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Abstract. Novel feature selection methods are 

emerging to improve the accuracy of machine 

learning classifiers, including the method 
PowerSHAP (PS). This work investigates the 

efficacy of PS in enhancing Advanced Persistent 

Threat (APT) prediction performance across 

Random Forest, Decision Tree, and XGBoost 

classifiers. Experiments were conducted using the 

Dapt2020 and Unraveled network traffic datasets, 

both designed for APTs detection and containing 

diverse simulated attack scenarios. Performance 

evaluation metrics of experiments include accuracy, 

precision, recall, and F1-score. The findings 

contribute valuable insights into the application of PS 

feature selection for improving APT detection in 
complex network environments. 
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1 Introduction 
 

In the digital era, Advanced Persistent Threats have emerged as a significant concern for organizations, 

demanding adaptive and robust cyberdefense mechanisms (Friedberg et al., 2015). Modern cyberattacks are 

characterized by rapid evolution and escalating complexity, necessitating advanced cybersecurity strategies that 

integrate Artificial Intelligence (AI) to safeguard sensitive data and critical infrastructure. APTs are 

sophisticated, long-term attacks designed to infiltrate systems and discreetly exfiltrate confidential information 
(Friedberg et al., 2015). APTs frequently target organizations to access trade secrets, intellectual property, and 

classified data, underscoring their strategic and financial motivations (Rajendran et al., 2024).   

 

The global market dedicated to mitigating Advanced Persistent Threats (APTs), which are characterized by 

their sophisticated and prolonged cyberattacks against organizations, was valued at $5.9 billion in 2021. 

Forecasts indicate a substantial expansion to $30.9 billion by 2030, representing an anticipated annual growth 

rate of 20.5% between 2022 and 2030. This projected surge underscores the escalating sophistication of 

cybercrime and the commensurate need for robust cybersecurity measures. As APTs become increasingly 

intricate and detrimental, organizations worldwide are significantly increasing their investments in defensive 

strategies to safeguard sensitive data, critical infrastructure, and organizational reputation. The predicted market 

value of $30.9 billion highlights the imperative for advanced cybersecurity technologies and strategies capable 

of effectively countering these clandestine and high-impact attacks, see Figure 1. 
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Figure 1. Projected Market Growth for APT Detection Solutions (2021-2030),  

 

 
Network traffic analysis has emerged as a crucial approach for detecting Advanced Persistent Threats (APTs), 

with researchers exploring various methodologies and techniques. Multiple studies have demonstrated the 

effectiveness of machine learning approaches in APT detection. For instance, (Joloudari et al., 2020) found that 

deep learning models achieved superior performance with 98.85% accuracy and a low false positive rate of 

1.13% compared to traditional machine learning methods. Supporting these findings, (Xuan et al., 2021) 

reported similarly high performance using Random Forest algorithms, achieving 97.56% accuracy for APT 

domain detection. The most commonly used machine learning classifiers for this type of problem, when using 

a supervised learning approach, include Decision Tree (DT), Naïve Bayes, eXtreme Gradient Boosting (XGB), 

Random Forest (RF), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM)(Al-Saraireh & others, 

2022). 

 
Several researchers have proposed specialized frameworks for APT detection. HOLMES, developed by 

(Milajerdi et al., 2018), offers real-time detection capabilities with high precision and low false alarm rates, 

while providing visual summaries of attacker actions to assist cyber response teams. Similarly, (Marchetti et 

al., 2016) developed an approach focused on identifying suspicious internal hosts in large networks with 

approximately 10,000 hosts, making it more feasible for security specialists to analyze potential threats. The 

integration of multiple detection layers and advanced analytics has shown promise. (Zimba et al., 2020) 

demonstrated that combining semi-supervised learning with complex network characteristics could achieve a 

90.5% detection precision across different APT attack stages. (Wang et al., 2014), introduced an innovative 

"network gene" concept for characterizing behavior patterns in network applications, offering a new perspective 

on APT monitoring. 

 

Recent developments have focused on improving detection accuracy through specialized techniques. (Dijk, 
2021), introduced a novel method of analyzing payload data in network traffic flow, specifically addressing the 

challenging data exfiltration stage of APTs. Similarly,  (Eke et al., 2019), explored LSTM-RNN models, 

achieving remarkably high accuracy (99.99%) in identifying attacks from normal network behavior. However, 

as (Alshamrani et al., 2019), suggests in their survey that significant challenges remain. The rapid evolution of 

APT attack tools and techniques continues to outpace existing security measures, and there is still a lack of 

comprehensive solutions that can detect APT cyberattacks from start to finish. This suggests that while 

considerable progress has been made in network traffic analysis for APT detection, further research is needed 

to develop more robust and adaptive detection systems. Network Traffic generates common standard features 

used in literature datasets, as shown in Figure 2, data from (Al-Saraireh et al., 2022). 
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Figure 2. Network Traffic standard features. 

 

The contributions of this research are described as follows: 

  

1. Analysis of PowerSHAP impact to enhance classifier performance in APT detection over Network 

Traffic data.  

2. To analyze the efficacy of feature selection Powershap in different datasets with imbalanced 

multiclass. 

 

The following sections are organized as follows: Section 2 presents the related works on feature selection in 

network intrusion detection. Section 3 describes the research methodology for evaluating PowerSHAP, 
including experimental design and setup. Section 4 details the data acquisition and preprocessing techniques 

applied to the DAPT2020 and Unraveled datasets. Section 5 discusses the application and results of 

PowerSHAP. Section 6 explains the model training configurations and conditions. Section 7 presents the 

experimental results and analysis. Lastly, Section 8 provides the conclusion and outlines future work directions. 

 

2 Related works on feature selection in network intrusion detection 

 
Feature selection is the process of identifying and selecting a subset of the most relevant features (variables or 

predictors) from a dataset to construct effective predictive models. This dimensionality reduction technique 

aims to enhance model performance and improve interpretability. In the context of Network Intrusion Detection 

Systems (NIDS), feature selection is particularly crucial for the following reasons (Ahmed et al., 2024): 

 

• Enhanced detection accuracy: By isolating the most significant attributes indicative of intrusion 
patterns, feature selection improves the precision and reliability of NIDS models. 

• Improved model efficiency and reduced complexity: Eliminating irrelevant and redundant features 

mitigates noise, reduces computational overhead, and minimizes the risk of overfitting, leading to 

lower false positive rates and improved overall efficiency. 

 

Several recent studies have explored feature selection techniques for network intrusion detection, with some 

specifically aiming to enhance the detection of Advanced Persistent Threats (APTs). A brief overview of these 

works is provided below. 

 

Hofer-Schmitz et al. (2021) conducted a correlation analysis, incorporating a detailed investigation via boxplots 

to identify suitable features. These were then organized into distinct sets, and their impact on detection 

capabilities was evaluated using the Local Outlier Factor method. Al-Zoubi & Altaamneh (2022) proposed a 
wrapper-based feature selection approach utilizing the Chaotic Crow Search Algorithm (CCSA) for anomaly-

based network intrusion detection systems. The effectiveness of this method was demonstrated using the 

LITNET-2020 dataset. Qi et al. (2023) developed an efficient feature selection algorithm that initially assesses 

feature correlation and pairwise redundancy relative to class labels, employing an enhanced Pearson correlation 

coefficient. Subsequently, they refined the evaluation function based on conditional mutual information to 

derive a final feature subset, aiming to improve classification rates and accuracy. Kumar et al. (2024) introduced 
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a fuzzy-inference-driven feature selection method combined with optimized deep learning. Their approach 

employed a Deep Convolutional Neural Network (DeepCNN) optimized by the Smart Flower Cosine Algorithm 

(SFCA). Feature selection was based on fuzzy-based distance measures, and data preprocessing involved 

quantile normalization and data augmentation. Rai et al. (2024) utilized a novel feature engineering 

methodology that included advanced feature scaling and Random Forest-based feature selection techniques. 

This work evaluates the performance of three traditional classification models—Naive Bayes (NB), Logistic 

Regression (LR), and Support Vector Classifier (SVC). Sakthivelu et al. (2024) explored various feature 

extraction techniques, including Analysis of Variance (ANOVA) F-test, Mutual Information, Recursive Feature 

Elimination, and Permutation Importance, to identify optimal features within the dataset. Sakthivelu & Kumar 

(2024) aimed to enhance APT detection by employing the Grey Wolf Optimizer (GWO) algorithm for feature 

selection. This approach mimics the social behavior and hunting strategies of grey wolves to identify the most 
significant features contributing to APT detection. Liu et al. (2025) combined Principal Component Analysis 

(PCA) with the Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN) algorithm to 

compress network traffic features and extract high-correlation features from APT datasets. 

 

 

3 Research methodology for evaluating PowerSHAP 
 

This work evaluates the effectiveness of PS, a Shapley value-based feature selection method for anomaly 

detection, in improving classifier performance for Advanced Persistent Threat (APT) detection in network 
traffic. The methodology is structured into six experiments using the DAPT2020 and the Unraveled dataset, the 

first has a labeled collection of network traffic spanning five days (Monday to Friday), with APT attacks 

injected from Tuesday onward. The second, it emulates an organizational environment over a six-week period, 

highlighting the behavior of employees and the corresponding malicious activities from various attacker skill 

levels the dataset used in experiments corresponds to week 6, day 2.  A general description of the methodology 

is described in Figure 3. The unraveled dataset incorporates advanced APTs in network traffic over weeks 2-6, 

for the experiment’s dataset of Week 6-day 2 with the majority of advanced and complex APTs.   

 

 
Figure 3. Outline of the Research Methodology Employed in This work. 
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3.1 Experimental Design and Setup 
 

Experiments were implemented on the proprietary platform Colab (Google Inc., 2024), a cloud environment 

connected to cloud storage licensed by Google. As shown in Table 1, the computational environment provided 

utilizes a virtualized infrastructure based on two Intel Xeon processors, as evidenced by the consistent 

'GenuineIntel' vendor ID and 'Intel(R) Xeon(R) CPU@ 2.20GHz' model name across both allocated CPU cores. 

Each core operates at a frequency of approximately 2.20 GHz, with a shared L3 cache size of 56320 KB. The 

system is provisioned with 12.7 GB of RAM and 107.7 GB of disk space, facilitating the execution of 

computationally intensive tasks. The platform, accessible from any web browser, essentially offers Jupyter 
Notebooks hosted in the cloud. This eliminates the need for users to set up their own local environments. The 

free tier's resource allocation is subject to availability and runtime limitations, resulting in potential hardware 

variations and performance fluctuations. Seamless integration with cloud storage Google Drive enables efficient 

data management, highlighting Colab's design for scalable, accessible computational workflows.  

 

Table 1. Specifications of experimental environment for classifier evaluation 

 
Hardware specification Description 

CPU Vendor ID GenuineIntel 

CPU  Family 6 

CPU Model 79 

CPU Model Name Intel(R) Xeon(R) CPU @ 2.20GHz 

CPU Stepping 0 

CPU MHz 2,199.998 

Cache Size 56,320 KB 

RAM 12.7 GB 

Storage 107.7 GB 

 

 

The following six experiments were conducted to assess the impact of PowerSHAP (PS) on classifier 

performance: 

 

• Experiment 1: The classifiers used in the first experiment were Random Forest (RF), Decision Tree 

(DT), and XGBoost (XGB) for APT prediction, using imbalanced data trained without oversampling 

dataset and without PS with classes on Wednesday Dapt2020. The dataset includes APTs such as SQL 

Injection, Directory Bruteforce, Account Bruteforce, CSRF, and Account Bruteforce. Malware 

Download, Account Discovery. Data are described in subsection 3.1. A summary of the APTs instances 

is shown in Table 2. 

 

• Experiment 2: In the second experiment, the same classifiers were used over the imbalanced 

Wednesday dataset without oversampling but using PS. 

 

• Experiment 3: In the third experiment, the same classifiers were used over the Wednesday dataset 

using oversampling and PS. 
 

• Experiment 4: The classifiers used in the fourth experiment were Random Forest (RF), Decision Tree 

(DT), and XGBoost (XGB) for APT prediction, using imbalanced data trained without oversampling 

dataset and without PS with classes on Week 6 day 2 of Unraveled dataset; it includes APTs such as 

Normal, Maintain Access, Bruteforce, Active Scanning, Encrypted Channel, Hijack Execution. Data 

are described in subsection 3.2. A summary of unprocessed data instances for this dataset is shown in 

Table 3. 

 

• Experiment 5: In the fifth experiment, the same classifiers were used over the imbalanced Week 6 

day 2 Unraveled dataset without oversampling but using PS. 
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• Experiment 6: In the sixth experiment, the same classifiers were used over the Week 6 day 2 

Unraveled dataset using oversampling and PS. 

 

Classifiers evaluation protocol 

• Classifiers: Decision Trees, Random Forest, and XGBoost (selected for their established efficacy in 

cybersecurity tasks). 

• Metrics: F1-score, precision, recall, and accuracy. 

• Cross Validation 

 

Implementation details 

PowerSHAP: Applied independently for each attack class to identify feature importance (see Table 3). 
 

Methodology key features  

Comparative Framework: Directly contrasts feature selection with PS against balanced and unbalanced data in 

classifier performance (Decision Tree, Random Forest, XGBoost). 

 

4 Data Acquisition and Preprocessing Techniques 
 

The experiments presented in this work use the DAPT2020 and Unraveled datasets, which are public network 

traffic datasets covering different APT stages. The data of each dataset was generated by a research group using 

a sandbox environment with real, virtualized infrastructure. 

 

4.1 Dapt2020 Dataset Description 

 
Dapt2020 is a dataset generated by the research group of Myneni et al. (2020). It was collected over five days, 

each corresponding to a distinct phase of an Advanced Persistent Threat (APT) attack. The sequential 

progression of attack stages allows for a comprehensive analysis of adversarial behavior in network 

environments. 

 

• Day 1 (Monday): Normal network activity was recorded to establish a baseline for subsequent 

comparisons. 

• Day 2 (Tuesday): The Reconnaissance phase was executed, utilizing tools such as NMap, Burp Suite, 

and Dirbuster to systematically identify vulnerabilities within systems and web applications. 

• Day 3 (Wednesday): The attack advanced to the Establish Foothold phase, incorporating techniques 

such as SQL injection, Cross-Site Request Forgery (CSRF) attacks, and remote shell deployments to 
gain initial access and persistence. 

• Day 4 (Thursday): The Lateral Movement phase ensued, characterized by privilege escalation, 

exploiting MySQL vulnerabilities, and unauthorized access to multiple networked systems. 

• Day 5 (Friday): The attack culminated in Data Exfiltration, where sensitive files were illicitly 

transferred, accompanied by denial-of-service (DoS) attacks to disrupt normal operations. 

 

The dataset encapsulates a wide range of attack vectors, including credential compromise, privilege escalation, 

and command injection. Feature extraction was conducted using CICFlowMeter (Network monitoring traffic 

tool), resulting in 85 attributes that comprehensively characterize network flow behavior. Given that the dataset 

includes benign and malicious traffic, it is a robust resource for machine learning-based intrusion detection 

research. Additionally, each record is meticulously labeled, providing granular insights into specific attack 

methodologies and their corresponding positions within the cyber kill chain framework. In this work, the dataset 
from Wednesday was used because it contains the majority of APT attack classes. 
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Dataset structure and feature descriptions 

 

The dataset comprises 85 attributes, which can be categorized into four principal groups: network flow 

identification, traffic statistics, packet behavior, and attack classification. The following is a structured overview 

of key features: 

 

• Network flow identification. These attributes define the fundamental properties of each network flow 

instance: 

• Traffic duration and rate metrics. These attributes quantify the temporal characteristics and data 

transmission rate network flows: 

• Forward (Fwd) and backward (Bwd) packet characteristics. This category describes packet 
dynamics in both the forward (originating) and backward (response) directions 

• TCP flag analysis. These attributes capture the presence and frequency of Transmission Control 

Protocol (TCP) control flags, which indicate specific network communication behaviors 

• Packet size and flow statistics. This set of features describes variations in packet sizes and network 

flow dynamics 

• Average packet size: Mean packet size across the entire network flow. 

• Attack classification: These columns provide labels for cybersecurity research. 

Activity. Description of the malicious or normal activity observed. 

Stage. The stage of the cyber kill chain the activity belongs to (e.g., Reconnaissance, Lateral 

Movement, and Data Exfiltration). 

 
The Wednesday DAPT2020 dataset includes Directory Bruteforce (8,465 instances), SQL Injection (55 

instances), CSRF (7 instances), Account Discovery (12 instances), Account Bruteforce (91 instances), Malware 

Download (2 instances), and Normal traffic (8,855 instances) as shown in Table 2 with 17,487 total instances. 

Class imbalance is evident, particularly in rare attacks (e.g., Backdoor, and CSRF). Cyberattacks such as 

Backdoors evading authentication and network scans probing for vulnerabilities via tools like Nmap are diverse. 

Directory brute-force attacks systematically expose hidden resources using automated tools (e.g., DirBuster), 

while malware delivery exploits vectors like phishing to enable data theft or disruption. Injection-based exploits, 

such as SQL manipulation or CSRF, target application layers to extract sensitive data or force unauthorized 

actions. Reconnaissance tactics, including account discovery and credential brute forcing, facilitate 

unauthorized access by exploiting weak authentication, underscoring the multifaceted nature of modern cyber 

threats (Shostack, 2014). 

 
Table 2. Dapt2020 Wednesday dataset. 

    
Label Instances Percentage  
Directory Brute Force 8,465 48.41  
Malware Download 2 0.01  
SQLInjection 55 0.31  
CSRF 7 0.04  
Account Discovery 12 0.07  
Account Bruteforce 91 0.52  
Normal 8,855 50.64  

Total 17,487 100  

 

 

Standard preprocessing techniques on dataset Dapt2020: 

 

1. Data Loading: Starts loading a dataset that contains network traffic data. This dataset is loaded into a 

Pandas DataFrame. 

2. Cleaning: Drops irrelevant columns such as Flow ID, Src IP, Dst IP, Timestamp, and Stage. These 

columns are not relevant for the training of the machine learning model. 
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3. Normalization: The features are scaled using MinMaxScaler, which normalizes the data to a range of 

[0, 1]. This is important for algorithms sensitive to the input data's scale, such as XGBoost.  

4. Train-Test Split: The dataset is split into training and testing sets using an 80-20 split ratio. This is a 

common practice to evaluate the performance of machine learning models. 

 

4.2 Unraveled dataset description 

 

The dataset was generated by Myneni et al. (2023), it is structured into two primary components: network traffic 

captures and host-level logs. The Unraveled dataset is a semi-synthetic cybersecurity resource designed to 

capture the behavior of Advanced Persistent Threats (APTs). It emulates a realistic organizational environment 

over a six-week period, highlighting the behavior of employees and the corresponding malicious activities from 

various attacker skill levels. In week 6, day 2, the dataset exhibits the highest APT activities, where attackers 

executed stealthy operations that blended seamlessly with normal user behavior. This specific day serves to 

illustrate the challenges faced in detecting sophisticated threats, emphasizing the need for advanced detection 

techniques that consider the complexities of real-world cyber-attacks. The Unraveled dataset includes several 

key features to categorize APT activities effectively. 

The target column "Activity" in Week 6-Day2 with total of 253,922 instances, explicitly including attacks such 

as: Bruteforce: Password Guessing, Active Scanning: Vulnerability Scanning, Active Scanning: Scanning IP 

Blocks, Hijack Execution Flow: Path Interception by PATH Environment Variable, Encrypted Channel: 

Symmetric Cryptography and   Normal traffic such as: text/html, text/css, image/jpeg, image/png, application/x-

javascript, application/x-chrome-extension, application/octet-stream, and application/ocsn-stream, NaN and 

Unknown flows as shown in Table 3.  

 

Table 3. Dataset Week 6-Day 2 activity instances.  
Activity  Instances 

Maintain Access 8,011 

Normal 221,839 

text/html 4 

text/css 1 

application/x-javascript 2 

application/x-chrome-extension 27 

application/octet-stream 81 

application/ocsp-response 3 

image/jpeg 9 

image/png 1 

Bruteforce: Password Guessing 22,650 

Active Scanning: Vulnerability Scanning 1 

Active Scanning: Scanning IP Blocks 1,124 

Hijack Execution Flow: Path Interception by PATH Environment Variable 1 

Encrypted Channel: Symmetric Cryptography 3 

nan 148 

Unknown 17 

Total 253,922 

 

 

Data for experiments in this work are focused on specific data sourced from Week 6-Day 2 with the highest 

number of APT activities. Figure 4 illustrates the instances frequency of each APT activity on Unraveled 

Dataset for Week 6 - Day 2. 
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Figure 4. Unraveled activity label Week 6-Day 2. 

 

The standard preprocessing on Unraveled Dataset Week 6-Day 2 is described as follows:  

 

1. Data Loading: begin loading a dataset that contains network traffic data. This dataset is loaded into a 

Pandas DataFrame using the Colab platform in format CSV. 

2. Data cleaning and preprocessing were performed to ensure consistency and data quality. The first 

activity involved the 'Hijack Execution' class, which was used to generate one hundred new samples 

through controlled perturbation. This is a critical activity within the lifecycle of an Advanced Persistent 

Threat (APT), and the generation of synthetic samples expands the dataset. Furthermore, aggregation 
was applied to remove instances of other attack types, including 'Active Scanning' and 'Normal' 

activities, and those labeled 'nan' and 'unknown'. This was done because the focus of this work is to 

predict the type of attack being executed, without considering the phase of the attack lifecycle, 

defensive response, or signature. The resulting activity instances after preprocessing are described in 

Table 4. 

3. Normalization: The features are scaled using MinMaxScaler, which normalizes the data to a range of 

[0, 1].   

4. Train-Test Split: The dataset is split into training and testing sets using an 80-20 split ratio. This is a 

common practice to evaluate the performance of machine learning models. 

 

 
Table 4. Synthesized (Week 6-Day 2) dataset.   
 Activity Instances 

 Normal 221,967 

 Maintain Access 8,011 

 Bruteforce 22,650 

 Active Scanning 1,125 

 Encrypted Channel 3 

 Hijack Execution 101 

Total Rows:  253,857 
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5 PowerSHAP  

 
PowerSHAP feature selection method was proposed by Verhaeghe et al. (2022), and was employed in this work 

to quantify feature importance for APT detection in multiclass classification on the DAPT2020 and Unraveled 

datasets. PS, enhances machine learning feature importance quantification by integrating Shapley values from 

cooperative game theory with statistical hypothesis testing. It assigns a contribution score (Impact) to each 

feature and assesses its statistical significance using p-values. The p_value metric tests the null hypothesis (i.e., 

the feature’s contribution is negligible). A low p-value (e.g., <0.01) rejects the null hypothesis, confirming the 

feature’s significance measures the practical effect size with Cohen’s ensures robust detection of true effects 

via statistical Power_0.01_alpha ensures rigorous control over false positives while maintaining sensitivity to 

detect true feature importance and iteratively increases trials for ≥99% power (99_Power_its_req) to minimize 

false negatives. Utilizing a Random Forest classifier, PowerSHAP provides interpretable and statistically 

reliable insights, particularly valuable for cybersecurity applications like APT detection, where precision and 
trustworthiness are critical.  

 

5.1 Powershap Dapt2020 results 

 

The results of the application of PS on Dapt2020 are illustrated in Table 5, main findings are presented and 

described as follows:  

 

1. High-Impact Features: Attributes such as Src-Port, Dst-Port, Flow-Duration, and Flow-IAT-Std 

demonstrated significant impact and statistical relevance (p_value = 0), making them essential for 
accurate APT detection. These features consistently showed strong effect sizes and high statistical 

power, ensuring their reliability in distinguishing malicious activities. 

 

2. Efficient Detection: Features like Flow- IAT-Std and Packet- Length- Min required fewer iterations to 

achieve 99% statistical power, highlighting their robustness and efficiency in contributing to the 

model’s predictive performance. 

 

3. Negligible Features: Attributes such as Bwd-PSH-Flags, Fwd-Header-Length, and ACK- Flag- Count 

had minimal impact (p_value = 1, effect_size = 0), indicating their limited relevance to the detection 

process. These features can be deprioritized in future analyses to streamline the model. 

 

4. Statistical Rigor: The use of PowerSHAP ensured a robust evaluation of feature importance, 
combining Shapley values for interpretability with statistical metrics (e.g., effect size, power) for 

reliability. This approach minimized false positives and false negatives, enhancing the model’s 

trustworthiness. 

 



Hernández Rivas et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 578-596. 

588 

 

Table 5. PowerSHAP results on the Dapt2020 dataset. 

.  
Attribute impact p_value effect_size power_0.01_alpha 0.99_power_its_req 

'Protocol',  0.006966 0 -3.755739 0.9999999999998803 4.602883612996893 

'Flow Duration', 0.0069988 0 -4.9987094 1 3.848123144022605 

'Src Port', 0.060986559838056564 0 -17.555489 1 2.4623291491879264 

'Dst Port', 0.0680969 0 -14.446856 1 2.582001672882825 

 'Total Fwd Packet', 0.0038777 0 -2.9239433 0.9999999 5.6262562912145695 

 'Total Bwd packets',  0.0060233 0 -3.4840147 0.9999999999859839 4.864869583749631 

'Total Length of Fwd Packet',  0.0024285 0 -3.7528539 0.9999999999998739 4.605402313480288 

'Total Length of Bwd Packet',  0.0050413 0 -2.3087842 0.9999029036866228 7.132018793016248 

'Fwd Packet Length Max',  0.0014495 0 -2.3836713 0.9999548841858588 6.886480300382986 

'Fwd Packet Length Min',  0.005408 0 -2.4760274 0.9999832357204378 6.613324275653868 

'Fwd Packet Length Mean',  0.0025415 0 -3.4962184 0.9999999999885815 4.851923845444724 

'Fwd Packet Length Std', 0.0023209 0 -3.9728303 1 4.426983365797744 

 'Bwd Packet Length Max',  0.0025594 0 -3.8366143 0.9999999999999732 4.534301586317738 

'Bwd Packet Length Min',  0.014044716954231262 0 -4.9473795 1 3.870132369399462 

'Bwd Packet Length Mean',  0.0030654 0 -3.4409746 0.9999999999713158 4.9115209278175955 

'Bwd Packet Length Std',  0.0012685 0.2 0 0 0  
'Flow Bytes/s', 'Flow Packets/s',  0.0037349 0 -2.8310037 0.9999997641105691 5.794715778542293 
'Flow IAT Mean',  0.0311239 0 -6.4237082 1 3.3979411043868124 

'Flow IAT Std',  0.0365832 0 -9.5877296 1 2.9113118638268065 

'Flow IAT Max',  0.010231074877083302 0 -4.4480513 1 4.117269846274375 

'Flow IAT Min',  0.0084584 0 -4.7808921 1 3.945504223067063 

'Fwd IAT Total',  0.006745 0 -3.8822957 0.9999999999999887 4.497214345201529 

'Fwd IAT Mean', 0.0041665 0 -3.19446 0.9999999985844006 5.212407657574906 

 'Fwd IAT Std',  0.0029194 0 -3.8822088 0.9999999999999887 4.497283780159029 

'Fwd IAT Max', 0.0021941 0 -2.0547796 0.998974 8.1722632  
 'Fwd IAT Min',  0.0023243 0 -2.1624387 0.9996046605591749 7.686714606009253 

'Bwd IAT Total',  0.001714 0 -3.9684796 0.9999999999999979 4.430263165703837 

'Bwd IAT Mean',  0.0072995 0 -5.9085442 1 3.531825304352142 

'Bwd IAT Std',  0.022510627284646034 0 -7.0720547 1 3.2601064407906932 

'Bwd IAT Max',  0.0043698 0 -3.0529101 0.9999999886430397 5.4161433769672485 

'Bwd IAT Min',  0.017787199467420578 0 -7.544342 1 3.1758773571177836 

'Bwd PSH Flags',  1.1926169918297091e-06 1 0 0 0  
 'Fwd Header Length',  0 1 0 0 0  
'Bwd Header Length', 0.0095492 0 -5.4518207 1 3.6750902243234527 

 'Fwd Packets/s',  0.0393931 0 -7.3275894 1 3.213080212766461 

'Bwd Packets/s',  0.023402679711580276 0 -4.3506475 1 4.173789813240089 

'Packet Length Min', 0.0360997 0 -11.767742 1 2.731211818781837 

 'Packet Length Max', 0.008557 0 -2.985925 0.9999999707674104 5.522084877061972 

 'Packet Length Mean',  0.0025885 0 -3.0883374 0.9999999931830243 5.362704842396914 

'Packet Length Std', 0.0027075 0 -2.5585282 0.9999933594946232 6.393383816939148 
 'Packet Length Variance',  0.0026103 0 -3.8371889 0.9999999999999736 4.5338279  
'FIN Flag Count',  0.002723 0 -2.2904126 0.9998833970635436 7.195914694222329 

'SYN Flag Count',  0.012081831693649292 0 -9.2847646 1 2.9429857998458773 

'RST Flag Count', 0.0044647 0 -4.5760493 1 4.047546730874002 

 'PSH Flag Count',  0.0010644 0.1 0 0 0  
'ACK Flag Count', 2.0204231532261474e-06 1 0 0 0  
 'Down/Up Ratio',  1.3787519037578022e-06 1 0 0 0  
'Average Packet Size',  0.0053753 0 -4.2576728 1 4.230800330916116 

'Fwd Segment Size Avg',  0.00253 0 -2.6523581 0.9999977918171027 6.167095711491578 

'Bwd Segment Size Avg',  0 1 0 0 0  
'Subflow Fwd Packets', 0 1 0 0 0  
 'Subflow Fwd Bytes',  0.0034561 0 -4.5233758 1 4.075643405352245 

'Subflow Bwd Packets',  0.0027315 0.1 0 0 0  
'Subflow Bwd Bytes', 0.0043094 0 -4.4120748 1 4.1377801707929445 

 'Bwd Init Win Bytes',  0 1 0 0 0  
'Fwd Act Data Pkts',  0.0084514 0 -4.1592709 1 4.294686677124033 

'Active Mean', 0.0022127 0 -3.1659088 0.9999999978255665 5.251470014804734 

'Active Max', 0.0025175 0 -4.2678244 1 4.224424004475994 

'Idle Mean',  0.0017866 0 -2.483633 0.9999845821569213 6.592150250385066 

'Idle Max',  0.001694 0 -3.0765044 0.9999999919094509 5.3803631941841585 

 

Visualization of PS results on Dapt2020 dataset is illustrated in Figure 5, findings are discussed in the following 
points:   

 

 
Figure 5. PowerSHAP on Dapt2020 dataset. 

 

• Inverse Relationship: There appears to be a general inverse relationship between Impact and Effect 

Size. Features with higher Impact tend to have lower Effect Size, and vice versa. This suggests that 
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features with a significant contribution to the model's predictions might not necessarily have a large 

practical magnitude of influence when considered in isolation. 

 

• Outliers: The points labeled Dst Port and Src Port are significant outliers, showing a high Impact but 

a very large negative Effect Size. This indicates that these features have a strong influence on the 

model's predictions but in a way that is substantially different from the average trend. 

 

 

• Clustering: A cluster of points is observed in the lower left corner, indicating features with low Impact 

and moderate Effect Size. These features might have a smaller overall contribution but still exert a 

noticeable influence. 
 

In summary, the findings underscore the importance of network flow attributes like port usage, packet timing, 

and flow duration in detecting APTs. By focusing on high-impact features and leveraging PowerSHAP’s 

rigorous methodology. 

 

5.2 PowerSHAP Unraveled results 
 

The analysis of feature importance using PowerSHAP on the Unraveled dataset as shown in Table 6, revealed 

several critical insights for APT detection in multiclass classification. Key findings include: 

 

• High-Impact Features: Attributes such as src2dst-packets, src2dst-bytes, dst2src-first-seen-ms, and 

dst2src_last_seen_ms demonstrated significant impact and statistical relevance (p_value = 0), making 

them essential for accurate APT detection. These features consistently showed strong effect sizes and 

high statistical power, ensuring their reliability in distinguishing malicious activities. 

 

• Efficient Detection: Features like src2dst-packets and dst2src-first-seen-ms required fewer iterations 

to achieve 99% statistical power, highlighting their robustness and efficiency in contributing to the 

model’s predictive performance. 

 

• Negligible Features: Attributes such as src-port, dst-port, ip-version, and vlan-id  had minimal impact 

(p_value = 1, effect_size = 0), indicating their limited relevance to the detection process. These features 

can be deprioritized in future analyses to streamline the model. 
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Table 6. PowerSHAP results on the Unraveled Week6-Day 2. 
 

 

 

Attribute impact p_value  effect_size power_0.01_alpha 0.99_power_its_req 
src_port 9.705640877655242e-06 1  0 0 0  
dst_port 8.201181117328815e-06 1  0 0 0  
protocol 8.008610166143626e-05 0.5  0 0 0  
ip_version 6.600494089070708e-07 1  0 0 0  
vlan_id 4.7230107156792656e-05 0.875  0 0 0  
tunnel_id 3.50420236827631e-06 1  0 0 0  
bidirectional_first_seen_ms 3.3360367979184957e-06 1  0 0 0  
bidirectional_last_seen_ms 2.032423253695015e-05 1  0 0 0  
bidirectional_duration_ms 1.738812352414243e-05 1  0 0 0  
bidirectional_packets 1.6695190424798056e-05 1  0 0 0  
bidirectional_bytes 1.4284278222476132e-05 1  0 0 0  
src2dst_first_seen_ms 1.4228849977371283e-05 1  0 0 0  
src2dst_last_seen_ms 1.3444525393424556e-05 1  0 0 0  
src2dst_duration_ms 1.0017349268309772e-05 1  0 0 0  
src2dst_packets 0.015730392187833786 0  -11.1327 1 2.7765419498409973 
src2dst_bytes 0.013024761341512203 0  -8.2791 1 3.065110826576835 
dst2src_first_seen_ms 0.021153 0  -12.7666 1 2.668691  
dst2src_last_seen_ms 0.021149 0  -8.73245 1 3.006474  
dst2src_duration_ms 0.018961 0  -7.88361 1 3.1220204329447996 
dst2src_packets 0.011895 0  -10.4961 1 2.827327  
dst2src_bytes 0.009794 0  -5.92647 1 3.526724145454761 
bidirectional_min_ps 0.008887 0  -5.24034 1 3.751419130418419 
bidirectional_mean_ps 0.008745 0  -6.16647 1 3.461626166293254 
bidirectional_stddev_ps 0.008555 0  -10.9034 1 2.7941618359702707 
bidirectional_max_ps 0.008123 0  -9.08159 1 2.965420584946635 
src2dst_min_ps 0.007798 0  -9.03925 1 2.970225516887133 
src2dst_mean_ps 0.007105 0  -8.95542 1 2.9798809324687547 
src2dst_stddev_ps 0.007007 0  -5.6432 1 3.611777590165064 
src2dst_max_ps 0.006446 0  -5.62305 1 3.6182070354107636 
dst2src_min_ps 0.006158 0  -8.65356 1 3.0162211798459126 
dst2src_mean_ps 0.005967 0  -9.44763 1 2.925702882178529 
dst2src_stddev_ps 0.005901 0  -6.73608 1 3.327876517165385 
dst2src_max_ps 0.00564 0  -8.20972 1 3.074679851493458 
bidirectional_min_piat_ms 0.005455 0  -5.53853 1 3.645770904133746 
bidirectional_mean_piat_ms 0.004687 0  -6.67986 1 3.3399532031652948 
bidirectional_stddev_piat_ms 0.00456 0  -5.05803 1 3.8233542633409865 
bidirectional_max_piat_ms 0.004554 0  -2.97758 1 5.535747940055678 
src2dst_min_piat_ms 0.004161 0  -4.61023 1 4.029741129083525 
src2dst_mean_piat_ms 0.004 0  -6.25621 1 3.4387423584515977 
src2dst_stddev_piat_ms 0.003892 0  -4.45672 1 4.112389  
src2dst_max_piat_ms 0.003877 0  -5.05395 1 3.825032752917185 
dst2src_min_piat_ms 0.003868 0  -4.16672 1 4.289718084064991 
dst2src_mean_piat_ms 0.003718 0  -5.53387 1 3.647318482466547 
dst2src_stddev_piat_ms 0.003635 0  -5.35095 1 3.7106087338377503 
dst2src_max_piat_ms 0.003348 0  -2.86239 0.9999999999999987 5.736082205992405 
bidirectional_syn_packets 0.003275 0  -3.78589 1 4.576860405366269 
bidirectional_cwr_packets 0.003231 0  -5.20669 1 3.7642434311624373 
bidirectional_ece_packets 0.003108 0  -4.47848 1 4.100246356573745 
bidirectional_urg_packets 0.003081 0  -7.55803 1 3.173604  
bidirectional_ack_packets 0.003078 0  -4.51396 1 4.0807522757029355 
bidirectional_psh_packets 0.003046 0  -6.89456 1 3.2950080727779785 
bidirectional_rst_packets 0.002958 0  -5.58057 1 3.6319405256619546 
bidirectional_fin_packets 0.002739 0  -5.9085 1 3.531839  
src2dst_syn_packets 0.002655 0  -3.41878 1 4.936204696465661 
src2dst_cwr_packets 0.002473 0  -5.1055 1 3.804028767772048 
src2dst_ece_packets 0.002415 0  -3.398 1 4.959701623147888 
src2dst_urg_packets 0.002288 0  -5.03409 1 3.8332638208433334 
src2dst_ack_packets 0.002211 0  -2.72721 1 6.002518734779483 
src2dst_psh_packets 0.00209 0  -4.27844 1 4.217790915801649 
src2dst_rst_packets 0.001983 0  -4.00608 1 4.402224483978069 
src2dst_fin_packets 0.001852 0  -4.40736 1 4.140501  
dst2src_syn_packets 0.001838 0  -2.57832 0.9999999999975098 6.343647367437392 
dst2src_cwr_packets 0.001804 0  -4.27983 1 4.216924105751325 
dst2src_ece_packets 0.001759 0  -3.33759 1 5.030310972769013 
dst2src_urg_packets 0.00174 0  -4.277 1 4.218688099074814 
dst2src_ack_packets 0.001532 0  -4.33531 1 4.182982  
dst2src_psh_packets 0.001464 0  -3.85833 1 4.516527734854275 
dst2src_rst_packets 0.001337 0  -3.33944 1 5.028102025924469 
dst2src_fin_packets 0.001331 0  -2.28103 0.9999999976895478 7.229145539107379 
application_name 0.001292 0  -1.78487 0.99998 9.800782157168108 
application_category_name 0.001284 0  -3.3408 1 5.026474095412504 
application_is_guessed 0.000794 0  -1.41381 0.9973170065358236 13.763191613883118 
requested_server_name 0.000663 0  -5.04305 1 3.829542778690341 
client_fingerprint 0.000595 0  -4.82026 1 3.9271065772004254 
server_fingerprint 0.000562 0  -1.96921 0.9999990262654794 8.616357753736345 
user_agent 0.000377 0  -1.46924 0.9985683214562899 12.973358860550546 
content_type 0.000342 0  -3.40802 1 4.948328792710207 
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Figure 6. PowerSHAP on Unraveled dataset. 

 

The observations and interpretation of Figure 6 are described as follows: 
 

• Limited Range of Impact: The Impact values are clustered in a very narrow range (approximately 0 to 

0.02). This suggests that all features have relatively low Impact scores, indicating that no single feature 

dominates the model's predictions. 

 

• Wide Range of Effect Size: The Effect Size values span a much wider range, from approximately 0 to 

-12. This indicates that while the features might not have a substantial individual impact, they can have 

a significant magnitude of influence. 

 

• Inverse Trend: There is a general trend of decreasing Effect Size as Impact increases. Features with 

slightly higher Impact tend to have more negative Effect Sizes. 
 

 

Although the Impact values are low, the Effect Size values suggest that these features still play a role in the 

model's performance. The features with the most negative Effect Sizes (e.g., dst2src-first-seen-ms) might be 

particularly important for detecting specific patterns or anomalies. In summary, the findings underscore the 

importance of network flow attributes like packet counts, byte sizes, and timing metrics in detecting APTs 

 

6 Model Training  

 
Supervised machine learning models such as DT, RF, XGB were trained using the dataset: Wednesday 

DAPT2020 and Unraveled. Experimental conditions are described as shown in Table 7, Note that fields with 
value N/A it means that experiment not apply. Random Oversampling (ROS) was used for data balancing. The 

main objective of experiments is to analyze the influence of different combinations of previously highlighted 

techniques on the accuracy of classifiers.  

 

Table 7. Model training conditions. 
Algorithm Dataset Training-Test  

 

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 

Decision Tree Dapt2020 80/20 No PS + No ROS PS + No ROS PS + ROS N/A N/A N/A 

Random   Forest Dapt2020 80/20 No PS + No ROS PS + No ROS PS + ROS 

 

N/A N/A N/A 

XGBoost Dapt2020 80/20 No PS + No ROS PS + No ROS PS + ROS 

 

N/A N/A N/A 

Decision Tree Unraveled 80/20 N/A N/A N/A No PS + No ROS PS + No ROS PS + ROS 

Random   Forest Unraveled 80/20 N/A N/A N/A No PS + No ROS PS + No ROS PS + ROS 

 

XGBoost Unraveled 80/20 N/A N/A N/A No PS + No ROS PS + No ROS PS + ROS 
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7 Experimental results and analysis 
 

The following subsections present the experimental results obtained from the application of the methodology 

to each dataset utilized in this study, specifically DAPT2020 and Unraveled. 

 

7.1 Results from DAPT2020 dataset 

 
This section describes the results of the experiments highlighted in the previous section. General metrics were 

used for the validation of the prediction for each model RF, DT, and XGBoost. PowerSHAP demonstrated 

varying effects across different classifiers: 

 
The RF classifier exhibited a progressive improvement in performance across the three configurations. The 

mean cross-validation accuracy increased from 0.9921±0.0004 (No PS + No ROS) to 0.9989 (PS+ROS), 

demonstrating the beneficial impact of feature selection and oversampling. While the RF model achieved high 

precision, recall, and F1-scores (≥0.99) for majority classes like Account Bruteforce and Malware Download 

across all configurations, gains were more moderate for minority classes. Notably, the Account Discovery F1-

score improved from 0.29 (PS+No ROS) to 0.77 (PS+ROS). These results suggest that while RF is robust for 

prevalent classes, oversampling enhances its ability to classify underrepresented attack vectors. The RF Normal 

class metrics improved with PS+ROS, but did not reach perfect scores. See Table 8. 

 

Table 8. Random Forest results. 
Class Precision Recall F1-

Score 

Support  
 

Class Precision Recall F1-

Score 

Support  
 

Class Precision Recall F1-

Score 

Support 
 

Normal 0.92 0.61 0.73 18   Normal 0.94 0.83 0.88 18   Normal 0.93 0.72 0.81 18  

SQL Injection 0.00 0.00 0.00 3   SQL Injection 1.00 0.33 0.50 3   SQL Injection 1.00 0.33 0.50 3  

Directory 

Bruteforce 
0.00 0.00 0.00 1  

 

Directory 

Bruteforce 
0.00 0.00 0.00 1  

 

Directory 

Bruteforce 
0.00 0.00 0.00 1  

Account 
Bruteforce 

1.00 1.00 1.00 1,693  
 

Account 
Bruteforce 

1.00 1.00 1.00 1,693  
 

Account 
Bruteforce 

1.00 1.00 1.00 1,693  

CSRF 1.00 1.00 1.00 5  
 CSRF 1.00 1.00 1.00 5  

 CSRF 1.00 1.00 1.00 5  

Malware 

Download 
0.99 1.00 0.99 1,771  

 

Malware 

Download 
0.99 0.99 0.99 1,771  

 

Malware 

Download 
0.99 0.99 0.99 1,771 

 
Account 

Discovery 
1.00 0.45 0.62 11  

 

Account 

Discovery 
0.67 0.18 0.29 11  

 

Account 

Discovery 
0.67 0.91 0.77 11 

 
Accuracy 0.9934   3,502   Accuracy 0.9923   3,502   Accuracy 0.992   3,502  

Cross-validation accuracy   .9928,.9917,.9921,.9917,.9921  Cross-validation accuracy   .9946,.9921,.9935,.9914,.9903  Cross-validation accuracy   .9984,.9988,.9991,.9987,.9992 

Mean cross-validation accuracy 0.9921  Mean cross-validation accuracy 0.9924  Mean cross-validation accuracy 0.9989 

a) Results No PS + No ROS  b) Results PS + No ROS  c) Results PS + ROS 

 

The Decision Tree classifier demonstrated the most substantial performance enhancements with the application 

of PS+ROS. Specifically, the Account Discovery F1-score increased from 0.91 (No PS + No ROS) to 0.96 (PS+ 

No ROS), highlighting the model's sensitivity to feature selection. For the SQL Injection class, F1-scores ranged 

from 0.5 (No PS+ No ROS) to 0.67 (PS+ No ROS), indicating improvement in the model's ability to classify 

this minority class SQL Injection. The Normal class metrics presented similar metrics in all experiments but 

did not reach perfect scores (See Table 9). 

 

Table 9. Decision Tree results. 
Class Precision Recall F1-

Score 

Support  
 

Class Precision Recall F1-

Score 

Support  
 

Class Precision Recall F1-Score Support 
 

Normal 1.00 0.94. 0.97 18   Normal 1.00 0.94 0.97 18   Normal 0.95 1.00 0.97 18  

SQL Injection 1.00 0.33 0.50 3   SQL Injection 0.67 0.67 0.67 3   SQL Injection 0.5 0.33 0.40 3  

Directory 

Bruteforce 
1.00 1.00 1.00 1 

  

Directory 

Bruteforce 
1.00 1.00 1.00 1  

 

Directory 

Bruteforce 
1.00 1.00 1.00 1  

Account 

Bruteforce 
1.00 1.00 1.00 1,693 

  

Account 

Bruteforce 
1.00 1.00 1.00 1,693  

 

Account 

Bruteforce 
1.00 1.00 1.00 1,693  

CSRF 1.00 1.00 1.00 5   CSRF 0.71 1.00 0.83 5  
 CSRF 1.00 1.00 1.00 5  

Malware 

Download 
1.00 1.00 1.00 1,771 

  

Malware 

Download 
1.00 1.00 1.00 1,771  

 

Malware 

Download 
1.00 0.99 1.00 1,771  

Account 

Discovery 
0.91 0.91 0.91 11 

  

Account 

Discovery 
0.92 1.00 0.96 11  

 

Account 

Discovery 
0.67 0.91 0.77 11  

Accuracy 0.9971   3,502   Accuracy 0.9963   3,502   Accuracy 0.996   3,502  

Cross-validation accuracy   .9975,.9957,.9964,.9957,.9978  Cross-validation accuracy   .9985,.9975,.9964,.9975,.9932  Cross-validation accuracy   .9990,.9988,.9989,.9994,.9993 

Mean cross-validation accuracy 0.9966  Mean cross-validation accuracy 0.9966  Mean cross-validation accuracy 0.9992 

a) Results No PS+ No ROS  b) Results PS+No ROS    c) Results PS+ROS 

 

The XGBoost classifier achieved the highest overall performance and achieved perfect metrics (precision=1, 

recall=1, F1=1) for the Normal class with the application of PS+ROS, surpassing both RF and DT. Similar to 

the other classifiers, XGBoost demonstrated robust performance for the majority of classes across all 

configurations (See Table 10). 

 



Hernández Rivas et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 578-596. 

593 

 

Table 10. XGBoost results. 
 

Class Precision Recall F1- 

Score 

Support  
 

Class Precision Recall F1- 

Score 

Support  
 

Class Precision Recall F1-

Score 

Support 
 

Normal 1.00 0.94 0.97 18   Normal 0.94 0.94 0.94 18   Normal 1.00 1.00 1.00 18  

SQL Injection 1.00 0.33 0.50 3  
 SQL Injection 1.00 0.33 0.50 3   SQL Injection 0.33 0.33 0.33 3  

Directory 

Bruteforce 
1.00 1.00 1.00 1  

 

Directory 

Bruteforce 
0.00 0.00 0.00 1  

 

Directory 

Bruteforce 
0.00 0.00 0.00 1  

Account 

Bruteforce 
1.00 1.00 1.00 1,693  

 

Account 

Bruteforce 
0.99 1.00 1.00 1,693  

 

Account 

Bruteforce 
1.00 1.00 1.00 1,693  

CSRF 1.00 1.00 1.00 5  
 CSRF 1.00 1.00 1.00 5  

 CSRF 1.00 1.00 1.00 5  

Malware 

Download 
1.00 1.00 1.00 1,771  

 

Malware 

Download 
1.00 0.99 0.99 1,771  

 

Malware 

Download 
1.00 1.00 1.00 1,771  

Account 

Discovery 
0.91 0.91 0.91 11 

  

Account 

Discovery 
0.64 0.82 0.72 11 

  

Account 

Discovery 
0.71 0.91 0.80 11  

Accuracy 0.9971   3,502   Accuracy 0.9934   3,502   Accuracy 0.9951   3,502  

Cross-validation accuracy   .9942,.9950,.9946,.9946,.9942  Cross-validation accuracy   .9942,.9953,.9942,.9928,.9928  Cross-validation accuracy   .9990,.9992,.9988,.9991,.9993 

Mean cross-validation accuracy 0.9946  Mean cross-validation accuracy 0.9939  Mean cross-validation accuracy 0.9992 

a) Results No PS+ No ROS                  b) Results PS+No ROS  c) PS+ROS 

 

Across all classifiers, PS+ROS (PowerSHAP + Random Oversampler) consistently yielded the highest mean 

cross-validation accuracy 0.9989-0.9992, followed by PS+No ROS (0.9924-0.9966) and No PS+No ROS 

(0.9921±0.9966). However, classes with low support (e.g., Directory Bruteforce, support=1) presented 

challenges, resulting in unstable metrics (precision/recall=0 or 1). This underscores the necessity for additional 

data or advanced synthetic sampling techniques to address these limitations. Figure 7 illustrates the mean cross-

validation accuracy for each algorithm across experiments when utilizing the Dapt2020 dataset. 

 

 
Figure 7. Cross validation mean results Dapt2020. 

 

 

 

7.2 Results From Unraveled Dataset 
 

Tables 11⎼13 show results for the Unraveled dataset for each classifier according to experiments 4⎼6 

(defined in Table 7). RF model with the application of PS+No ROS achieved an accuracy of 0.999921216, 

with perfect precision, recall, and F1-scores (1.0) for all classes. Results across overall configurations are 
acceptable, except for the Minority class Encrypted Channel in configuration No PS+ No ROS (See Table 11). 

 
Table 11. Random Forest Results Week 6-Day 2.  

Class Precision Recall F1-

Score 

Support 
 

Class Precision Recall F1-

Score 

Support 
 

Class Precision Recall F1-

Score 

Support 

Active Scanning 1.00 1.00 1.00 225  Active Scanning 1.00 1.00 1.00 225  Active Scanning 1.00 1.00 1.00 225 

Bruteforce 1.00 1.00 1.00 4,530  Bruteforce 1.00 1.00 1.00 4,530  Bruteforce 1.00 1.00 1.00 4,530 

Encrypted Channel 0.00 0.00 0.00 1  Encrypted Channel 1.00 1.00 1.00 1  Encrypted Channel 1.00 1.00 1.00 1 

Hijack Execution 1.00 1.00 1.00 20  Hijack Execution 1.00 1.00 1.00 20  Hijack Execution 1.00 1.00 1.00 20 

Maintain Access 1.00 1.00 1.00 1,602  Maintain Access 1.00 1.00 1.00 1,602  Maintain Access 1.00 1.00 1.00 1,602 

Normal 1.00 1.00 1.00 44,394  Normal 1.00 1.00 1.00 44,394  Normal 1.00 1.00 1.00 44,394 

Accuracy  0.999921216 50,772  Accuracy 0.9999212164184984 50,772  Accuracy 0.9998818246277476  50,772 

Cross-validation accuracy .9999, .9999, .9999, .9999, .9999  Cross-validation accuracy .9999,.9999,.9999,.9999,1.0000  Cross-validation accuracy .9999,.9999,.9999,.9999,1.0000 

Mean cross-validation accuracy 0.9998   Mean cross-validation accuracy 0.9999  Mean cross-validation accuracy 0.99999  
 a) Results No PS + No ROS  b)  Results PS + No ROS  c) Results PS + ROS 

 
Decision Tree model with the application of PS+No ROS achieved an accuracy of 0.999802041, with perfect 

precision, recall, and F1-scores for all classes. Decision Tree model with PS+ROS similar results were achieved 

(See Table 12). 



Hernández Rivas et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 578-596. 

594 

 

 
Table 12. Decision Tree Results Week 6-Day 2. 

Class Precision Recall F1- 

Score 

Support 
 

Class Precision Recall F1- 

Score 

Support 
 

Class Precision Recall F1- 

Score 

Support 

Active Scanning 0.99 1.00 1.00 225  Active Scanning 1.00 1.00 1.00 225  Active Scanning 0.97 1.00 0.98 225 

Bruteforce 1.00 1.00 1.00 4,530  Bruteforce 1.00 1.00 1.00 4,530  Bruteforce 1.00 1.00 1.00 4,530 

Encrypted Channel 0.00 0.00 0.00 1  Encrypted Channel 1.00 1.00 1.00 1  Encrypted Channel 1.00 1.00 1.00 1 

Hijack Execution 0.95 1.00 0.98 20  Hijack Execution 1.00 1.00 1.00 20  Hijack Execution 1.00 1.00 1.00 20 

Maintain Access 1.00 1.00 1.00 1,602  Maintain Access 1.00 1.00 1.00 1,602  Maintain Access 1.00 1.00 1.00 1,602 

Normal 1.00 1.00 1.00 44,394  Normal 1.00 1.00 1.00 44,394  Normal 1.00 1.00 1.00 44,394 

Accuracy 0.999842433 
 

50,772 
 

Accuracy 0.999803041   
 

50,772 
 

Accuracy 0.99978335   
 

50,772 

Cross-validation accuracy .9995,.9998,.9997,.9997,.9997 
 

Cross-validation accuracy  .9996,.9998,.9999,.9999,.9999 
 

Cross-validation accuracy  .9996,.9998,.9999,.9999,1 

Mean cross-validation accuracy .9997  Mean cross-validation accuracy .9999 
 

Mean cross-validation accuracy .9998 

a) Results No PS + No ROS   b) Results PS + No ROS  c) Results PS + ROS 

 
XGBoost model with the application of PS+No ROS achieved an accuracy of 0.999803041, with perfect 

precision, recall, and F1-scores for all classes. This model achieved an accuracy of 0.99978335, with perfect 
precision, recall, and F1-scores for all classes with PS+ROS configuration. No PS+No ROS fail in classification 

of the minority class Encrypted Channel (See Table 13). 

 
Table 13.  XGB results Week 6-Day 2. 

Class Precision Recall F1-

Score 

Support 
 

Class Precision Recall F1-

Score 

Support 
 

Class Precision Recall F1-

Score 

Support 

Active Scanning 1.00 1.00 1.00 225  Active Scanning 1.00 1.00 1.00 225  Active Scanning 0.99 1.00 0.99 225 

Bruteforce 1.00 1.00 1.00 4,530  Bruteforce 1.00 1.00 1.00 4,530  Bruteforce 1.00 1.00 1.00 4,530 

Encrypted Channel 0.00 0.00 0.00 1  

Encrypted 

Channel 1.00 1.00 1.00 1  

Encrypted 

Channel 1.00 1.00 1.00 1 

Hijack Execution 1.00 1.00 1.00 20  Hijack Execution 1.00 1.00 1.00 20  Hijack Execution 1.00 1.00 1.00 20 

Maintain Access 1.00 1.00 1.00 1,602  Maintain Access 1.00 1.00 1.00 1,602  Maintain Access 1.00 1.00 1.00 1,602 

Normal 1.00 1.00 1.00 44,394  Normal 1.00 1.00 1.00 44,394  Normal 1.00 1.00 1.00 44,394 

Accuracy 0.999842433  
 

50,772 
 

Accuracy 0.999803041 
 

50,772 
 

Accuracy 0.99978335 
 

50,772 

Cross-validation accuracy scores .9998,.9998,.9998,.9998,.09997  Cross-validation accuracy scores .9996,.9998,1,.9999,.9999  Cross-validation accuracy scores .9996,.9998,1,.9999,.09999 

Mean cross-validation accuracy .9998  Mean cross-validation accuracy .9998  Mean cross-validation accuracy .9998 

a) Results No PS + No ROS  b) Results PS + No ROS  c) Results PS + ROS 

 
The performance of various machine learning models was evaluated under different preprocessing conditions, 

including the use of PS feature selection and ROS. The results are presented in terms of precision, recall, F1-

score, and accuracy for each class and cross-validation.  

Figure 8 illustrates the mean cross-validation accuracy for each algorithm across experiments when utilizing 

the Unraveled dataset. 

 

 
Figure 8. Cross Validation Results Unraveled dataset. 

 

 
 

8 Conclusion and Future work 

 
In conclusion, the integration of PowerSHAP feature selection with random oversampling enhanced the 

performance of all classifiers in Dapt2020 experiments, particularly for minority classes, while maintaining 

high accuracy. XGBoost and Decision Tree models exhibited the most substantial benefits from this 

configuration, suggesting its efficacy in handling imbalanced cybersecurity datasets.  
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Integrating PowerSHAP with balancing techniques showed significant promise in improving the detection of 

rare attack types without compromising overall accuracy. This hybrid approach combining PowerSHAP feature 

selection with appropriate balancing methods offers a viable strategy for optimizing intrusion detection systems, 

enabling enhanced detection capabilities across diverse attack types while maintaining high accuracy.  

 

The results in the Unraveled dataset demonstrate that PowerSHAP used with and without Random 

Oversampling improves the performance of classifiers validated by metrics used in experiments. These findings 

underscore the potential of PowerSHAP as a valuable tool for improving the robustness and reliability of 

machine learning models in cybersecurity applications.  

 

Future work is needed to evaluate alternative balancing techniques and classifiers through extensive 
experimentation, which will provide deeper insights into optimizing intrusion detection systems.  
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