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Abstract. In today's world, the rapid progress of artificial 
intelligence (AI) and machine learning (ML) presents 
remarkable opportunities for developing innovative 
solutions to tackle various challenges within the healthcare 

sector. Deep learning (DL) has become a powerful tool in 
healthcare, transforming patient care and improving 
clinical support. It is increasingly utilized to identify 
critical features in medical images that go beyond what the 
human eye can naturally detect. Chest X-ray images are a 
widely used medical tool for detecting various health 
conditions. This covers pneumonia, lung cancer, and other 
issues such as tissue damage and bone fractures. 

Regardless of experience, for radiologists, accurately 
identifying diseases from X-ray images can be a strenuous 
task. Diagnosing pneumonia, a viral lung infection, is 
especially difficult because its symptoms closely resemble 
those of other pulmonary diseases. This similarity reduces 
the accuracy of current diagnostic methods. The vast 
amount of information contained in X-ray images has 
created an increasing demand for computerized support 
systems. This paper compares various computer-aided 

pneumonia identification methods, incorporating different 
deep learning approaches to streamline diagnosis using 
images of chest X-rays. In this study, seven types of deep 
convolutional neural networks have been applied to a 
dataset containing 5,856 chest X-ray images of normal and 
pneumonia cases. It has been observed that VGG-16, 
VGG-19, and ResNet-50 effectively classify images of 
Chest X-ray into normal and pneumonia affected cases. 

Among these architectures, VGG-16 performs the best with 
an accuracy of 91%, followed by VGG-19 at 90.38% and 
ResNet-50 at 89.94%. The results surpass those of the 
advanced techniques mentioned in the literature. 
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1 Introduction 

 
Pneumonia is a lung infection that causes inflammation and fluid buildup in the air sacs, mainly caused by infectious agents like 

bacteria and viruses. Pneumonia presents with a range of symptoms, including a productive or dry cough, chest pain, fever. Its 

effects can vary widely from person to person. It can cause pericardial effusion, a condition in which fluid builds up in the chest 
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and leads to breathing difficulties. Several risk factors can increase the likelihood of developing pneumonia. These include 

conditions like cystic fibrosis, asthma, diabetes, chronic obstructive pulmonary disease (COPD), and heart failure. Additionally, 

factors such as a history of smoking, weakened cough reflexes from a stroke, and a compromised immune system also 

contribute to the risk (Musher & Thorner, 2014 and Rudan, 2008). Infection by bacteria or viruses in the alveoli prompts the 

body's immune system to respond, causing immune cells to accumulate and inflammatory mediators to be released. 

Consequently, the alveoli accumulate pus and cellular debris, impairing gas exchange and leading to respiratory difficulty. In 

more severe cases, the infection may extend to surrounding lung tissues, resulting in consolidation, abscesses, or pleural 

effusion. The severity and progression of pneumonia are determined by the type of pathogen and the individual’s overall health. 
Tragically, pneumonia stands out as one of the top killers of children under the age of five, responsible for approximately 1.4 

million deaths each year. This accounts for 18% of global child mortality in this age group. Although pneumonia affects 

children globally, this condition is particularly widespread in South Asia and sub-Saharan Africa. Pneumonia is categorized as 

either infectious or non-infectious, depending on its underlying cause. Infectious pneumonia is further divided into subtypes, 

including bacterial, viral, mycoplasma, and chlamydial pneumonia. Not all pneumonia cases are linked to infections, certain 

types such as immune-associated pneumonia and aspiration pneumonia, are non-infectious in nature. Pneumonia is categorized 

by its infection source, such as community-acquired pneumonia (CAP), hospital acquired (HAP), and ventilator associated 

(VAP) types. Among these, CAP is the most common (Ukwuoma et al., 2023).  However, pneumonia can be prevented through 

basic interventions and treated effectively with affordable and simple medical care (Rello and Diaz, 2003). Timely and 

appropriate medical intervention is also essential in determining the outcome of the condition.   

 
Early detection is crucial for ensuring proper treatment and enhancing survival rates. Computed tomography (CT), X-rays and 

magnetic resonance imaging (MRI) are frequently used for diagnosing lung conditions. These radiological methods help in 

assessing lung conditions effectively. For the early-stage pneumonia detection the most widely used method is Chest X-ray 

imaging. Figure 1 displays an X-ray of a normal lung, an X-ray of a lung affected by bacterial pneumonia, and an X-ray of a 

lung affected by viral pneumonia. The chest X-ray on the left panel shows clear lungs and there is no abnormal opacity present. 

Bacterial pneumonia as shown in the middle panel, typically appears as a localized lobar consolidation. This typically appears in 

the right upper lobe, highlighted by white arrows. In contrast, viral pneumonia, shown in the right panel, exhibits a more 

dispersed "interstitial" pattern affecting both lungs (Kermany et al., 2018). X-ray scans have been used for years to examine 

sensitive areas such a head, chest and bones. However, recognizing pneumonia in chest X-ray images can be a complex process. 

It can sometimes be confused with other diseases or share symptoms with frequently occurring ailments. These uncertainties 

have resulted in a significant amount of subjective judgment when diagnosing pneumonia. As a result, there are often 
differences in diagnosis among radiologists (Ayan & Unver, 2019). Even for experienced doctors, diagnosing pneumonia is a 

complex task, as the images often share similar features with other diseases like lung cancer. Traditional methods are time and 

energy consuming, making it difficult to diagnose pneumonia through a standardized process. Therefore, an automated system is 

necessary for pneumonia detection. 

Fig. 1. Normal and pneumonia affected X-Ray Plate 

 

Deep learning (DL) in healthcare offers remarkable innovation by analyzing large data sets quickly and accurately. Unlike rule-

based algorithms, machine learning improves with increased data exposure. Depending on the experience gained, this allows 
ML algorithms to learn and make predictions. DL is a section of artificial neural networks (ANN), inspired by the biological 

nervous system. It consists of interconnected neurons spread across input layer, hidden and output layers. The connections 

between neurons are the weights assigned. To optimize the model's performance and its accuracy, these weights are adjusted 
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during training (Pillai, 2022). X-ray images are 2-dimensional (D) representations of a 3D body. Convolutional neural networks 

(CNNs) demonstrate superior performance when handling 2-dimensional images. Manual assessment of X-rays by radiologists 

can be time consuming and prone to errors, while computer algorithms quickly process large datasets, improving analysis speed 

and accuracy. These algorithms also detect subtle patterns beyond human perception, enhancing pneumonia detection 

sensitivity.  

 

This research aims to evaluate the effectiveness of CNN, including VGG-16, VGG-19, ResNet-50, MobileNet, NasNet-Mobile, 

and DenseNet. The purpose is to diagnose pneumonia in young children aged 1 to 5 years through chest X-ray imaging. The 
goal of this research is to assess the accuracy of deep learning models in categorizing images as either Pneumonia or Normal. 

The structure of this paper is arranged as follows: Section 1 offers an overview of the study and its context. Section 2 delves into 

previous studies relevant to this research. Section 3 details the datasets and the proposed approach.  The result and evaluation 

criteria have been explored in Section 4. Finally, Section 5 presents a summary of the study while outlining possible research 

directions. 

 

 

2 Literature Survey 
 

Artificial intelligence and deep learning have increasingly become focal points of interest and widespread discussion in recent 

years. (Dixit, 2018). Among these, deep learning has stood out as an essential subset of machine learning, modeled after the 

intricate processes of the human brain. The healthcare industry, characterized by vast amounts of data and a pressing demand for 

efficiency and accuracy, provides an optimal setting for leveraging machine learning(ML) methods such as DL (Krumholz). The 

scan line technique is utilized to optimize X-ray images of the chest to exclude unrelated body regions and prevent diagnostic 

inaccuracies, as described in (Hermann, 2014). Deep learning-driven approaches for identifying chest pathologies were also 

discussed (Bar et al., 2015). A methodology using CNN was proposed for prostate segmentation in MRI volumes (Milletari, 

2026), while a sophisticated deep neural network model was presented for skin cancer classification with dermatologist-level 

expertise (Esteva et al., 2017). CheXNet is presented as a deep convolutional neural network comprising 121 layers. ChestX-
ray14, an extensive public dataset with more than 100,000 frontal chest X-ray images covering 14 diseases, serves as the 

training foundation. They compare CheXNet with radiologists using the Receiver Operating Characteristic (ROC) curve, which 

plots the model's sensitivity against 1 – specificity (Rajpurkar, 2017). A fast-growing technology that's making waves in recent 

research, deep learning stands out for its efficiency in processing and analyzing vast data (Al-Antari et al., 2018 and Al-Masni et 

al., 2018). The effectiveness of customized CNNs was examined to recognize pneumonia and distinguish between bacterial and 

viral types in pediatric chest X-ray images (Kermany et al., 2018). A study to expand a dataset by generating synthetic X-ray 

samples of the chest using GANs, which enable the exploration of the fundamental structure within diagnostic images, making it 

possible to generate accurate, high-definition samples (Madani et al, 2018). Transfer learning (TL) was utilized to train a neural 

network with significantly less data than traditional methods require. This approach also enhanced diagnostic transparency and 

interpretability by emphasizing the regions identified by the neural network (Kermany et al., 2018). Pneumonia detection was 

performed using a CNN model (Abiyev & Ma’aita, 2018). Modern strides in deep learning (DL) have surpassed performance by 
humans in several practices. DL can be used to predict treatment results, exemplified in Chevalier studies and cancer therapies. 

Promising results in categorizing thoracic illnesses using X-ray images are shown by DL algorithms and labeled data.  

 

Traditionally, human professionals have developed and tested deep neural network (DNN) models through a time-consuming 

and resource-intensive trial-and-error process (Stephen et al., 2019). For pneumonia detection, a region-based CNN was applied 

alongside image augmentation for pulmonary image segmentation (Sirazitdinov et al., 2019). A pioneering multi-scale 

heterogeneous 3D convolutional neural network (MSH-CNN), grounded in chest computed tomography (CT) images, was 

proposed (Xiao et al., 2019). The hierarchical CNN framework, along with a unique sin-loss function design, was employed to 

enhance pneumonia detection (Xu et al., 2018). The evaluation focused on four deep learning models where two pre-trained 

models namely MobileNetV2 and ResNet152V2 was used along with a CNN model, and an LSTM model (Elshennawy & 

Ibrahim, 2020). Each model was evaluated with a range of parameters, applying traditional classification evaluation metrics. 

Each model underwent evaluation under different parameters, employing standard classification evaluation metrics. Pneumonia 
detection was carried out using the ResNet152 model, employing TL techniques. It achieved a notable recognition rate of 97.4% 

without any adjustments or feature preprocessing (Talo, 2019). A study (Varshni et al., 2019) investigated detection of 

pneumonia using multiple CNN-based models for feature extraction via TL employing various classifiers as predictive tools. It 

was found that the integration of CNN model along with supervised classifiers plays a crucial role in assessing images of chest 

X-ray, particularly for identifying pneumonic conditions. Feature extraction with DenseNet-169 and prediction using SVM 

produced the best results. 
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Segmentation of lung regions was performed on chest X-rays, and eight statistical features were extracted for classification 

using multi-layer perceptron (MLP), random forest, sequential minimal optimization (SMO), classification via regression, and 

logistic regression. The MLP classifier achieved 95.39% accuracy on 412 images (Chandra & Verma, 2020). In (Chen et al., 

2020) the model was developed and validated using the dataset from the DLAI3 Kaggle Challenge (Jonathan, 2021), consisting 

of 50 CXR images (25 Covid-19 positive and 25 negative). The dataset was split, with 80% allocated for training and the 

remaining 20% reserved for validation. A total of 250 images distributed across different file formats were used for testing, 

which included 7 positive cases. The proposed model utilizes VGG16 framework, enhanced with pre-trained weights from 

ImageNet. Among the models evaluated VGG16 model outperformed the others. After 10 epochs, the VGG16 model reached 
98% accuracy on the test data. Additionally, VGG16 demonstrated high accuracy in identifying the positive class, showing 

superior performance. However, they trained the model with very limited number of training set. In ( Mabrouk et al., 2022) 

ensemble method was proposed that integrates forecasts from several CNN models for enhanced classification performance. 

Transfer learning (TL) and fine-tuning were utilized, and the framework was optimized with batch normalization and dropout 

layers. Three well-established pre-trained models namely DenseNet169, MobileNetV2, and Vision Transformer were utilized, 

initially trained on the ImageNet database and later fine-tuned on a X ray images of chest dataset. During experimentation, the 

model’s extracted features were fused, resulting in superior performance compared to top-tier methods. The proposed ensemble 

learning approach achieved a testing accuracy of 93.91% and an F1-Score of 93.88%. In (Pugliesi, 2019) VGG-16 framework 

attained an accuracy of 74.9% alongside a loss of 48.8% during a testing. In contrast, the ResNet-50 framework outperformed it, 

achieving an accuracy of 88.9% with a lower loss of 28.9% during testing. The analysis reveals the potential of DL models for 

pediatric pneumonia detection, with ResNet-50 showing a marked advantage over VGG-16. 
 

 

3 Proposed Methodology 
 

This research focuses on utilizing deep learning for automated pneumonia diagnosis. Its goal is to assess and compare the 

effectiveness of a standard CNN model with varied transfer learning approaches on chest X-ray datasets. The dataset is split into 

3 separate folders: train, test, and validation. Each of these folders include subdirectories for the two image categories: 
Pneumonia and Normal. It consists of 5,856 JPEG images of chest X-ray distributed across two categories. X-ray images of 

Chest were taken from the anterior-posterior view were sourced from Mendeley data. They were collected from past cases of 

pediatric patients aged 1 to 5 years at Guangzhou Women and Children’s Medical Center, Guangzhou (Kermany, 2018). The X-

ray scans were carried out as a regular part of the patients' treatment. To maintain accuracy and reliability in the analysis, a 

rigorous quality control process was implemented, eliminating any low-quality or unreadable scans (Kermany, 2018). Two 

experienced physicians reviewed and confirmed the diagnoses of the selected images to ensure their appropriateness for 

enhancing the AI model. To mitigate scoring errors, a third expert conducted an additional evaluation. This ensured the accuracy 

of the assessment set. The dataset is structured into three sets: a training set with 5,216 images, a testing set contains 624 

images, and a validation set with 16 images. Regarding the distribution of cases, a total of 4,273 images are categorized as 

pneumonia cases, while 1,583 images represent normal cases. 

 
The pneumonia dataset was prepared for training using ImageGenerator, which was utilized to rescale and augment the images, 

enhancing the model's robustness by introducing diverse image variations. During training, data augmentation techniques were 

applied, including pixel value rescaling (normalized to a range of 0 to 1 by dividing by 255), random shearing, zooming, and 

horizontal flipping. These transformations help to reduce overfitting by exposing the model to varied image versions, promoting 

the learning of generalizable features rather than memorizing specific details. The validation and test images were rescaled to 

normalize pixel values, with no additional augmentation applied, preserving their original structure for unbiased evaluation. 

Images from their respective directories were utilized for training, validation, and testing, configured with specified target 

dimensions and batch size. To meet the requirement of the task, this classification was done, and the images were categorized 

into two groups namely Normal and Pneumonia. This study evaluates a baseline CNN 

for detecting pneumonic conditions from X-ray images of chest. After that, transfer learning (TL) is applied using DL models 

such as VGG-16, VGG-19, ResNet-50, MobileNet, NasNet-Mobile, and DenseNet etc. This approach boosts the model's 

performance. 
 

3.1 Convolutional Neural Network (CNN) 
 

Convolutional Neural Networks (CNNs) have transformed deep learning, particularly in image recognition. Their advanced 

architectural design enables them to extract intricate features from images, surpassing traditional neural networks (O’Shea, 2015 

and Aghdam & Heravi, 2017). A CNN generally consists of three primary layers i.e. the input layer, hidden layer, and the output 
layer (Wu, 2017). Raw images are initially fed into the input layer. They are then passed to the hidden layer, where feature 
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extraction takes place. The hidden layer consists of three key components i.e. convolution layers, pooling layers, and fully 

connected (FC) layers.  The foundation of a CNN model is its ability to extract features, a process primarily handled by the 

convolution layer (Lavin & Gray, 2016). The convolution layer analyzes raw images using a sliding window technique, having a 

filter of fixed-size. This allows it to automatically detect and extract relevant features from the images. This capability to learn 

and detect essential patterns makes CNNs highly effective in image recognition. The CNN architecture is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2. CNN architecture. 

 
The primary objective of convolutional layer's is to extract features from images. It contains multiple convolution kernels, with 

the layer's output being calculated by applying these kernels to the input data as shown in equation 1.  

 
 

In this context,  represents the feature map which is output from previous layer, while   is the resultant output of th 

channel in the th convolutional layer. The activation function is denoted as (.).  is the subset of input feature maps,  is 

the convolutional kernel, and  is the corresponding weight for this kernel.  

 

After the convolutional layer, the pooling layer helps in reducing dimensionality, making the model more efficient. While 

preserving essential features, the pooling layer minimizes the dimensionality of feature maps from the convolution layer. This 
enhances computational efficiency and improves pattern recognition. The FC layer represents the final stage of the model, 

integrating extracted features for classification (Yamashita et al., 2018). This layer fully connects and flattens the processed 

feature maps for classification, enabling the CNN to accurately categorize images based on extracted features. This enables 

CNNs to be highly effective for tasks like object detection and image classification (Bouvrie, 2006). 

 

3.2 VGG16 
 
Visual Geometry Group 16 (VGG16), a prominent CNN framework as illustrated in Figure 3. It is recognized for its outstanding 

performance in computer vision tasks, particularly those related to image analysis (Rezende, 2018). The creators of VGG16 

carefully examined existing networks and made notable improvements by adopting a compact (3 × 3) convolution filter 

architecture, which surpassed earlier cutting-edge model designs. The "16" in VGG16 refers to its depth, consisting of 16 layers 

with trainable weights. With its extensive structure, VGG16 contains a staggering 138 million parameters, making it one of the 
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largest and most powerful neural networks in computer vision. VGG-16 processes fixed-size 244×244 pixel RGB images, with 

each pixel's RGB value pre-processed by subtracting its mean before inputting into the network. 

 

Fig. 3. VGG16 architecture. 

 

After preprocessing, images pass through convolutional layers with 3x3 filters, and in some cases, 1x1 filters for linear 

transformations followed by non-linear activation (Qassim et al., 2017). The convolution operation uses a default stride of 1 for 

accurate feature extraction. Following several convolutional layers, five max-pooling layers help shrink the size of the data, 

making processing faster and more efficient (Xie et al., 2027). 

 

3.3 VGG19 
 

Visual Geometry Group 19 (VGG-19) is a deep neural network (DNN) consisting of 19 weighted layers, that include 16 

convolutional layers and 3 FC layers. Figure 4 illustrates the structure of its architecture.  

Fig. 4. VGG19 architecture. 

It’s simple yet deep architecture showcased that enhancing network depth can greatly boost performance in image recognition 

tasks. While the deeper connectivity of the VGG architecture enhances model performance, it may encounter the "Vanishing 

Gradient" issue due to the increased network depth. The training time for VGG is quite extensive (Khan et al., 2021). Despite 

this, the architecture has delivered excellent results in straightforward application in classification and object recognition, 

thereby a go-to choice for deep learning applications. 

 

3.4 Resnet-50  
 

ResNet, abbreviated as Residual Network, is a unique type of CNN highly regarded for its innovative approach to managing 

deep network structures. It incorporates the principle of residual learning facilitates efficient training of exceptionally deep 

neural models while addressing the problem of gradient disappearance (Akiba et al., 2017). This issue previously limited deep 

networks by obstructing gradient propagation during backpropagation. The solution is the use of shortcut connections, also 

called skip or identity mappings. ResNet uses shortcut connections to bypass certain layers, forming residual blocks that retain 

original information while enabling the network to learn residual features. This design converts a traditional network into a 
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residual network, forming the basis for various ResNet variants with different layer counts. ResNet-50, with its 50 layers, is one 

of the most commonly used variants. 

 

ResNet-50 consists of 48 convolutional layers, along with one MaxPool layer and one average pooling layer. Figure 5 illustrates 

the architecture of ResNet-50.  

 

Fig. 5. Resnet-50 architecture. 

 

It showcases the effectiveness of stacking multiple residual blocks to build a strong and expressive CNN. With its deep 
architecture, ResNet-50 is highly effective at learning intricate structures and attributes extracted from data, rendering it highly 

suitable for demanding computer vision applications like image recognition, identification of objects, and segmentation 

(Sankupellay & Konovalov, 2018, Mikami et al., 2018). The ResNet-50 architecture has established itself as a standard model 

for assessing reliability of different DL models in image analysis, demonstrating its adaptability and dependability. The ResNet 

series began with the ResNet-34 architecture, featuring 34 layers. It introduced shortcut connections, which enhanced CNN 

depth, improved information flow during training, reduced vanishing gradients, and facilitated better optimization, paving the 

way for advancements in residual learning. 

 

3.5 MobileNet 
 

MobileNet, introduced by Google in 2017, is a compact CNN designed for enhanced performance and speed with minimal 

computational requirements. This makes it well-suited for mobile and embedded systems with limited processing power. The 

architecture utilizes Depth-wise Separable Convolution, which divides conventional convolutions into two stages: a depth-wise 

convolution for filtering individually for each input channel and a convolution at the point level for combining these filtered 

channels. This architecture greatly minimizes the count of parameters and computational steps, resulting in faster and compact 

model. Its versatile architecture, shown in Figure 6, is predominantly used for tasks like object detection, classification, face 

analysis, and localization. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 6. MobileNet architecture. 

Additionally, MobileNet  (Mabrouk, 2022) incorporates adjustable hyperparameters—α (width multiplier) and ρ (resolution 

multiplier), which enable users to modify the model's size and computational demands, making it adaptable to different resource 
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limitations. MobileNet has three versions: V1, V2, and V3, each enhancing accuracy and efficiency. It is supported by major 

ML frameworks and offers pre-trained weights, making it ideal for practical computer vision applications. 

 

3.6 NasNet-Mobile 
 

NasNet-Mobile is a pre-configured neural network built for use in mobile and low-power environments. It is a compact version 

of the NasNet (Neural Architecture Search Network) models, offering a practical equilibrium between computational 

operational efficiency and prediction reliability. This model has been trained on a subset of the ImageNet dataset to enhance its 

performance across a diverse array of tasks in image classification. The stem cell layer, made up of a Conv2D layer with kernel 

of size 3x3 and 32 filters, reduces the spatial dimensions of the input image to enable efficient feature extraction and conserve 

computational resources. The architecture includes six Normal Cells, which maintain the spatial extent of the feature maps. Each 

cell incorporates depth wise separable convolutions (3x3), inverted residual blocks (1x1 followed by 3x3), and squeeze-and-

excitation blocks, enabling the model to capture complex features efficiently with reduced computational overhead. The 

NasNet-50 architecture is depicted in Figure 7. 
 

Fig. 7. NasNet-Mobile architecture. 
 

The model includes two Reduction Cells, which use depth wise separable convolutions (3x3) and inverted residual blocks to 

halve the spatial dimensions and double the feature channels, effectively condensing essential patterns for deeper layers. The top 

layers consist of a Global Average Pooling (GAP) layer that condenses each feature map into a single value, subsequently, a 

Dropout layer with a 0.5 rate is applied to reduce overfitting, and a Dense layer with one neuron and sigmoid activation to 

produce binary classification outputs (Naskinova, 2023). 

 

3.7 DenseNet 
 
DenseNet architecture was engineered to fix the vanishing gradient issue in deep learning models ensuring better information 

flow between input and output layers (Pillai, 2022). In a neural network with N layers, a standard architecture features N 

connections, whereas a DenseNet model has N(N+1)/2 connections, greatly improving the inter-layer connectivity. Figure 8 

shows the DenseNet architecture. 
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Fig. 8. DenseNet architecture. 

 

As the network depth increases, the number of connections becomes unsustainable, with each layer receiving inputs from all 
preceding layers. For instance, in a network with ten layers, the 10th layer uses feature maps from all nine previous layers.  If 

every layer generates 128 feature maps, it leads to a rapid increase in the number of feature maps. To address this, dense blocks 

are introduced, containing a predefined number of layers. The output from a dense block is passed through a transition layer, 

which applies 1x1 convolution followed by max pooling to reduce feature map size. DenseNet improves information flow by 

connecting each layer to all preceding layers, enabling enhanced learning compared to traditional architectures. 

 

 

4 Results 
 

The study focusses on the crucial role of CNN and DL techniques in Pneumonia detection. Table 1 shows the evaluation metrics 

of different DNN architectures. It has been observed that among all deep learning models, the top three performers in terms of 

accuracy are VGG-16, VGG-19 and ResNet-50, as evaluated on the chest X-ray image dataset. Using CNN, especially VGG-16, 

VGG-19 and ResNet-50, our study investigated their potential in classifying images of chest X-ray into pneumonia and normal 

conditions accurately. In case of VGG-16 and VGG-19, testing accuracies of 91.02% and 90.38% were observed, whereas in 

case of ResNet-50, testing accuracy of 89.94% was noticed.  
 

Table 1. Evaluation metrics of different deep neural network architecture 

 

Model 
Class 

(False/True) 
Precision Recall F1-Score 

Accuracy in 

percent - % 

(average) 

Baseline CNN 
0 0.62 0.78 0.65  

88.89 1 0.63 0.74 0.66 

VGG-16 
0 0.91 0.85 0.88  

91.02 1 0.91 0.95 0.93 

VGG-19 

 

0 0.89 0.83 0.86  

90.38 1 0.88 0.94 0.92 

ResNet-50 
0 0.93 0.76 0.83  

89.94 1 0.87 0.96 0.91 

MobileNet 
0 0.61 0.75 0.63  

89.42 1 0.62 0.74 0.64 

NasNet-Mobile 
0 0.82 0.87 0.86  

84.13 1 0.84 0.89 0.87 

DenseNet 
0 0.62 0.76 0.67  

1 0.60 0.72 0.65 85.58 
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To assess the reliability of our classification approach, we analysed key metrics such as precision, recall, F1-score, and 

accuracy, as outlined in Table 1. Accuracy measures overall correct predictions, but in imbalanced datasets, it may not reflect 

the model's ability to distinguish classes equally. In medical image classification, precision and recall are more informative. 

Precision shows the accuracy of positive predictions, while recall measures the percentage of actual positives correctly 

identified. Additionally, it is it's important to consider metrics like F1-Score rather than just accuracy, as it helps ensure precise 

identification of both diseased and non-diseased individuals. In the pneumonia detection task, the performance of the proposed 

technique is typically assessed by calculating well-known performance metrics, namely Confusion Matrix (CM). In binary 

classification, the terms true positive (TP), true negative (TN), false positive (FP), false negative (FN) are defined based on the 
correctness of predictions. The CM for VGG-16 and VGG-19 is shown Figure 9 and Figure 10. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 9 Confusion Matrix using VGG-16 

 

In case of VGG-16. it can be observed that out of 624 test X-ray images, 379 images have been truly predicted as pneumonia 
affected images, whereas188 images have been truly predicted as normal images. Similarly, for VGG-19, 379 images have been 

accurately classified as pneumonia affected images, whereas 186 images have been correctly classified as normal images. Using 

the above two VGG-16, VGG-19 architecture only 11 images has been predicted as normal images, though they were 

pneumonia affected. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 10 Confusion Matrix using VGG-19  
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The Confusion Matrix (CM) for ResNet-50 is shown in Figure 11. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 11 Confusion Matrix using ResNet-50  
 

Using the ResNet-50 architecture, it can be observed that 380 images were correctly identified as pneumonia affected, whereas 

183 images were correctly identified as normal images. Additionally, it was observed that 10 images have been predicted as 

normal images, though they were pneumonia affected, whereas 51cases of pneumonia affected patients were wrongly predicted 

as normal patients. 

 

The VGG-16 used for the research work has a total of 21,137,729 parameters. Out of these total parameters 6,423,041 are 

trainable parameters and 14,714,688 are non-trainable parameters. While plotting the Training vs. Validation Accuracy graph 

and Training vs. Validation Loss graph for VGG-16 , VGG-19 and ResNet-50, the model has been run with 30 epochs. Figure 

12(a) shows the Training vs. Validation Accuracy graph, Figure 12(b) displays the Training vs. Validation Loss graph using 

VGG-16.  Whereas Figure 13(a) shows the Training vs. Validation Accuracy graph, Figure 13(b) displays the Training vs. 
Validation Loss graph using VGG-19.  

 

 

   Fig. 12(a). Training vs. Validation Accuracy using VGG-16           Fig. 12(b). Training vs. Validation Loss using VGG-16 

 

It can be observed from Figure 12(a) and Figure 12(b) that for VGG-16 model, the training accuracy obtained was 0.9413 and 

training loss achieved is 0.1666. Another key aspect of this model is that it achieved a validation accuracy of 0.7613 and a 
validation loss of 0.4593.  
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Fig. 13(a). Training vs. Validation Accuracy using VGG-19          Fig. 13(b). Training vs. Validation Loss using VGG-19 
 
It can be observed from Figure 13(a) and Figure 13(b) that for VGG-19 model, the training accuracy obtained was 0.9326 and 

training loss achieved is 0.1716. It's worth mentioning that the same model achieved a validation accuracy of 0.8276 and a 
validation loss of 0.2996.  

 

Figure 14(a) shows the Training vs. Validation Accuracy graph, and Figure 14(b) show the Training vs. Validation Loss graph 

using ResNet-50.  

 

     

Fig. 14(a). Training vs. Validation Accuracy using ResNet-50         Fig. 14(b). Training vs. Validation Loss using ResNet-50 

 

It can be observed from Figure 14(a) and Figure 14(b) that for ResNet-50 model, the training accuracy obtained was 0.9333 and 
training loss achieved is 0.2026. Another key point is that for the same model, the validation accuracy obtained was 0.815, and 

the validation loss achieved was 0.484 respectively.  

 

Table 2 shows the Performance comparison of DL models (Pugliesi, 2019 for VGG-16), (Pugliesi, 2019 for ResNet-50) and the 

proposed DL work with VGG-16, VGG-19 and ResNet-50 as the backbone network. In this work, an average accuracy of 

91.02% was achieved for VGG-16, an accuracy of 90.38% is obtained for VGG-19, and an accuracy of 89.74% was achieved 

for ResNet-50 models. The results clearly indicate that our approach for the VGG-16 deep learning model outperforms the work 

of Pugliesi (2019), in terms of accuracy. Additionally, our ResNet-50 deep learning model also demonstrates superior accuracy 

compare to  Pugliesi (2019) work. 
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Table 2.  Comparative analysis with the work (Pugliesi, 2019) for VGG-16, Resnet-50 and our proposed DL models. 

 

Parameters 

Measured 

DL Models –  

Classification 

(Pugliesi, 2019) 

VGG-16 

DL Models – 

Classification 

(Pugliesi, 2019) 

ResNet-50 

Proposed 

(Backbone 

N/W: VGG-16) 

Proposed 

(Backbone 

N/W: VGG-19) 

Proposed 

(Backbone N/W: 

ResNet-50) 

Precision NA NA 0.91* 0.88 0.87 

Recall NA NA 0.95 0.94 0.96* 

F1- score NA NA 0.93* 0.92 0.91 

Accuracy in 

percent - % 

(average) 

74.9 % 88.9 % 91.02 % 90.38 % 89.74 % 

NA – Not available, * - best performing values are indicated in bold. Accuracy – values are indicated in bold. 

 

 
It can be observed from Table 2, that the precision achieved is 0.91 for VGG-16 DL model, which is higher than the precision of 

VGG-19 and ResNet-50 models. Additionally, it is noteworthy that the ResNet-50 model achieved a recall of 0.96, which is 

higher than that of  VGG-16 and VGG-19 models. Similarly, F1-score achieved is 0.93 for VGG-16 model, which is higher than 

the F1-score of VGG-19 and ResNet-50 models. 

 

In our work, we utilize pre-trained DL models, like VGG-16, VGG-19, ResNet-50, MobileNet, NasNet Mobile, and DenseNet. 

All code is executed on a Kaggle notebook with a P100 GPU, ensuring efficient training and evaluation of the models. The code 

leverages essential libraries such as TensorFlow, Keras, Sklearn, and Seaborn for model training, evaluation, and visualization. 

To enhance model generalization and prevent overfitting, we apply data augmentation to the training dataset using 

ImageDataGenerator. To enhance the dataset, we apply various augmentation techniques, including scaling pixel values to the 

[0,1] range, rotating images randomly up to 20 degrees, shifting them horizontally and vertically up to 20%, applying shear 

transformations nearly 20%, adjusting zoom levels up to 20%, and flipping them horizontally. Additionally, we use fill_mode to 
smoothly fill any gaps created during these transformations. For the validation dataset, only rescaling is applied to maintain 

consistency and ensure fair model evaluation. The key parameters used in our model training for enhanced transparency and 

reproducibility are the Learning rate which is set at 0.0001, Batch size is 32, Optimizer used is Adam, Regularization technique 

i.e.  Dropout rate = 0.5, Loss function used is Binary Cross-Entropy, Activation functions is ReLU for the dense layer with 256 

units, and Sigmoid for the output layer, suitable for binary classification. This method helps transfer learning models adapt 

better, making them more accurate when handling new data.  

 

 

5 Conclusions 

 
The study highlights the significant impact of medical imaging and deep learning in diagnosing pediatric pneumonia. The 

research utilizes standardization and various pre-processing techniques to improve data quality, thoroughly analysing their 

influence on the effectiveness of the CNN model. Exploring alternative pre-processing methods could lead to varying outcomes 
and conducting a sensitivity analysis on different techniques would further reinforce the study’s conclusions. The research 

exclusively assesses the effectiveness of CNN frameworks on the dataset utilized for training and testing. Our study explored 

the effectiveness of CNN, specifically VGG-16, VGG-19, and ResNet-50, in classification of X-ray images of the chest into 

pneumonic and normal condition. For VGG-16 and VGG-19, testing accuracies of 91.02% and 90.38% were achieved, with 

corresponding testing losses of 25.22% and 28.90%, respectively. These models outperformed ResNet-50, which recorded an 

accuracy of 89.94% and a loss of 35.42% during testing. Although the study compares VGG-16, VGG-19, and ResNet-50, it 

does not evaluate their performance against other pneumonia detection approaches, such as traditional machine learning 

algorithms or radiologist assessments. Comparing these models with other approaches would provide a broader perspective on 

the advantages of deep learning frameworks for this specific implementation.  

 

The research does not consider the potential impact of false positives on clinical decision-making. False positives could result in 
unnecessary follow-up tests or treatments, potentially straining healthcare resources and affecting patient well-being. A 

thorough analysis of false positives and their implications would enhance the study’s relevance and applicability in clinical 

practice. Our research contributes to growing evidence supporting the use of DL models for pediatric pneumonia detection. The 

promising results achieved with the VGG-16, VGG-19, and ResNet-50 models highlight their potential in the medical imaging 

field, offering significant improvements in patient care. Accurate and efficient pneumonia diagnosis in pediatric patients is 
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essential for timely treatment and improved health outcomes. As technology progresses, integrating DL architectures into 

clinical practice could result in more effective disease detection and improved resource allocation within healthcare settings. 

 

In the future, we plan to develop a web-based application to make pneumonia detection more accessible and efficient for 

healthcare professionals. This platform will enable users to upload images of chest X-ray and receive instant insights powered 

by deep learning models. By developing an interface and ensure reliable performance, we hope that the gap will be reduced 

between medical practice and research. In the future, we also aim to expand the system’s capabilities to detect other respiratory 

conditions, making it a more comprehensive tool for early diagnosis and better patient care. 
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