with different distributions are used in the experiments, and they are often 

used as the gold standard of evaluation in many investigations in the area, namely MovieLens Small and MovieLens 100K (Harper 

& Constan, 2016). 

 

2 Related Work 

 
This section presents some work related to our research. Sections 2.1 and 2.2 introduce the concepts of Zipf's law and the Goffman 

transition point in NLP. Section 2.3 presents research in RS that uses Zipf's law in their learning models to address problems such 

as data sparsity, cold start, and recommendation unfairness. Section 2.4 presents some proposed strategies to address the problem 

of unfairness resulting from popularity biases in RS. Finally, in Section 2.5, we present the significance of our proposal with 

respect to the others. 

 

2.1 Zipf Law 
 

Zipf’s law has its origins in linguistics and is a discrete power distribution that many phenomena approximate. Zipf's law was 

published by the American linguist and philosopher George Kingsley Zipf in 1949 in his famous book “Human behavior and the 

principle of least effort” (Zipf, 2016; Zhu et al., 2018). Natural or artificial phenomena that approximate this type of distribution 

show that there are few elements that have high frequencies and many elements that have low frequencies. This was also observed 

by Pareto in his studies on the population of cities and is also known as the 80-20 proportion or "Pareto principle" (Newman, 

2005). 

 

Zipf empirically finds that the frequency with which words appear in the documents of any corpus follows a distribution 𝑓(𝑘) ∝
1/𝑘𝛼, where the k-th most frequent word has a frequency 𝑓(𝑘), for 𝛼 ≈  1. So, 𝑘 is the frequency rank of a word, and 𝑓(𝑘) is its 
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frequency in the corpus, thus, the most frequent word, with rank 𝑘 =  1 has a frequency proportional to 1, the second most 

frequent word, 𝑘 =  2 has a frequency proportional to 1/2𝛼, that is, it is repeated with a frequency of 1/2 of the frequency of the 

first rank, the third most frequent word has a frequency proportional to 1/3𝛼, that is, it is repeated with a frequency of  1/3 that 

of the first, and so on (Piantadosi, 2014). 

 

Looking at the list of all the words in the corpus, sorted in descending order of frequency, Zipf was able to establish that the 

product of the rank by the frequency remains approximately constant (Booth, 1967). This statistical regularity comes from the 

tension between two forces inherent to natural languages: unification and diversification. The first leads to the use of general 

terms, while the second leads to the use of specific terms (Jiménez et al., 2005). This relationship can be approximated according 

to equation 1. 

𝑓(𝑘) ≈
𝐶

𝑘𝛼
 (1) 

 

Where, 𝛼 takes a value slightly higher than 1, and 𝐶 is the normalization constant (Montemurro, 2001). The value of 𝛼 is obtained 

empirically, while 𝐶 refers to the highest frequency of elements ordered in descending order in relation to it. 

 

2.2 Transition Point 
 

In IR of NLP, specifically for the automatic identification of index terms that best represent the documents, researchers use Zipf's 

law and Goffman's TP (Booth, 1967; Urbizagástegui & Restrepo, 2011). They noticed that the most frequent words contribute 

little to the representation and that the low-frequency words add complexity. They propose dividing the list of words sorted 

descending in relation to their frequencies into high and low-frequency words so that terms in a window around the TP are chosen 

as index terms. This technique has proven useful in languages, since they, in most cases, follow Zipf's law. In the work of (Jiménez 

et al., 2005) this technique is used together with the Nearest Neighbor (NN) algorithm to group texts from a specific domain, with 

good results according to the evaluation standard used. In (Moyotl & Macías, 2016) TP, Markov chains, and n-grams are used to 

determine terms and auto-complete queries semi-automatically and assist in IR processes. 

 

The transition point relates Zipf's high and low-frequency laws from equations 2 and 3. In these equations, 𝑁 represents the 

number of words present in the text, including repetitions, and 𝑘 is a constant associated with the text length and frequency rank. 

 

𝐼1  =  
1

2
𝑘𝑁    (2) 

𝐼𝑛  =  
1

𝑛(𝑛 + 1)
𝑘𝑁 (3) 

 
In such a way that the quotient is as in equation 4. 

 
𝐼𝑛

𝐼1
 =

2

𝑛(𝑛+1)
    (4) 

Where 𝐼𝑛 refers to the number of words with a frequency of 𝑛, and 𝐼1 is the number of words with a frequency of 1. 

 

Since we are interested in the average frequency terms, we set 𝐼𝑛 = 1 and therefore 2𝐼1 = 𝑛(𝑛 + 1), so we have 𝑛2 + 𝑛 − 2𝐼1 =
0, so by solving for 𝑛 we can determine the transition point, as in equation 5 (Booth, 1967). 

 

𝑇𝑃 =  
 √1 +  8 ×  𝐼1 − 1

2
 (5) 

 

The concept of transition point is useful today in NLP-related research. For example, it is often used to disambiguate the meaning 

of words, to analyze the context in which language is used, for sentiment analysis, and for automatic text generation.  

 

In the context of this research, the concept of transition point is used to identify popularity biases present in the structure of the 

training data of the SVD models under study. 

 

In sections 2.3 and 2.4 we present some works from the literature that address RS problems using Zipf distribution and some 

approaches that address the lack of fairness of recommendations from different perspectives. 
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2.3 Frameworks that use Zipf's Law in RS 

 

CF-based RS have been widely studied. However, problems such as cold-start, sparsity, and lack of fairness persist despite the 

efforts of researchers to find appropriate strategies to solve them. Some current work seeking to solve these problems make use 

of Zipf's law. A pioneering work in the use of the Zipf’s distribution to address the problem of unfairness in recommendations is 

the so-called Zipf Matrix Factorization, in which the author uses a metric called Degree of Matthew Effect to measure the Matthew 

effect and to be able to penalize it in the loss function based on the scalar product of 𝑈 by 𝑉𝑇 (Wang, 2021b). The author compares 

his method against the classic Vanilla Matrix Factorization on a MovieLens dataset and obtains a better performance with respect 

to Mean Absolute Error (MAE). Another work that makes use of the Zipf’s distribution to address sparsity and cold-start problems 

is called ZeroMat (Wang, 2021a). This algorithm does not use explicit feedback, nor information from other domains or meta-

learning, for making predictions, however; the author reports good results comparing it with classical Matrix Factorization. Later, 

in Wang (2022a) the framework called Hybrid-ZeroMat is proposed, in which the author uses the ZeroMat algorithm to fill the 

unknown ratings of the ratings matrix, in a kind of imputation, and then applies another RS such as Matrix Factorization, to solve 

the cold-start problem. Finally, in Wang (2022b) a framework called DotMat is presented, in which the cold-start and sparsity 

problems are attacked without having historical information of the ratings in the learning process, instead it uses the Zipf’s 

distribution, and the inner product of the approximation vectors 𝑈 and 𝑉𝑇, the loss function is based on the MAE evaluation metric 

using SGD, and the Degree of Matthew Effect. The authors show competitive results with respect to other frameworks based on 

Zipf’s distribution, and with respect to classical MF algorithms. 

 

2.4 Approaches to Addressing Unfairness in RS 

 

To address the problem of unfairness due to popularity biases in collaborative filtering recommendation models, researchers have 

proposed various strategies, such as incorporating fairness constraints during the training phase, such as the (Zhu et al., 2018). 

The authors propose a sensitive latent factor matrix to isolate sensitive features and provide fairer recommendations with respect 

to the sensitive attribute. In this research, the authors use the MovieLens 100K dataset generated through explicit feedback in their 

experiments and adjust the ratings to values between 0 and 1, as their strategy is based on implicit feedback. Another approach 

that addresses unfairness is to incorporate regularization terms into the loss function to penalize unfair recommendations, as in the 

work of (Wang, 2021b), which uses a popularity bias penalty constant in the model training process. However, one of the 

weaknesses of this approach is that it does not use information on how users rate items or how each item has been rated. By not 

incorporating information on user preferences and behaviors, personalizing recommendations becomes difficult. Another 

approach to improving the fairness of recommendations involves the use of debiasing techniques. In this regard, (Sun et al., 2019) 

published a novel work in which the authors propose to eliminate popularity biases in the feedback loop that occurs with user 

interaction with the Recommender System, which is the cause of increased biases in SVD-based RS. The strategy relies on several 

debiasing algorithms in the simulated chain of events of a Recommender System. The authors demonstrate that it is possible to 

reduce biases with their strategy, but they acknowledge some weaknesses in the simulation of interactions. Another approach that 

addresses the problem of unfairness due to popularity biases is based on the use of counterfactual reasoning, as in the work of 

(Wei et al., 2021). In this work, the authors propose the use of causal graphs that capture cause-effect interactions in the 

recommendation process and demonstrate that their approach improves fairness. 

 

2.5 Contributions 

 

Our approach seeks to leverage the advantages of classic SVD models, such as ease of implementation, simplicity, high accuracy, 

and the ability to learn user-item interaction patterns that enable personalized recommendations, while simultaneously improving 

the fairness of recommendations.  

 

The contributions of this work are as follows: 

− A strategy for measuring popularity biases that uses the Zipf distribution and Goffman's TP. 

− Three variants of the Bias-SVD model that incorporate popularity biases in the training phase, seeking to improve the 

fairness of recommendations without significantly losing accuracy. 

 

3 SVD Models Implemented 

 
This section describes the Regularized-SVD and Bias-SVD models implemented in the experiments. Both factorize the rating 

matrix as the product of two lower-dimensional matrices: 𝑀𝑟 =  𝑈 ∙ 𝑉𝑇 . 
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3.1 Regularized-SVD Model 
 

In this model, taken from (Koren et al., 2009; Funk Netflix Update, 2006), the learning of 𝑝𝑢 and 𝑞𝑖  is achieved by minimizing 

the regularized quadratic error, as in equation 6, considering that 𝑝𝑢 ∈  𝑈 and 𝑞𝑖 ∈  𝑉. 

𝑚𝑖𝑛
𝑞∗,𝑝∗

∑ (𝑟𝑢,𝑖 − 𝑞𝑖
𝑡 . 𝑝𝑢)

2

(𝑢,𝑖)∈𝐾

+ 𝜆(∥ 𝑞𝑖 ∥2+∥ 𝑝𝑢 ∥2) 
(6) 

Where 𝐾 is the set of pairs (𝑢, 𝑖) for which 𝑟𝑢,𝑖  is known, the constant 𝜆 controls the degree of regularization and is usually 

determined by cross-validation (Koren et al., 2009). To minimize equation 6, an optimizer such as SGD is used. The algorithm 

goes through all the ratings in the training set, calculating in each case the associated prediction error 𝑒𝑢,𝑖 , as shown in equation 

7. 

𝑒𝑢,𝑖 =  𝑟𝑢,𝑖 −  𝑞𝑖
𝑡 · 𝑝𝑢 

(7) 

The parameters are then changed in a magnitude proportional to 𝛾 in the opposite direction to the gradient ▽, i.e.: 𝑞𝑖  ←  𝑞𝑖  −
 𝛾 ▽ and 𝑝𝑢  ←  𝑝𝑢  −  𝛾 ▽. As in equations 8 and 9. 

 

𝑞𝑖 ← 𝑞𝑖 + 𝛾 · (𝑒𝑢,𝑖 · 𝑝𝑢 − 𝜆 · 𝑞𝑖) 
(8) 

𝑝𝑢 ← 𝑝𝑢 + 𝛾 · (𝑒𝑢,𝑖 · 𝑞𝑖 − 𝜆 · 𝑝𝑢) 
(9) 

3.2 Bias-SVD Model 
 

This model considers biases related to the deviation of each rating from the user and active item averages and is compared to the 

global average (Koren et al., 2009). Therefore, 𝑏𝑢,𝑖 =  µ + 𝑏𝑖 + 𝑏𝑢, where µ is the global average in 𝑀𝑟, and the parameters 𝑏𝑖 

and 𝑏𝑢 are the observed deviations of the user 𝑢 and element 𝑖 respectively. Therefore, to estimate the rating of the user 𝑢 for the 

element 𝑖, we have the following: 𝑟̂𝑢,𝑖 =  µ + 𝑏𝑖  + 𝑏𝑢  + 𝑞𝑖
𝑡 · 𝑝𝑢. The learning process is carried out by minimizing the function 

of equation 10. 

min
q∗,𝑝∗,𝑏∗

∑ (𝑟𝑢,𝑖 − 𝜇 − 𝑏𝑖 − 𝑏𝑢 − 𝑞𝑖 
𝑡 ∙  𝑝𝑢)

2

(𝑢,𝑖)∈K

+  𝜆(∥ 𝑞𝑖 ∥2 + ∥ 𝑝𝑢 ∥2 +  𝑏 𝑢 
2 +  𝑏 𝑖 

2) 
(10) 

Minimization is done by equations 11, 12, 13 and 14. 

 

𝑏𝑢 ← 𝑏𝑢 + 𝛾 · (𝑒𝑢,𝑖 − 𝜆𝑏𝑢) 
(11) 

𝑏𝑖 ← 𝑏𝑖 + 𝛾 · (𝑒𝑢,𝑖 − 𝜆𝑏𝑖) 
(12) 

𝑝𝑢 ← 𝑝𝑢 + 𝛾 · (𝑒𝑢,𝑖 · 𝑞𝑖 − 𝜆𝑝𝑢) 
(13) 

𝑞𝑖 ← 𝑞𝑖 + 𝛾 · (𝑒𝑢,𝑖 · 𝑝𝑢 − 𝜆𝑞𝑖) 
(14) 

Where 𝑒𝑢,𝑖  =  𝑟𝑢,𝑖  −  𝑟̂𝑢,𝑖. 

 

4 Methodology 
 

In this section we present the methodology proposed to measure the popularity biases present in the data. 

 

4.1 Identification of the Ranks 

 

The proposal for calculating the popularity biases of each element of the active dataset involves the rank in which each element 

is located. The identification of the ranks is posed as follows: Let 𝐿 =  [𝑒1, 𝑒2, . . . , 𝑒𝑁 ] be the list of the 𝑁 elements of the dataset 

ordered in descending order with respect to their frequencies. Let 𝐹 𝑟 =  [𝑓𝑟(𝑒1), 𝑓𝑟(𝑒2), . . . , 𝑓𝑟(𝑒𝑁 )] be the list of frequencies 

of each element in 𝐿. In such a way that 𝐷 =  {(𝑒𝑖  , 𝑓𝑟(𝑒𝑖))|𝑒𝑖  ∈  𝐿 ∧ 𝑓𝑟(𝑒𝑖)  ∈  𝐹 𝑟} is the element-frequency representation of 

the dataset. The rank of 𝑒1 is 𝑘 = 1, the rank of 𝑒2 is 𝑘 = 2 if 𝑓𝑟(𝑒1)  >  𝑓𝑟(𝑒2), otherwise, both  𝑒1 and 𝑒2 will have rank 𝑘 =
 1. The rank of  𝑒3 is the rank of 𝑒2 + 1 if 𝑓𝑟(𝑒2)  >  𝑓𝑟(𝑒3), otherwise, the rank of 𝑒3 will be the same as the rank of 𝑒2, and so 
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on, up to the rank of 𝑒𝑁, with 𝑘 ≤  𝑁. That is, if two or more elements have the same frequency, then they correspond to the same 

rank. Therefore, let 𝐾 = {𝑘1, 𝑘2,· · · , 𝑘𝑛} be the set of 𝑛 ranks of the dataset. 

 

4.2 Reducing the Matthew effect 
 

Analogous to the automatic indexing of terms using Zipf's law and TP, in this work, we propose the use of 𝑃𝑀𝑎𝑡𝑡  as the transition 

point that divides 𝐿 into two sets of items, those with popularity biases and those without such bias. The hypothesis is that if 𝑃𝑀𝑎𝑡𝑡  

it can be identified with sufficient precision, it is possible to generate a mechanism to penalize popularity biases in the training 

stage of the SVD model. However, in this context, using equation 5 to determine the TP is not always possible because the datasets 

do not always follow the Pareto proportion. But, in Zipfian datasets like MovieLens Small, equation 5 can be used to determine 

the Goffman TP. For which it is only required to identify in the frequency list 𝐹𝑟 the number of elements that have a frequency 

of one (𝐼1), and apply the formula. Another way to calculate the TP is to identify the lowest frequency that does not repeat; either 

way, in both methods you just must go through the list, so the order of complexity is 𝛩(𝑁) (Pinto et al., 2006). 

 

For our research we propose the identification of 𝑃𝑀𝑎𝑡𝑡 as follows: 

 

− Determine a 𝑄 point as the last frequency that does not repeat until before 20% of the ratings of the elements in 𝐷. 

− Determine a point 𝑃 as the median frequency of the distribution of the elements in 𝐷. 

− Determine 𝑃𝑀𝑎𝑡𝑡  as the midpoint frequency between the positions of 𝑄 and 𝑃, as in the equation 15. 

 

𝑃𝑀𝑎𝑡𝑡  =  𝑓𝑟𝑒𝑐 (
𝑝𝑜𝑠(𝑃)  −  𝑝𝑜𝑠(𝑄)

2
) (15) 

 

Once determined 𝑄, 𝑃, and 𝑃𝑀𝑎𝑡𝑡, we define the window of elements of the equation 16, whose ratings will be used to calculate a 

local average that we call µ𝑄𝑃. 

 

𝑉𝑄𝑃 =  {(𝑒𝑖 , 𝑓𝑟(𝑒𝑖))|(𝑒𝑖 , 𝑓𝑟(𝑒𝑖))  ∈  𝐷 ∧  𝑒𝑖 ∈  𝐿 ∧  𝑄 ≥  𝑓𝑟(𝑒𝑖)  ≥  𝑃} 
(16) 

Just as in automatic document indexing, where window terms are considered the most representative, in the movie domain, we 

believe that items found in the window are the least affected by popularity bias and lack of coverage, and therefore should be the 

most stable, whose average of their ratings (µ𝑄𝑃) should better represent the equilibrium point of the distribution of grades, than 

the global average (µ), when the variance is large. 

 

In this sense we use the Zipf distribution to determine the popularity biases and with them penalize the elements that are in the 

range [1 ∶  𝜂], where 𝜂 ∈  𝐿 represents the position in 𝐿 of the first element whose frequency is equal to 𝑃𝑀𝑎𝑡𝑡. To determine the 

popularity bias of each rank, you need to know the value of the power 𝛼 of the Zipf distribution. As in Wei et al. (2021) it is 

calculated 𝛼 with a small adjustment as in equation 17. The detailed statistical theory of the formula can be found in (Barabási, 

2013). 

𝛼 =  1 + 𝑛𝑘  (∑ 𝑙𝑛
𝑥𝑖

𝑥𝑚𝑎𝑥

𝑛

𝑖 = 1

)

−1

 
(17) 

 

Where 𝑛 is the total number of elements, 𝑛𝑘  is the number of ranks of the elements, 𝑥𝑖  the popularity rank of the 𝑖-th element, 

𝑥𝑚𝑎𝑥  is the longest rank of the elements. Thus, the Zipf probability distribution is presented in equation 18. 

 

𝑓(𝑘;  𝛼, 𝜂)  =  
1/𝑘𝛼

∑ (1/𝑖𝛼)
𝜂
𝑖=1

 (18) 

 

In our case 𝑘 is any rank from 1 up to the range where 𝑃𝑀𝑎𝑡𝑡 is located. 

 

Using equation 18, we find the popularity bias vector of each element relative to the corresponding rank 𝑘𝑒𝑖
. For example, to 

determine the popularity bias of the item 𝑒𝑖, we have: 𝑀𝑒𝑖 =  𝑓(𝑘𝑒𝑖
 ;  𝛼, 𝜂). Where 𝑀𝑒𝑖 is the popularity bias of the item 𝑒𝑖, 

𝑘𝑒𝑖
 refers to the rank of the element 𝑒𝑖, and 𝑒𝑖  ∈  [1 ∶  𝜂], so: 𝑉𝑀 =  [𝑀𝑒1, 𝑀𝑒2, . . . , 𝑀𝑒𝜂] is the popularity bias vector. 



Cupertino Lucero Álvarez et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(4) 2025, 233-249. 

239 

 

Finally, we need a penalty constant 𝛽 to adjust popularity biases based on the data structure of the dataset used. Therefore, 𝑉𝑀 

remains as in equation 19. 

 

𝑉𝑀 =  [𝑀𝑒1, 𝑀𝑒2, . . . , 𝑀𝑒𝜂]  ×  𝛽 
(19) 

Therefore, the popularity bias of item 𝑒𝑖 is calculated as: 𝑀𝑒𝑖 ×  𝛽, for simplicity we denote it as 𝛹𝑒𝑖. 

 

4.3 Proposed variants of the Bias-SVD model 

 
In this section we present three variants that we propose in the Bias-SVD model. 

 

4.3.1 VZipfMatt_penalized(µ−) 

 

In this variant, the Matthew effect is penalized with respect to the global average µ. The idea is that by penalizing popularity 

biases, more equitable recommendations are generated, considering the user-element interactions of each profile, for which: To 

predict the rating that user 𝑢 would give the element 𝑖 is calculated 𝑟̂𝑢,𝑖 =  µ −  𝛹𝑒𝑖 +  𝑏𝑖  +  𝑏𝑢  +  𝑞𝑖
 𝑡 · 𝑝𝑢, so the loss function 

is minimized as in equation 20. 

min 
𝑞∗, 𝑝∗, 𝑏∗, 𝛹𝑒∗ ∑ (

(𝑟𝑢,𝑖  −  µ + 𝛹𝑒𝑖  −  𝑏𝑖  −  𝑏𝑢  −  𝑞𝑖
𝑡 ·  𝑝𝑢)

2

+𝜆(∥ 𝑞𝑖 ∥2 + ∥ 𝑝𝑢 ∥2 + 𝑏𝑢
2 + 𝑏𝑖

2 + 𝛹𝑒𝑖
2)

) 

(𝑢,𝑖)∈𝐾

 
(20) 

The calculation of 𝑏𝑢 , 𝑏𝑖 , 𝑝𝑢 and 𝑞𝑖  are made by 11, 12, 13 and 14, respectively. To calculate 𝛹𝑒𝑖  with respect to the gradient, 

we proceed as in equation 21. 

 

𝛹𝑒𝑖  ←  𝛹𝑒𝑖  −  𝛾 · (𝑒𝑢,𝑖  +  𝜆𝛹𝑒𝑖) 
(21) 

4.3.2 VZipfMatt_penalized(µ𝑄𝑃−) 

 

This variant seeks to penalize the Matthew effect with respect to the local average µ𝑄𝑃 . This variant is like the previous one, except 

that now the calculations of the deviations and the penalty are made based on µ𝑄𝑃 . To predict the rating that user 𝑢 would give 

the element 𝑖 is calculated by 𝑟̂𝑢,𝑖 =  µ𝑄𝑃  −  𝛹𝑒𝑖  +  𝑏𝑖  +  𝑏𝑢  +  𝑞𝑖
𝑡  ·  𝑝𝑢, so the loss function is minimized as in the equation 22. 

min 
𝑞∗, 𝑝∗, 𝑏∗, 𝛹𝑒∗ ∑ (

(𝑟𝑢,𝑖  −   µ𝑄𝑃  +  𝛹𝑒𝑖  −  𝑏𝑖  −  𝑏𝑢  −  𝑞𝑖
𝑡 ·  𝑝𝑢)

2

+𝜆(∥ 𝑞𝑖 ∥2 + ∥ 𝑝𝑢 ∥2 + 𝑏𝑢
2 + 𝑏𝑖

2 + 𝛹𝑒𝑖
2)

) 

(𝑢,𝑖)∈𝐾

 
(22) 

The calculation of 𝑏𝑢 , 𝑏𝑖 , 𝑝𝑢 and 𝑞𝑖 are made by 11, 12, 13, and 14, respectively. To calculate 𝛹𝑒𝑖 with respect to the gradient, 

we proceed as in the equation 21. 

 

4.3.3 VZipfMatt_increased (µ𝑄𝑃+) 

 

In this variant, the deviations of the user-item interaction ratings are calculated based on 𝜇𝑄𝑃, and the popularity biases are added 

to the predictions for contrast purposes with respect to the variants that penalize said biases. To predict the rating that user 𝑢 would 

give the element 𝑖 is calculated by 𝑟̂𝑢,𝑖  =  µ𝑄𝑃  +  𝛹𝑒𝑖  +  𝑏𝑖  +  𝑏𝑢  +  𝑞𝑖
𝑡  ·  𝑝𝑢, so the loss function is minimized as in equation 

23. 

min 
𝑞∗, 𝑝∗, 𝑏∗, 𝛹𝑒∗ ∑ (

(𝑟𝑢,𝑖  −   µ𝑄𝑃 − 𝛹𝑒𝑖  −  𝑏𝑖  −  𝑏𝑢  −  𝑞𝑖
𝑡 ·  𝑝𝑢)

2

+𝜆(∥ 𝑞𝑖 ∥2 + ∥ 𝑝𝑢 ∥2 + 𝑏𝑢
2 + 𝑏𝑖

2 + 𝛹𝑒𝑖
2)

) 

(𝑢,𝑖)∈𝐾

 
(23) 

The calculation of 𝑏𝑢 , 𝑏𝑖 , 𝑝𝑢 , 𝑝𝑖 , and 𝛹𝑒𝑖 are made by 11, 12, 13, 14, and 24 respectively. 

 

𝛹𝑒𝑖  ←  𝛹𝑒𝑖 +  𝛾 · (𝑒𝑢,𝑖 −  𝜆𝛹𝑒𝑖) 
(24) 

SGD is a popular approach because it is easy to implement and has a relatively fast execution time during training (Koren et al., 

2009). 
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5 Experimental Work 
 

Table 1 shows the terminology used in the experimentation, and its description. 

Table 1. Terminology 

Notation Description 

[𝑄 ∶ 𝑃] Window of elements little affected by popularity bias and lack of coverage 

𝑇𝑜𝑝 − 𝑘 List of the 𝑘 recommended items for the active user 

𝑃𝑀𝑎𝑡𝑡  Transition point where popularity biases begin 

𝑁𝑘  Set of predicted items, based on 𝑇𝑜𝑝 − 𝑘, of all users of the test data 

𝑅𝑘 Set of relevant items, based on 𝑇𝑜𝑝 − 𝑘, from all users of the test data 

𝑁𝐹  Set of predicted items, and that were relevant outside the 𝑇𝑜𝑝 − 𝑘 of the test data 

|𝑁𝐹|(%) 
Percentage of the number of predicted items that were relevant outside the  
𝑇𝑜𝑝 − 𝑘 of the test data 

𝑁𝐸  Set of predicted items, based on 𝑇𝑜𝑝 − 𝑘, that were not relevant in the test data 

|𝑁𝐸|(%) System error percentage 

𝑁𝐷 Set of different elements predicted by the system 

|𝐾| Number of ranks 

 

For the experimental work, the basic models Normalized-SVD and Bias-SVD were implemented, and three variants of the second. 

Table 2 shows the models and variants, specifies their identification keys in the text, and provides a brief description. In all 

variants, the popularity biases of the elements at the head of the data distribution are included. The implementation was done in 

Python using libraries such as NumPy, and Tensor Flow from Google. 

Table 2. Models and variants studied 

Model/Variant ID Description 

Regularized-SVD M1 Basic, regularized SVD model 

Bias-SVD M2 

Classic SVD model, with biases relative to user-

item interaction with respect to the global 

average 𝜇 

VZipfMatt_penalized(𝜇−) M2V1 
Variant of M2: that penalizes popularity biases in 

predictions 

VZipfMatt_penalized(𝜇
𝑄𝑃

−) M2V2 
Variant of M2: which exchanges 𝜇 for 𝜇

𝑄𝑃
 and 

penalizes popularity biases in predictions 

VZipfMatt_increased(𝜇
𝑄𝑃

+) M2V3 
Variant of M2: which exchanges 𝜇 for 𝜇

𝑄𝑃
 and 

increases popularity biases in predictions 

 

For experimentation, 60% of the data was taken for training and 40% for testing, and elements with frequency one and two were 

not considered. The error of the loss function was calculated using the MSE metric, and the minimization was performed using 

the Adam optimizer. In the experimentation, the models/variants are compared based on Root Mean Square Error (RMSE) and 

the fairness percentage. For each user, a list of recommendations was generated based on the 𝑇𝑜𝑝 − 20 of the test data with 

prediction 𝑟̂𝑢,𝑖  >=  4. The penalty constant was set to 𝛽 =  1 for experiment A and 𝛽 =  3 for experiment B. 80 Latent Factors 

(LF) were used, the regularization constant was 𝜆 =  0.05, the degree of learning was set at: 𝛾 =  0.02. 

 

5.1 Data used 
 

For the experimental work, two MovieLens datasets were used, which contain ratings obtained explicitly in the user-item 

interaction in the domain of movies (Harper and Constan, 2016). In the area of RS research, they are often used as benchmarks to 

evaluate and compare the performance of algorithms. As can be seen in Table 3, the dataset Small contains 100,836 ratings 

submitted by 610 users for 9,724 movies they had seen. Each rating is a value between 1 and 5 in increments of 1, as the rating 

system is five stars. The MovieLens 100K dataset contains 100,000 ratings of 1,682 movies, submitted by 943 users. Each rating 

is a value between 1 and 5 with increments of 0.5. Both datasets are structured so that each row represents an individual rating, 

which facilitates analysis. In Table 3, the “Density” column refers to the percentage density of the ratings matrix for each dataset. 
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The “Ratings ∝ Movies” column represents the ratings proportion of the 20% most frequently viewed movies. In this sense, the 

78%-20% ratio in the small dataset is closer to the Pareto ratio than the 64%-20% ratio in the 100K dataset. The column “|K|” 

refers to the number of ranks found through the methodology described in section 4. Columns “Q” and “P” indicate the 

frequencies, in descending order, where the frequency windows containing each 𝑃𝑀𝑎𝑡𝑡 transition point corresponding to each 

dataset start and end, respectively. 

Table 3. Datasets used in the experiments 

MovieLens Users Movies Ratings Density Ratings ∝ Movies |K| Q P 𝑃𝑀𝑎𝑡𝑡 

 Small 610 9,724 100,836 1.7% 78% - 20% 175 98 8 19 

 100K 943 1,682 100,000 6.3% 64% - 20% 270 118 37 64 

 

Fig. 1 and Fig. 2 show the long-tail curves of the datasets. The points 𝑄 and 𝑃 delimit the window where the local average of the 

ratings is calculated 𝜇𝑄𝑃, while 𝑃𝑀𝑎𝑡𝑡  illustrates the Matthew effect penalty limit. 

 
Fig. 1. Long tail curves for the dataset: MovieLens Small. 

 

5.2 Evaluation 
 

To evaluate the efficiency of the predictions, the classic RMSE metric of equation 25 was used, which, in general terms, calculates 

the average deviation between the prediction 𝑃𝑖  and the real value 𝑉𝑖, where 𝑁 is the number of user-item interactions in RS. 

𝑅𝑀𝑆𝐸 =  √
1

N
 ∑(𝑃𝑖  −  𝑉𝑖) 2

N

𝑖=1

  

(25) 

5.2.1 Fairness and Error 
 

To make a recommendation list fairer, RS should recommend relevant items other than the most popular ones. In this work, we 

calculate fairness by considering relevant recommendations that are outside the 𝑇𝑜𝑝 − 𝑘 of the test data, this is because the test 

data is biased with respect to the popularity of the items. So, we calculate fairness as the percentage of the fraction of 𝑁𝐹  with 

respect to 𝑁𝑘, as shown in equation 26. 
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Fig. 2. Long tail curves for the dataset: MovieLens 100K.  

 

 

𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 =  (
|𝑁𝐹| 

|𝑁𝑘|
  ) ×  100 (26) 

 

We also measure how much the probability distribution of the test data differs from the probability distribution of the 

recommendations of each model using KL-Divergence, as shown in equation 27. 

𝐷𝐾𝐿 = 𝐷𝐾𝐿(P || Q) =  ∑ 𝑃(𝑥)𝑙𝑜𝑔

𝑥

(
P(x) 

Q(x)
) 

(27) 

Where 𝑃 and 𝑄 are the true and approximate probability distributions, respectively. Both distributions are with respect to the same 

discrete variable 𝑥. 

 

A large value of 𝐷𝐾𝐿  would indicate that the distributions differ significantly, and therefore there would be greater diversity and 

fairness in the model's recommendations compared to the test data, given that the latter have popularity biases. 

 

On the other hand, the system error refers to the fraction of 𝑁𝐸  with respect to 𝑁𝑘, as shown in equation 28. 

 

𝐸𝑟𝑟𝑜𝑟 =  (
|𝑁𝐸| 

|𝑁𝑘|
  ) ×  100 (28) 

 

5.3 Experiment A: Reducing the Matthew Effect in Recommendations 
 

To prove that it is possible to reduce the Matthew effect in the recommendations generated by models based on the Vanilla-

Matrix-Factorization framework, incorporating popularity biases, the models M1 and M2 were implemented, and three variants 

of the second in which said biases are incorporated. The M1 model was implemented for contrast purposes. 

 

The results are presented in Table 4: the RMSE was obtained in the training epoch before deregulation; the best results are shown 

in bold. The |𝑁𝐷|column refers to the number of different items recommended by each model. This measure gives us an idea of 

the diversity in the recommendation lists. 
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Table 4. Results of experiment A with β = 1: RMSE 

Model/Variant MovieLens Small                         MovieLens 100k 

 |𝑁𝐷| RMSE epoch |𝑁𝐷| RMSE epoch 

M1 754 1.0398748 7,568 559 1.0877778 8,876 

M2 1,164 0.8274392 11,197 491 0.9407438 11,127 

M2V1 1,200 0.8276111 10,756 498 0.9460612 10,431 

M2V2 1,246 0.8277342 10,983 575 0.9476216 11,042 

M2V3 1,179 0.8396349 12,425 565 0.9960378 12,409 

 

Tables 5 and 6 present the results for the fairness and error of the recommendation lists. The best results are shown in bold. The 

|𝑁𝑘| column refers to the total number of recommendations generated by each model. The |𝑁𝐹| column shows the number of 

relevant items that were left out of the top 20. The |𝑁𝐸| column shows the number of items that were recommended but were not 

relevant. The mean 𝑥̅ refers to the average frequency with which items were recommended. The variance 𝜎2 is included to provide 

an indicator of the variability in recommendation frequencies. The smaller the variance, the lower the popularity bias of the model's 

recommendations, and the greater the fairness of the recommendation lists. Both fairness and error were calculated as in equations 

26 and 27, respectively. Column 𝐷𝐾𝐿  shows the measure of information loss when the probability distribution of each model's 

recommendations is used to approximate the probability distribution of the test data's recommendations. 

Table 5. Results of experiment A for MovieLens Small and β = 1: Fairness and Error 

Model/Variant |𝑁𝑘| 𝑥̅ 𝜎2 |𝑁𝐹| Fairness % |𝑁𝐸| Error % 𝐷𝐾𝐿  

M1 4,682 6.2177957 79.1238793 1,256 26.826 990 21.1448 1.28 

M2 5,937 5.1049014 119.485126 1,267 21.340 997 16.7929 2.15 

M2V1 5,577 4.6513762 72.7375106 1,342 24.063 911 16.3349 2.29 

M2V2 5,850 4.6987954 72.6072677 1,404 24.0 972 16.615 1.84 

M2V3 6,582 5.5874363 164.374782 1,302 19.781 1,232 18.7177 2.22 

 

Table 6. Results of experiment A for MovieLens 100K and β = 1: Fairness and Error 

Model/Variant |𝑁𝑘| 𝑥̅ 𝜎2 |𝑁𝐹| Fairness % |𝑁𝐸| Error % 𝐷𝐾𝐿  

M1 7,563 13.553763 315.247109 1,704 22.5307 1,555 20.5606 0.60 

M2 7,672 15.657142 691.600816 1,419 18.4958 1,169 15.2372 1.82 

M2V1 6,470 13.018108 418.118384 1,445 22.3338 926 14.3122 2.23 

M2V2 8,000 13.937282 446.818366 1,688 21.1 1,308 16.35 1.11 

M2V3 10,859 19.253546 1,105.34528 1,554 14.3107 2,246 20.6833 1.85 

 

Finally, Table 7 presents the distribution of the |𝑁𝑘| recommendations and their respective percentages with respect to each class. 

Each class, except for class F, contains 10% of the items in the list sorted in descending order of frequencies. The best results 

regarding the reduction of the Matthew effect are shown in bold. These results can be observed visually in Fig. 3 and Fig. 4, whose 

bar graphs show the popularity biases of the elements with respect to the closeness of the frequency distribution in relation to the 

Pareto proportion. The dotted lines show the Matthew effect of the recommendations generated with respect to the elements of 

each class. 

 

5.4 Experiment B: Reducing the Matthew Effect with 𝜷 =  𝟑 
 

In this experiment, the Matthew effect is penalized with 𝛽 =  3, to contrast the results against the experiment that uses 𝛽 =  1, it 

is expected that by making a stronger penalty, the fairness of the recommendations will improve. The results, with respect to 

RMSE, are shown in Table 8; the best results are highlighted in bold. The ND column shows the number of different 

recommendations for each model or variant. To contrast the results of M2 and M2V2 with similar RMSE, model M2 was run with 

controlled error (w.c.e). 

 

Tables 9 and 10 show the fairness of each model, obtained with respect to 𝑁𝑘  and 𝑁𝐹. The system error based on the generated 

recommendation lists is also shown, i.e., the proportion of recommendations that were not relevant to the test data. The distribution 

of recommendations by class can be observed in Table 7, while the corresponding bar graphs are shown in Fig. 5 and Fig. 6. 
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Table 7. Results of experiments A and B: Matthew effect 

 

Table 8. Results of experiment B with β = 3: RMSE 

Model/Variant MovieLens Small MovieLens 100k 

 |𝑁𝐷| RMSE epoch  |𝑁𝐷| RMSE epoch 

M2 1,163 0.8292837 11,204  487 0.9355556 11,677 

M2V1 1,230 0.8507493 10,345  496 0.9961429 10,088 

M2V2 1,289 0.8487337 10,462  564 0.9831947 10,346 

M2: w.c.e 1,127 0.8487385 9,648  504 0.9831259 9,543 

 

Table 9. Results of experiment B for MovieLens Small and β = 3: Fairness and Error 

Model/Variant |𝑁𝑘| 𝑥̅ 𝜎2 |𝑁𝐹| Fairness %  |𝑁𝐸| Error % 𝐷𝐾𝐿  

M2 6,025 5.1850258 125.772133 1,320 21.9087 1,041 17.278 2.25 

M2V1 5,117 4.1635475 40.9162953 1,426 27.8678 858 16.7676 2.99 

M2V2 5,392 4.1863351 41.5972667 1,489 27.6149 929 17.229 3.24 

M2: w.c.e. 6,346 5.6358792 131.563686 1,349 21.2574 1,210 19.0671 2.02 

 

Table 10. Results of experiment B for MovieLens 100K and β = 3: Fairness and Error 

Model/Variant |𝑁𝑘| 𝑥̅ 𝜎2 |𝑁𝐹| Fairness % |𝑁𝐸| Error % 𝐷𝐾𝐿  

M2 7,645 15.730452 668.410883 1,421 18.587 1,225 16.0235 1.87 

M2V1 5,381 10.870707 237.595401 1,480 27.504 807 14.997 2.52 

M2V2 6,469 11.490231 260.228590 1,772 27.392 1,027 15.875 2.60 

M2: w.c.e. 8,868 17.630219 683.298649 1,573 17.7379 1,764 19.8917 1.27 

 

Exp Model/Variant MovieLens Small MovieLens 100k 

  A B C D E F A B C D E F 

 M1 4,451 193 27 11 0 0 5,288 1,532 488 172 67 16 

 % → 95.07 4.12 0.58 0.23 0 0 69.92 20.26 6.45 2.27 0.89 0.21 

 M2 4,825 556 281 158 103 14 5,285 1,407 506 276 105 93 

A: % → 81.27 9.36 4.73 2.66 1.73 0.24 68.89 18.34 6.59 3.60 1.37 1.21 

𝛽 =  1 M2V1 4,378 598 306 169 111 15 4,077 1,338 486 327 130 112 

 % → 78.50 10.72 5.49 3.03 1.99 0.27 63.01 20.68 7.51 5.05 2.01 1.73 

 M2V2 4,587 630 320 177 120 16 4,754 1,738 464 464 188 163 

 % → 78.41 10.77 5.47 3.03 2.05 0.27 59.43 21.73 5.80 5.80 2.35 2.04 

 M2V3 5,514 533 267 151 102 15 8,015 1,783 260 260 106 111 

 % → 83.77 8.09 4.06 2.29 1.55 0.23 73.81 16.42 2.39 2.39 0.98 1.02 

 M2 4,947 533 264 158 112 11 5,249 1,409 509 271 117 90 

 % → 82.11 8.85 4.38 2.62 1.86 0.18 68.65 18.43 6.66 3.54 1.53 1.18 

 M2V1 3,884 618 309 174 121 11 3,050 1,223 440 364 171 133 

B: % → 75.90 12.08 6.04 3.40 2.36 0.21 56.68 22.73 8.18 6.76 3.18 2.47 

𝛽 =  3 M2V2 4,063 669 334 183 131 12 3,314 1,550 615 540 254 196 

 % → 75.35 12.41 6.19 3.39 2.43 0.22 51.23 23.96 9.51 8.35 3.93 3.03 

 M2: w.c.e. 5,418 469 232 132 85 10 6,480 1,564 447 211 90 76 

 % → 85.38 7.39 3.66 2.08 1.34 0.16 73.07 17.64 5.04 2.38 1.01 0.86 
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Fig. 3. Experiment A, with MovieLens Small: Matthew effect on recommendations. Bars A and B illustrate the closeness of the 

distribution to the Pareto proportion; 20% of the elements have 78% of the ratings. The lines show the ratio of recommendations 

generated for each group. 

 

 

 

Fig. 4. Experiment A, with MovieLens 100K: Matthew effect on recommendations. Bars A and B illustrate the closeness of the 

distribution to the Pareto proportion; 20% of the elements have 64% of the ratings. The lines show the ratio of recommendations 

generated for each group. 
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Fig. 5. Experiment B, with MovieLens Small: Matthew effect on recommendations. Bars A and B illustrate the closeness of the 

distribution to the Pareto proportion; 20% of the elements have 78% of the ratings. The lines show the ratio of recommendations 

generated for each group. 

 

 

 
 

Fig. 6. Experiment B, with MovieLens 100K: Matthew effect on recommendations. Bars A and B illustrate the closeness of the 

distribution to the Pareto proportion; 20% of the elements have 64% of the ratings. The lines show the ratio of recommendations 

generated for each group. 
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6 Analysis of results 
 

With experiments A and B, we have studied the base models Regularized-SVD and Bias-SVD with respect to the variants M2V1, 

M2V2, and M2V3, with penalty degree 𝛽 =  1 and 𝛽 =  3. 

 

Table 4 shows the results of experiment A. As can be seen, M2 gave the best performance and M1 the worst with respect to 

RMSE. This was expected, since M2 is an evolution of M1. In the same sense, the M2V1 and M2V2 variants had a similar and 

competitive RMSE with respect to their base model, M2. The M2V3 variant performed the worst of the three variants, with RMSE 

= 0.9960378, very close to that of M1 on the MovieLens 100K data. An error of 1 would mean that a rating of 4 in the test data 

can be predicted with a value of 5 (relevant) or 3 (not relevant) if the relevance was set to a value greater than or equal to 4. On 

the other hand, the M2V3 variant was the one that achieved the most recommendations compared to the other variants, but at the 

same time, it was the one that generated the fewest different recommendations. This indicates a reduction in diversity; furthermore, 

both 𝑥̅ and 𝜎2 were the highest with respect to M2 and its variants, which means that M2V3 carries the popularity biases and, 

therefore, tends to recommend popular elements. The M2V1 and M2V2 variants have subtle differences that can be seen in both 

datasets: While M2V1 appears to compete better with M2 with respect to RMSE, M2V2 seems to be better suited to generating 

fairer and more diverse recommendations. In experiment B, with 𝛽 =  3, the same behavior can be observed, as in experiment A, 

between M2, M2V1, and M2V2, with respect to RMSE. It can be observed that as the popularity bias penalty increases, RMSE 

also increases, and for the MovieLens 100K data, the variants are no longer competitive with respect to the base model. 

 

Regarding the Matthew effect, in the results of experiment A in Table 7, it can be observed that M1 and M2V3 are the ones that 

generated the highest percentages of predictions of class A, which is shown graphically in Fig. 3 and Fig. 4. In that sense, M2V1 

and M2V2 show better performance than their base model, M2, but M2V2 subtly outperforms M2V1. This reduction of the 

Matthew effect in the variants with respect to the base model can be observed more clearly in the results of experiment B, when 

𝛽 =  3, see Table 7 and Fig. 5 and Fig. 6. As with 𝛽 =  1, with 𝛽 =  3 the M2V2 variant generates recommendations that are 

better distributed across all classes, and M2: w.c.e had the worst performance. Which proves that the decrease in the Matthew 

effect of M2V2 recommendations is not due to the RMSE value but to the penalization of popularity biases and the use of 𝜇𝑄𝑃 as 

the equilibrium point of the system in generating the predictions. 

 

Regarding the fairness of the predictions, in the results of Tables 5 and 6 of experiment A, it can be observed that the variants that 

penalize the Matthew effect, that is, M2V1 and M2V2, achieved a higher percentage of fairness and a lower error than M2. This 

result is more conclusive in experiment B; see Tables 9 and 10. Although the performance of these variants is similar, M2V1 

achieved subtly higher fairness and lower error than M2V2. M2:w.c.e generated less fair and more erroneous predictions in all  

cases. Recall that M2 stopped when its RMSE was comparable to that of M2V2; this is done to observe its behavior with respect 

to this variant. However, the results show that M2V2 predicts more fairly and with less error than M2:w.c.e. So, the improvement 

in M2V2 fairness does not depend on RMSE but on the Matthew effect penalty and the use of 𝜇𝑄𝑃 in the model training stage. 

 

Regarding 𝐷𝐾𝐿 , the results in Tables 5 and 6 show that the probability distribution of recommendations for variants M2V1 and 

M2V3 differ more significantly from the distribution of the test data than the probability distribution of M2. This is the case except 

for M2V2, which had a slightly lower result; this is because this variant requires a greater Matthew effect penalty; this can be seen 

in the results in Tables 9 and 10, where M2V1 and M2V2 achieved the best 𝐷𝐾𝐿  results when 𝛽 =  3 on both datasets. The fact 

that the variants differ with respect to 𝐷𝐾𝐿  means that they generate recommendations that are less biased toward popularity, since 

it is known in advance that the test data have this bias. On the other hand, although variant M2V3 has a high 𝐷𝐾𝐿value in 

Experiment A, it also has higher error, higher variance, and lower diversity, which would explain this result. Therefore, the results 

of both experiments with respect to 𝐷𝐾𝐿 confirm that variants M2V1 and M2V2 improve the diversity and fairness of the 

recommendations of their base model M2, but the value of 𝛽 is relevant. This indicates that the proposed methodology for reducing 

popularity biases in the model training stage leads to fairer recommendation lists. 

 

7 Conclusions and future work 
 

In this research, a methodology has been proposed that makes use of the Zipf distribution and the transition point 𝑃𝑀𝑎𝑡𝑡  between 

the elements that have popularity biases and those that do not to reduce the Matthew effect of the recommendations generated by 

the Regularized-SVD and Bias-SD base models. The underlying idea is to calculate the popularity biases of the elements at the 

head of the data distribution, and penalize or add them as appropriate, based on 𝜇 or 𝜇𝑄𝑃, in the training stage. 
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Two groups of experiments were implemented: in experiment A, with 𝛽 =  1, the behavior of the models M1 and M2, and the 

variables M2V1, M2V2 and M2V3 are explored, with respect to RMSE and fairness. In experiment B, these same characteristics 

are observed in M2, M2V1, M2V2, and M2:w.c.e, with penalty constant 𝛽 =  3. It is proven, in a data-driven manner, that 

penalizing popularity biases in the data reduces the Matthew effect and improves the fairness of predictions generated by Bias-

SVD variants. Although the level at which this feature improves depends on the degree of penalty 𝛽. 

 

Another result was that M2V1 and M2V2 have similar behavior, but although subtly, M2V1 is better than M2V2 in RMSE and 

fairness. While M2V2 had better results regarding the reduction of the Matthew effect. 

 

Therefore, we can conclude that the proposed methodology, which uses the Zipf distribution, and 𝑃𝑀𝑎𝑡𝑡 as a transition point 

between popular and unpopular elements, as well as 𝜇𝑄𝑃 as a balance point of some proposed variants, is suitable to reduce the 

Matthew effect and improve the fairness of recommendations. 

 

As future work, we would like to test the usefulness of the methodology in models that use biases based on demographics and 

temporality, as well as continue to investigate strategies that further improve the fairness of recommendations. We would like to 

investigate the possibility of improving the RMSE of the Bias-SVD model by incorporating elements of this methodology that 

incorporates popularity biases. 
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