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Abstract. This paper presents the development of an advanced 

clinical interface built on the LattePanda Sigma, an embedded 

device designed for edge computing. The interface integrates 
OpenAI language models and Whisper for automated speech-to-

text transcription, together with accurate speaker diarisation in 

clinical settings using the pyannote/speaker-diarization-3.1 model. 
A dataset of ten doctor–patient conversations in Spanish—

translated and re-recorded to suit the local context—was used to 

evaluate the models. Automatic transcriptions generated by the 
models were compared with the reference transcripts using the 

ROUGE metric. Average ROUGE scores of 0.9028 for the Small 

model and 0.9260 for the Medium model indicate high 
transcription accuracy. The reference transcripts were also used to 

assess the segments identified by the pyannote model. Finally, the 

paper analyses the system’s usefulness and effectiveness in 

improving Spanish-language clinical records. 
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1 Introduction 
 

Electronic medical records (EMRs) have changed how physicians handle patient information, making organizing notes and 

collecting data easier. However, while they offer clear advantages, they also pose new challenges. Many physicians feel 

overwhelmed by the paperwork required and spend valuable time entering data instead of caring for their patients. Strict rules 

make data entry slower than it should be, taking away time that could be better used for patient care. As a result, physicians spend 

more time than necessary on administrative tasks, reducing the time available for direct patient care and contributing to burnout 

(Avendano et al., 2022). 

 

The increase in clinical professionals experiencing burnout has been associated with a high administrative burden. To mitigate 

this problem, technologies such as automatic speech recognition (ASR) and natural language processing (NLP) offer the 

opportunity to automate clinical documentation using a "digital scribe" (van Buchem et al., 2021). 

 

This paper presents a prototype system that integrates state-of-the-art language models to improve speaker segmentation and 

speech-to-text conversion within clinical consultations. The resulting tool is embedded in a local hardware device. It offers an 

intuitive interface for real-time transcription and labeling of medical dialogues, assisting physicians in reducing documentation 

time and improving continuity of care. 

 

The main contributions of this work are as follows. First, we built a Spanish-language dataset for clinical conversations based on 

the original English dataset of 272 dialogues by (Fareez et al., 2022). To achieve this, we employed two complementary strategies. 

On one hand, the whole dataset was automatically translated using the facebook/nllb-200-distilled-600M model and subsequently 

converted to speech with Azure’s neural Spanish voices (es-MX-JorgeNeural and es-MX-DaliaNeural). On the other hand, a 

subset of ten dialogues was manually recorded by two Spanish-speaking participants simulating doctor-patient consultations, in 

order to incorporate natural prosody and human voice diversity. This hybrid dataset enables robust testing of diarization and 

speech-to-text models in both synthetic and real settings. 
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Second, we performed a systematic evaluation and integration of state-of-the-art speaker diarization and speech recognition 

models (Pyannote and Whisper) within the context of Spanish clinical dialogues. We analyze performance using ROUGE(Recall-

Oriented Understudy for Gisting Evaluation) metrics and manual verification of speaker labels. 

 

Finally, we designed and implemented a working prototype that integrates these models into a virtual assistant intended to support 

real-time clinical documentation in Spanish. This prototype demonstrates the practical feasibility of such technologies for reducing 

administrative burden in healthcare settings. 

 

The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3 presents the theoretical framework. 

Section 4 details the methodology, including consolidation of recording datasets for testing, model evaluation, and system 

development. Section 5 analyzes the obtained results, while Section 6 discusses findings and limitations. Finally, Section 7 

presents the conclusions and future work 

 

2 Related works 
 

The authors in (Avendano et al., 2022) discuss different innovative ways to reduce the burden of data entry into EMRs, including 

Voice Recognition techniques and Digital Scribes (artificial intelligence). This gives us a perspective on integrating technologies 

such as NLP and Artificial Intelligence in a clinical environment, specifically for data ingestion into EMRs. 

 

In recent years, interest in digital scribes and conversational assistants in healthcare has grown. Van Buchem et al. (2021) reviewed 

various systems and found that generic ASR systems exhibit Word Error Rates (WER) up to 65%, while models trained on clinical 

dialogues reduce WER to around 18%. However, their evaluations rely on English metrics and rarely address real-world usability. 

Tran et al. (2022) compared generic and specialized ASR for English doctor–patient conversations, reporting WER between 8.8% 

and 10.5% and word diarization error rates (WDER) from 1.8% to 13.9%. Although these results suggest clinical models can be 

helpful under ideal conditions, errors persist. In contrast, our work applies pre-trained Whisper (ASR) and Pyannote (speaker 

diarization) directly to real Spanish consultations, incorporates synthetic data, and validates outcomes using ROUGE metrics and 

human annotations, while deploying a functional prototype. 

 

Sezgin et al. (2023) developed an emergency digital scribe that uses LLMs (T5, BART, PEGASUS) to summarize doctor–client 

transcripts in English, achieving ROUGE-1 ≈ 0.49 with fine-tuned BART. In contrast, our study focuses on transcription and 

speaker diarization in Spanish clinical consultations, using pre-trained models in this language and evaluating with ROUGE 

metrics. 

 

Fernández Rodríguez (2022) created a Spanish digital scribe using Google Speech-to-Text to transcribe simulated consultation 

audio, achieving a WER of 9–10% and strong F1 scores in entity extraction. However, their prototype relies on synthetic data and 

a cloud-based commercial ASR service. In contrast, we employ Whisper and Pyannote—models that can run locally—to process 

real Spanish clinical consultation recordings, overcoming language barriers and reliance on external services. 

 

Seth et al. 2024 define “ambient scribes” as systems that “listen” to consultations to automatically generate clinical documentation, 

combining ASR and NLP to produce notes or summaries. While many studies—more conceptual or focused on reducing 

administrative burden—point out deficiencies in diarization and contextual understanding, our work presents a practical solution 

in Spanish, evaluating both transcription accuracy and the quality of speaker segmentation. 

 

In general, AI-assisted transcription in medicine (e.g., WER < 11% in English or Spanish) has proven viable, but it is often limited 

to a single language, domain, or metric. Differing from previous approaches, our work evaluates pre-trained models directly in 

Spanish using synthetic and real data, integrates them into a functional prototype, and combines automatic transcription with 

speaker segmentation. We validate results using modern metrics (ROUGE) and human annotations. 

 

3 Theoretical Framework 

 
3.1 Speaker segmentation 
 

Speaker segmentation, also known as speaker diarization, is defined, according to the authors in (Anguera Miro et al., 2012), as 

the task of determining "who spoke and when" in an audio or video recording that contains an indeterminate amount of speech 

and an unknown number of speakers. 
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Speaker diarization was initially introduced as part of ASRresearch, serving as an early step in the process. Over the years, 

however, this technology has evolved and become a key tool for a variety of applications, including navigation, information 

retrieval, and advanced analysis of audio data (Anguera Miro et al., 2012). 

 

Diarization systems mostly employ unsupervised machine learning algorithms to analyze utterances exchanged between speakers 

without knowing in advance the specific labels for each one (Khoma et al., 2023). In this context, Pyannote.audio emerges as a 

Python library for speaker diarization and audio analysis. It is designed to work with audio data in speaker identification and 

segmentation, facilitating tasks such as speaker separation and temporal annotation in recordings (Bredin, 2023). 

 

3.2 Speech to Text Conversion 
 

Speech-to-text conversion is the process of transforming speech into written text. Although often confused with speech 

recognition, the latter term encompasses a more general process of speech understanding (Trivedi et al., 2018). Within this field, 

Whisper, an ASR system developed by OpenAI, was trained on 680,000 hours of multilingual and multitasking data from the 

web. This advanced model not only performs accurate transcriptions in multiple languages but can also translate and handle 

variations in accents and acoustic conditions, thanks to its diverse training. It uses deep neural networks and machine learning 

techniques to effectively process and convert speech to text, useful in applications such as audio transcription, subtitle generation, 

and language translation. Its robustness and versatility make it ideal for facing challenges in real-world situations (Radford et al., 

2023). 

 

3.3 Rouge Metric 
 

ROUGE is a widely used metric for evaluating automatically generated summaries and texts. Among its variants, ROUGE-1 and 

ROUGE-L are particularly popular. These metrics focus on assessing the quality of the generated output by comparing it to a 

reference summary or text.  

 

ROUGE-1 assesses summary quality by comparing the word match between the generated and reference summaries. It is based 

on unigram n-grams (single words) and evaluates three aspects of performance. Precision measures the proportion of n-grams in 

the generated summary that are also present in the reference summary. At the same time, recall indicates the proportion of n-grams 

in the reference summary that appear in the generated summary. Finally, F1-Score, defined as the harmonic mean of precision 

and recall, provides a balanced metric that captures both dimensions simultaneously. 

 

ROUGE-L measures summary quality by considering the length of the most extended sequences of matching words (word 

subsequences). It evaluates the length of the longest word subsequence in the generated and the reference summaries, reflecting 

the text's consistency and fluency. ROUGE-L precision refers to the proportion of matching word subsequences in the generated 

summary compared to the reference. At the same time, recall indicates the proportion of matching subsequences in the reference 

summary that appear in the generated one. Finally, the ROUGE-L F1-score, defined as the harmonic mean of precision and recall, 

provides a balanced measure of performance. 

 

3.4 Hardware Implementation 
 

The Latte Panda Sigma embedded system was used as the primary device for the hardware implementation, and all models 

developed in this work were executed locally. The device includes an Intel Core i5-1340P processor (12 cores, 3.40–4.60 GHz 

turbo mode). It also includes 16 GB of LPDDR5 memory at 6400 MHz and a 500 GB solid-state drive, operating under Windows 

11. In addition to the central system, a touch screen was employed to visualize the transcripts and segment the speakers in the 

doctor–patient dialogues. A microphone was used to capture the recordings, while a keyboard and mouse served as complementary 

input devices. 

 

4 Methodology 
 

The methodology used consists of 6 steps. The first step involves consolidating a test data set that contains doctor-patient 

dialogues. The second step is evaluating the speaker segmentation model using this data set. In the third step, the speech-to-text 

conversion models are evaluated. Subsequently, in the fourth step, an analysis of the speech-to-text conversion and segmentation 

models is performed. Once this analysis is done, the models are implemented in an interface developed and executed on hardware 

as a final tool. Finally, in the sixth step, the results and our final interface are analyzed and evaluated. Figure 1 illustrates the 

proposed methodology. 
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Fig. 1. Methodology. 

 

4.1 Consolidation of recording datasets for testing 
 

The dataset presented in (Fareez et al., 2022) covers a set of medical conversations in Objective Structured Clinical Examinations 

(OSCE) format, focusing on respiratory cases in audio format and the corresponding text documents. These cases were simulated, 

recorded, transcribed, and manually corrected to provide a comprehensive dataset of medical conversations to the academic and 

industrial community. 

 

However, since the dataset is in English and our applications are intended for a Spanish-speaking population, it is necessary to 

translate the data. Therefore, the first stage of the methodology consists of translating the conversations from English to Spanish. 

To do this, we took 10 transcripts of English conversations from (Fareez et al., 2022) and translated them into Spanish using 

Google Translate. Once the translations were completed, we proceeded to the next stage: recording conversations in Spanish. For 

this, two participants acted as doctors and patients, and the recordings were made on a computer using a USB condenser 

microphone. The final dataset is generated with the recordings and the transcripts of the 10 clinical notes. Figure 2 shows the 

sequence of steps for consolidating the set of recordings. 

 

 

Fig. 2. Consolidation of recording datasets for testing. 

 

To adapt the original English dataset by Fareez et al. (2022) to Spanish, we automatically translated all 272 transcripts using the 

facebook/nllb-200-distilled-600M model. Then, we generated synthetic speech using Azure’s neural voices (es-MX-JorgeNeural 

and es-MX-DaliaNeural), simulating realistic doctor-patient conversations. This allowed us to run the full system pipeline (speaker 

diarization with Pyannote and transcription with Whisper) over the entire dataset, enabling large-scale evaluation in Spanish prior 

to real-world testing. 
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4.2 Speaker segmentation 
 

For speaker segmentation, the pyannote.speaker-diarization-3 model was used, implemented in Python using the pyannote.audio 

library. This model processes an audio file in WAV format corresponding to the medical conversation and provides labels for 

each speaker (e.g., speaker 1, speaker 2, etc.) and the start and end times at which each speaker is present in the recording. 

 

4.3 Speech-to-text conversion 
 

The OpenAI Whisper model, implemented in Python using the Hugging Face library, was used in its small and medium versions 

for the speech-to-text conversion process. The process begins with the reception of an audio file in WAV format containing the 

conversation between doctor and patient. The Whisper model analyzes this audio file and generates a written conversation 

transcript. 

 

4.4 Analysis with ROUGE metric and verification of speaker labels 
 

For the ROUGE metric analysis, we used the Python rouge-score library, which generates ROUGE-1 and ROUGE-L metrics, 

including precision, recall, and F1-score. This analysis compares the original transcript to the one generated by the OpenAI 

Whisper models. Speaker 0 and Speaker 1 are first identified for manual verification of speaker labels. Once identified, the labels 

are changed to "doctor" or "patient". If two consecutive lines belong to the same speaker, they are merged into one. Subsequently, 

the labels are manually compared to the original transcript to see if they are correct, and a count of the incorrect labels is made. 

 

4.5 Interface implementation and development 
 

For the development and implementation of the interface, as shown in Figure 3, the recording of the doctor-patient dialogue during 

the medical consultation is schematized using a microphone. This recording is processed locally on the Latte Panda Sigma 

embedded device, where the speaker segmentation and speech-to-text conversion models are executed. These models are 

implemented in the Python programming language. It is also used to develop an intuitive graphical interface with buttons to start 

or stop the recording and perform its processing. At the end, the transcription of the doctor-patient dialogue is obtained. 

 

 
Fig. 3. Schematic of the proposed interface 

 

 

4.6 Prototype testing 

 

The results obtained from the prototype are preliminarily examined, with a detailed discussion presented in Section 5. This stage 

evaluates the feasibility of implementing the proposed tools in real medical practice to streamline clinical documentation during 

patient consultations. 
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5 Analysis of results 
 

A dataset specific to clinical conversations was created, starting from the English transcripts of (Fareez et al., 2022). The process 

included two key stages: first, the original English transcripts were translated into Spanish, and second, new Spanish conversations 

were recorded based on the translated transcripts. The resulting dataset includes 10 Spanish recordings, in WAV format, 

corresponding to interactions between doctors and patients in a medical consultation setting. Each recording is accompanied by 

its Spanish transcript, which is carefully labeled with the identities of “patient” and “doctor” for each dialogue. This dataset 

supports the evaluation and development of NLP applications in Spanish-speaking clinical settings. It includes both audio and 

annotated transcripts, enabling detailed analysis. 

 

In addition, the same 10 dialogues were selected from the complete set of 272 conversations from equivalent synthetic versions. 

These versions are produced by translating the original transcripts into Spanish and converting them into audio using neural voices. 

This resulted in a parallel subset containing both real recordings—produced by humans in a controlled setting—and synthetically 

generated versions from the duplicate textual content. This dual design allows for a direct comparison between human speech and 

synthesized speech, facilitating a more robust evaluation of the performance of the segmentation and transcription models in 

Spanish-language clinical contexts. 

 

Once the dataset preparation was completed, we proceeded to deploy the pyannote.speaker-diarization-3 model for speaker 

identification. This model receives audio files in WAV format corresponding to the medical conversations in our Spanish dataset 

and provides speaker identifications along with each intervention's start and end times. 

 

With this information, we cut the original audio into segments based on the identified time intervals, assigning the corresponding 

labels to each speaker. For example, for an audio file, the results can be: Speaker_00: start 00:01 – end 00:05, and Speaker_01: 

start 00:06 – end 00:10. 

 

Once the segmentation is done, we transcribe each audio segment into text using OpenAI's Whisper model. This model converts 

audio segments into written text, allowing for detailed analysis of medical conversations. Two versions of the Whisper model 

were implemented for this process: small and medium. The choice of these versions is based on the need to evaluate the 

effectiveness of the models based on transcription accuracy and overall performance. The small version is faster and uses fewer 

resources, while the medium version is more accurate but demands more computing power. Comparing them helps decide which 

works best based on audio quality, speech clarity, and medical vocabulary. This dual approach ensures a thorough evaluation of 

the model's capabilities under different conditions and helps to select the most suitable tool for future applications in the clinical 

setting. 

 

The process described was applied to all 10 recordings in our dataset. Figure 4 illustrates a segmented and transcribed recording 

using Pyannote.speaker-diarization-3 model for speaker identification and Whisper Medium for speech-to-text conversion. In 

Figure 4a, the labels assigned to the speakers are Speaker_01 and Speaker_00, which correspond to D: Doctor and P: Patient, 

respectively. Since the speaker identification process is not automated, the correspondence between the labels Speaker_01 and 

Speaker_00 and the roles of Doctor and Patient was performed manually, as observed in Figure 4b. This manual adjustment 

ensures a correct assignment of the labels and an accurate interpretation of the transcripts in the medical context. The visualization 

in the figures allows us to evaluate the accuracy and usefulness of the segmentation and transcription, facilitating the analysis of 

medical conversations. 

 
Fig. 4. Transcription, a) Identification, b) Changing labels. 
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Once the labels have been changed, in Figure 5b, we can see consecutive segments labeled towards the same speaker, for example, 

label D. D: "entiendo que has estado teniendo diarrea" and D: "puedes contarme un poco sobre eso". This difference is because 

during the recording, there may be silences or pauses that the speaker segmentation model identifies as separate segments. 

However, the label "D" is correctly assigned to all interventions by the same speaker. To make our transcriptions of doctor-patient 

dialogues more fluid, we merge the consecutive interventions of the speakers into one. 

 

Figure 5a shows the transcript obtained by joining consecutive interventions of the speakers. This was then manually compared 

with the original transcript of our test data set, which is shown in Figure 7b. For this comparison example, we notice that the labels 

are placed correctly by looking at the transcript obtained with the implemented models in Figure 5a and the original transcript 

from our database in Figure 5b. 

 

 
Fig. 5. Transcription, a) Implemented, b) Original. 

 

Table 1 presents the manual evaluation of speaker labels for each audio file, comparing the performance of the diarization system 

on both real and synthetic recordings of the same conversations. For the real recordings, an average precision of 0.98 was achieved, 

with four conversations (CAR0001, CAR0002, GAS0002, and GAS0003) labeled perfectly (100% accuracy). The highest number 

of incorrect labels occurred in GAS0001, with five mislabeled segments, mainly corresponding to short utterances such as "No." 

In contrast, the synthetic versions showed a lower average precision of 0.84. The most significant discrepancy appeared in 

conversation GAS0001, where the system misclassified 28 out of 77 segments (precision of 0.67). These results suggest that 

although the diarization model performs robustly on real speech, synthetic voices can introduce greater variability in acoustic 

patterns, affecting the accuracy of speaker segmentation. Nonetheless, the overall label placement is essentially correct across 

both types of input. 

Table 1. Manual evaluation of labels 

Conversation 
 Label (Recording) 

Precision 
Label (Synthetic) Precision 

Total Correct Incorrect Correct Incorrect  

CAR0001 122 122 0 1 90 32 0.74 

CAR0002 83 83 0 1 73 10 0.88 

CAR0003 123 122 1 0.99 109 14 0.89 

CAR0004 69 66 3 0.95 61 8 0.88 

CAR0005 69 67 2 0.97 63 6 0.96 

DER0001 86 85 1 0.98 77 9 0.90 

GAS0001 77 72 5 0.94 49 28 0.67 

GAS0002 79 79 0 1 68 11 0.86 

GAS0003 87 87 0 1 70 17 0.80 

GAS0004 81 79 2 0.98 70 11 0.86 

 Average 0.98  Average 0.84 
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To evaluate the quality of the speech-to-text conversion, we used the ROUGE metric to compare the similarity between the original 

text and the generated transcripts. The implementation of this metric was done in Python using the rouge_scorer library. This 

evaluation included comparing the results obtained with the Whisper small and Whisper medium versions. The ROUGE metric 

measures the quality of the transcripts based on the match of n-grams, word sequences, and other linguistic units between the 

generated text and the original text. By analyzing these metrics, we can determine how faithful each version of the model is to the 

information contained in the original audio and choose the version that offers the highest accuracy and consistency in the speech-

to-text conversion. 

 

Table 2 presents the ROUGE metric results for audio transcription using Whisper small and medium models on both real and 

synthetic audio. The values correspond to the average of 10 evaluated transcripts and include precision, recall, and F1-score for 

ROUGE-1 and ROUGE-L. 

 

The Whisper medium model outperforms Whisper small across both metrics for real recordings, achieving the highest scores with 

a ROUGE-1 F1 of 0.9335 and a ROUGE-L F1 of 0.9219. This indicates a better ability to preserve word content and sequence 

accuracy during transcription. In contrast, performance decreases when applied to synthetic audio: although Whisper small 

maintains relatively high ROUGE-1 precision (0.8659), recall drops significantly (0.7344), with an F1-score of 0.7938. Similar 

trends are observed for ROUGE-L. 

 

These results suggest that Whisper medium is better suited for high-quality transcription tasks, especially with real human speech. 

The lower performance on synthetic speech highlights the need for further model adaptation or preprocessing when working with 

generated audio in clinical NLP applications. 

Table 2. ROUGE Metric Results 

  Recording Synthetic 

Model Metric Small Medium Small 

ROUGE-1 Precision 0.9028 0.9260 0.8659 

 Recall 0.9197 0.9413 0.7344 

 F1 Score 0.9111 0.9335 0.7938 

ROUGE-L Precision 0.8846 0.9145 0.7476 

 Recall 0.9012 0.9297 0.6348 

 F1 Score 0.8928 0.9219 0.6858 

 

Figure 6 shows the interface for speaker segmentation and speech-to-text transcription implemented as a final tool. Figure 6a 

shows the main screen of the developed interface, where three classic buttons can be seen: start query, stop query, and new query. 

A text box is also shown at the end of the query, where the dialogue is displayed with the speaker segmentation labels and the 

transcribed text of the dialogue. Figure 6b shows the interface implemented as a final tool in our embedded device, with a 

microphone for audio capture and a touch screen for displaying information and manipulating the interface. In addition, a mouse 

and keyboard were used. 

 

 
Fig. 6. User interface, a) Screenshot interface, b) Hardware interface 
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Figure 7 presents results from five real recordings of simulated clinical interviews conducted with the support of a family 

physician. Each row shows the original duration of the recording (in seconds) and the corresponding processing times for speaker 

segmentation (using Pyannote) and transcription (using two Whisper variants: “small” and “medium”). All components were 

executed locally on our embedded LattePanda interface. As shown, the total processing time increases with audio duration and 

model complexity but remains feasible for real-time or near-real-time deployment in clinical settings. 

 

 
Fig. 7. Processing Time for Local Transcription and Diarization of Clinical Recordings" 

 

6 Discussion 
 

Regarding the dataset used, all 272 conversations from the original English dataset (Fareez et al., 2022) were automatically 

translated into Spanish and synthesized using neural voices to generate a complete audio corpus. Additionally, 10 of these 

conversations were recorded with authentic human voices to enable direct comparison between synthetic and real speech. While 

this synthetic dataset provides a scalable and consistent resource for clinical NLP tasks, including more real voice recordings 

would enhance the evaluation of model performance under natural acoustic and conversational conditions. 

 

As future work, we propose expanding the number of real recordings and conducting more evaluations in actual clinical 

environments. This would strengthen the study’s findings, improve the generalizability of the results, and ensure that the models 

perform robustly in realistic settings. A more diverse and representative dataset—both in terms of speakers and clinical 

scenarios—will offer a solid foundation for future research in speech-to-text transcription and speaker segmentation within 

Spanish-speaking clinical contexts. 

 

The pyannote.speaker-diarization-3 model showed positive results in the speaker segmentation task, labeling them as Speaker_01 

or Speaker_00, respectively, for Doctor and Patient. Although the model performed accurate segmentation, the automatic 

assignment of the labels Speaker_01 and Speaker_00 to the roles of Doctor and Patient still requires manual intervention. 

 

To make progress in this area, it is proposed to develop an automated system that identifies which of these labels corresponds to 

the Doctor and which to the Patient. This automatic identification can be approached in several ways. One option is to detect 

keywords in the conversation that clearly distinguish between the Doctor and the Patient. For example, doctors typically use 

medical terms or specific phrases, while patients are more likely to ask questions or give answers. 

 

Another strategy could be establishing a protocol in which the first speaker in each conversation is always the Doctor or the 

Patient. This approach would help to standardize the assignment of labels and reduce the need for manual intervention. 

The current system consistently identified interlocutors without mixing the roles of Doctor and Patient. However, automating this 

task would be a significant advance, improving efficiency and accuracy in the processing of clinical conversations. 

 

Regarding the accuracy of speech-to-text transcriptions, both the small and medium versions of OpenAI Whisper models provided 

very satisfactory results. The medium version performed exceptionally well, reaching 0.9260 in ROUGE-1 and 0.9145 in ROUGE-

L. These scores show a substantial similarity to the original transcription, demonstrating the model's accuracy in capturing audio 

content. 
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Other audio preprocessing techniques could further enhance transcription quality. This might involve reducing noise and 

interference, which can affect accuracy. Applying noise removal filters, volume normalization, and speech clarity enhancement 

could help assess whether audio quality significantly affects the final transcription. This additional approach could provide more 

complete insight into optimizing model results and improving accuracy in clinical settings. 

 

7 Conclusions 
 

NLP has proven to be a versatile and powerful tool in the clinical setting. Its applications range from optimizing data management 

to improving medical decision-making. As we continue to explore new applications and overcome technical and ethical 

challenges, the potential for NLP to transform healthcare and biomedical research remains promising. 

 

The fusion of these two models can generate accurate transcripts of medical consultations, correctly identifying the speakers. 

Implementing them in an embedded system as a clinic virtual assistant would facilitate monitoring and recording the patient's 

clinical history. 

 

The pyannote.speaker-diarization-3 model excelled in speaker segmentation, accurately identifying the interlocutors in 

consultation recordings, with an average accuracy of 0.98 labelings. Meanwhile, the OpenAI Whisper model effectively converted 

speech to text, offering accurate and consistent transcripts and obtaining a ROUGE metric accuracy score of 0.9260 for the 

Medium model. 

 

Bringing these technologies into clinical settings helps streamline consultation documentation and makes it easier to integrate with 

electronic records. This, in turn, allows for better data extraction and analysis. The results show how artificial intelligence can 

improve the management of clinical information, opening the door to more efficient and accurate tools for healthcare. 
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