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Abstract. This study presents a comprehensive dataset designed 

for the visual detection of crop diseases, comprising 43,267 

images of 12 crop species across 15 disease classes. The dataset 
was developed over 14 months of dedicated human effort. To 

evaluate its effectiveness, several plant disease detection and 

classification algorithms were tested. The models generated by 
these algorithms were deployed on mobile devices and specialized 

hardware, enabling practical applications ranging from drones to 
Android smartphones, with on-device detection capabilities. 

The results highlight the performance of deep learning techniques, 

with the YOLOv4 algorithm achieving a mean average precision 
(mAP) of 71.04%, while the VGG model attained 92% precision 

and 90% accuracy. These findings demonstrate the potential of 

deep learning in enhancing crop monitoring, offering significant 
support for pest and disease control in vegetable crops. This work 

underscores the role of advanced technologies in promoting 

sustainable agricultural practices. 
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1 Introduction 
 

From an economic and social perspective, the agricultural sector plays a crucial role in the Mexican region of Sinaloa, where it 

represents a significant activity. In 2019, Sinaloa had 1,058,758 hectares under cultivation, contributing 9.1% to the national total 

agricultural production value. This underscores the importance of agriculture in Sinaloa as a fundamental region of the country 

and a key driver of economic output. 

 

Horticultural pests and diseases pose a significant challenge to agricultural activities in Sinaloa and across Mexico, as they can 

severely threaten crop productivity. According to (Velusamy et al., 2021), these issues have a profound impact on the agriculture 

industry, requiring the development and implementation of innovative solutions to safeguard crop quality and yield. In this context, 

precision agriculture has emerged as a promising approach that leverages technology to enhance agricultural practices (Memon et 

al., 2023). One notable example is the use of unmanned aerial vehicles (UAVs) for monitoring and early detection of crop diseases, 

enabling timely intervention (Velusamy et al., 2021; Mogili & Deepak, 2018). Additionally, high-resolution satellite sensors and 
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other remote sensing technologies further enhance disease detection capabilities, highlighting the potential of technological 

advancements in addressing agricultural challenges (Zhao & Li, 2018). 

 

The growing adoption of precision agriculture, particularly in developed countries, is evidenced by the increasing use of Global 

Navigation Satellite System-based technologies (Nowak, 2021). However, further technological advancements are deemed 

essential to maximize crop yields and mitigate the threats posed by pests and diseases effectively (Buddhi & Joshi, 2022; Brenes 

& Raventos, 2020). By enhancing productivity and sustainability, precision agriculture techniques have the potential to transform 

Sinaloa's agricultural landscape. This underscores the pivotal role of technology in securing the future of agriculture in regions 

heavily dependent on this sector, such as Sinaloa, and calls for a concerted effort toward the development and adoption of 

innovative agricultural technologies. 

 

In 2022, Sinaloa cultivated a total of 1,029,978 hectares, contributing 7.9% to the national agricultural production value. The 

Mexican states with the highest contributions were Michoacán (12.7%), Jalisco (12.0%), and Sinaloa (7.9%) (Amarillas, 2022). 

This highlights the economic and social significance of agricultural activity in the region. However, the presence of horticultural 

pests and diseases can cause substantial damage if not addressed promptly, making the timely and accurate detection of crop 

diseases a cornerstone of precision agriculture. 

 

Plants are increasingly threatened by dangerous diseases that significantly reduce the quality and quantity of agricultural products. 

Early detection and prevention of plant diseases are, therefore, crucial to mitigating these impacts. Traditionally, plant diagnostics 

rely on visual inspection by experts, with biological examinations used as a secondary option when needed. However, these 

methods are often costly and time-consuming (Cap et al., 2018). 

 

Advances in technology have introduced various approaches to plant disease detection, including models based on artificial 

intelligence and other techniques (Mohanty et al., 2016; Liakos et al., 2018, González Huitrón et al., 2025). The frequency of pest 

and plant disease outbreaks is rising, posing a serious threat to food security. These outbreaks have far-reaching economic, social, 

and environmental consequences, jeopardizing the stability of the agricultural sector. Despite these challenges, farmers often 

struggle to detect plant diseases in a timely manner. Beyond consulting fellow farmers or utilizing resources like the Kisan hotline, 

their options for immediate intervention are limited. 

 

Accurate identification of plant diseases requires specialized expertise, as well as laboratory infrastructure in many cases, to 

confirm diagnoses and identify diseased leaves effectively (Singh et al., 2020). This underscores the urgent need for accessible 

and efficient disease detection methods to support farmers and enhance food security. 

 

With the progressive advancements in deep learning and its increasing adoption for detection and classification tasks, it is now 

possible to design a system that integrates deep learning techniques to process images of horticultural crops from the generated 

dataset. By combining these advances with specialized hardware and mobile devices, the system aims to enhance early detection 

of pests and diseases, contributing to improved agricultural practices. 

 

The primary objective of this study is to develop a multidimensional horticultural dataset that will serve as a valuable resource for 

detecting diseases in diverse crops, greenhouses, and even urban gardens. Deep learning algorithms are evaluated, and the 

performance of popular models that can be implemented on low-spec hardware and mobile devices with low power consumption 

is compared. Consequently, a secondary objective of this study is to enable detection on mobile devices, such as Android 

smartphones, and specialized hardware, including the Raspberry Pi 4 microcomputer. 

 

This manuscript presents the development of a deep learning-based dataset aimed at improving crop disease detection. Section 1 

discusses the importance of agriculture in Mexico and the impact of diseases on crop yields. Section 2 reviews related research 

on the use of deep learning for plant disease diagnosis. Section 3 outlines the creation of a comprehensive horticultural dataset 

and the training and deployment of detection and classification algorithms on mobile devices and specialized hardware for 

practical applications. Section 4 evaluates the performance of the models using comprehensive metrics. Finally, Section 5 

highlights the study's contributions to precision agriculture and provides recommendations for future research, emphasizing the 

potential of deep learning in crop disease management. 

 

2. Related work 

 
Deep learning has proven to be a powerful tool for diagnosing plant infections, as evidenced by several studies. This highlights 

the significant progress achieved in agricultural technology and disease control. Research, such as that by (Jakjoud et al., 2019; 
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Nagaraju & Chawla, 2020), has demonstrated the considerable potential of convolutional neural networks (CNNs) in this field. 

For instance, (Jakjoud et al., 2019) showcased the adaptability and efficiency of deep learning models through the implementation 

of the VGGnet16 architecture. Similarly, the efforts of (Militante et al., 2019; Ahmed & Reddy, 2021) have enabled the 

identification of various diseases across different plant species. Ahmed’s (Ahmed & Reddy, 2021) mobile-based diagnostic 

system, in particular, has demonstrated practical applicability in real-world scenarios, achieving an impressive accuracy rate of 

94%. 

 

Within this research context, the work relevant to this study can be categorized into two primary areas: the compilation of datasets 

for plant disease detection and the exploration of techniques for disease diagnosis. The former involves the meticulous processes 

of data collection, curation, and annotation to produce comprehensive datasets. These datasets form the foundation for training 

and evaluating machine learning models, enabling the development of algorithms capable of identifying a wide range of plant 

diseases. Such datasets are critical for enhancing the robustness and reliability of these models, ultimately improving their practical 

utility in addressing agricultural challenges. 

 

The high accuracy rates achieved in diagnosing and classifying plant diseases, as demonstrated by (Jasim & AL-Tuwaijari, 2020; 

Ferentinos, 2018), confirm the effectiveness of deep learning techniques. However, (Pradhan & Patil, 2019) emphasizes the need 

for continued research to enhance accuracy and efficiency due to the inherent complexity of plant disease detection. Additionally, 

(Bora et al., 2022) highlights the untapped potential of advanced equipment and methodologies to revolutionize disease detection 

processes. 

 

This section examines the techniques and technologies employed in diagnosing and categorizing plant diseases, including the use 

of convolutional neural networks (CNNs), the development and optimization of deep learning algorithms, and the integration of 

mobile-based systems for field diagnostics. Each method contributes uniquely to the overarching goal of achieving high accuracy 

and efficiency in disease detection, underscoring the multidisciplinary nature of the field. The continuous refinement of these 

approaches, combined with advancements in computing power and improved data accessibility, holds significant promise for 

enhancing plant health management and ensuring the sustainability of agriculture. 

 

2.1 Datasets focused on plant disease detection 
 

In (Hughes & Salathé, 2015), the "PlantVillage Dataset" is introduced as an open repository containing 54,309 images of 14 crop 

species and 38 types of plant diseases. At the time of its release in 2015, it was one of the few publicly available datasets 

specifically designed for plant disease detection. 

 

The dataset includes images of crops such as apple, blueberry, cherry, corn, grape, orange, peach, pepper, potato, raspberry,  

soybean, pumpkin, strawberry, and tomato. It documents 17 fungal diseases, 4 bacterial diseases, 2 mold diseases (oomycetes), 2 

viral diseases, and 1 mite disease. Additionally, 12 of the crop species include images of healthy leaves that show no visible signs 

of disease. Figure 1 illustrates examples of the dataset’s contents. This dataset has played a pivotal role in advancing research on 

plant disease detection and classification, serving as a foundational resource for training and evaluating deep learning models in 

agricultural technology. 

 

 
Fig. 1. Sample images from the PlantVillage dataset. 
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In (Singh et al., 2020), the "PlantDoc Dataset" is introduced as a dataset designed for the visual detection of plant diseases. It 

consists of 2,598 images covering 13 plant species and 17 disease classes, yielding a total of 27 classes (17 disease and 10 healthy). 

The dataset was developed through approximately 300 hours of human labor, involving the annotation of images sourced from 

the Internet. 

 

To demonstrate the dataset's effectiveness, 3 models were implemented for plant disease classification. The results revealed that 

using the PlantDoc dataset improved classification accuracy by up to 31%, showcasing its potential to advance plant disease 

detection. The authors suggest that this dataset can lower the barriers to adopting computer vision techniques in agricultural 

applications. 

 

Compared to the PlantVillage dataset, which contains images captured in controlled environments, the PlantDoc dataset uses real-

world images of healthy and diseased plants. PlantVillage’s controlled settings, with uniform backgrounds and lighting, may limit 

its applicability in real-world scenarios where plant images often include multiple leaves, varying backgrounds, and inconsistent 

lighting. In contrast, the PlantDoc dataset incorporates such variations, making it more practical for real-world disease detection 

tasks. Figure 2 shows a comparison between the PlantVillage and PlantDoc datasets. 

 

 
Fig. 2. Samples of various classes from the dataset PlantDoc show the difference between laboratory-controlled and real-life 

images. 

 

In (Picon et al., 2019), a dataset was developed using images captured with a mobile phone under real-world conditions. This 

dataset includes over 100,000 images across crops such as wheat, barley, corn, rice, and rapeseed, encompassing 17 different types 

of diseases. Similarly, (Tani et al., 2018) describes the creation of a specialized dataset for cucumber leaves, which includes cases 

of multiple infections. The dataset comprises 48,311 images, including 38,821 leaves infected with one of 11 disease types, 1,814 

leaves with multiple infections, and 7,676 healthy leaves. On the other hand, (Liu et al., 2019) developed a smaller dataset 

consisting of 247 images for experimental purposes. To train a support vector machine (SVM) classifier, 100 images were selected 

for training, while 72 images were used for validation and 75 for testing. From the training set, 207 tomato samples and 621 

background samples were manually cropped to create a comprehensive dataset. To enhance the training data, augmentation 

techniques, including random rotations from 0° to 360°, were applied. Examples of these datasets are illustrated in Figure 3. 

 

 
Fig. 3. Examples of the dataset. Top row: tomato samples; bottom row: background with leaves, stems and other objects. 
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2.2 Techniques for plant disease detection 
 

In the paper by (Sankaran et al., 2010), the use of reliable sensors for monitoring plant health and disease under field conditions 

was proposed. However, the adoption of sensor-based disease detection remains limited due to the high cost of hardware and the 

lack of expertise in using such technology, which may restrict its usage. In contrast, (Patil & Bodhe, 2011) focused on extracting 

shape features for sugarcane leaf disease detection, achieving an impressive average accuracy of 98.60%. More recently, (Grinblat 

et al., 2016) explored the use of neural networks for identifying three different legume species by analyzing the morphological 

patterns of leaf veins. 

 

3 Methodology 
 

This section describes the methodology developed for this research, including the strategies used to create a multidimensional 

dataset derived from horticultural sources. This dataset will be valuable for the agricultural sector and for future research focused 

on detecting diseases in various crops and classifying leaves using deep learning methods, a subset of artificial intelligence. 

Additionally, the design of an application incorporating the models trained on this dataset is discussed. An overview of the research 

methodology is presented in Figure 4. 

 
Fig. 4. Methodology. 

 

3.1 Generation of the horticultural dataset 
 

The process of obtaining an effective model for detection and/or classification depends on the data used during model training. 

This process begins with a preliminary review of existing datasets for foliar disease detection algorithms, such as the widely 

referenced PlantVillage dataset. Following this, the selection of crops for the dataset is made, focusing on vegetable crops that are 

commonly grown in the state of Sinaloa, Mexico. 

 

3.1.1 Number of images obtained in the dataset 
 

The dataset generated consists of 43,267 images across 27 different classes. The selected crops include 12 species: cucumber, 

radish, watermelon, melon, basil, pineapple, pumpkin, chiltepin chili, serrano chili, spinach, sweet potato, and tomato. The dataset 

includes images of 11 fungal diseases, 1 viral disease, 3 bacterial diseases, and healthy leaves or leaves without visible disease 

damage for each crop species. Table 1 presents the dataset with selected cultivars and the number of images collected for each 

class. An example of each class is shown in Figure 5. 

Table 1. Healthy and diseased crops in the dataset 

Crop Number of 

Images 

Basil blotch leafminer 2189 

Basil downy mildew 1147 

Basil healthy 3038 
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Chiltepin pepper early bacterial blight 919 

Chiltepin pepper healthy 2706 

Chiltepin pepper whitefly 1026 

Cucumber angular leaf spot 854 

Cucumber gummy stem blight 1140 

Cucumber healthy 2928 

Cucumber mosaic virus 656 

Cucumber whitefly 1068 

Melon angular leaf spot 901 

Melon gummy stem blight 1037 

Melon healthy 2786 

Melon whitefly 1174 

Pineapple healthy 2016 

Pumpkin healthy 2511 

Pumpkin leaf blight 1218 

Radish fusarium rot 1089 

Radish healthy 3037 

Radish whitefly 623 

Serrano pepper healthy 1050 

Spinach healthy 1002 

Sweet potato healthy 2848 

Tomato healthy 314 

Tomato whitefly 1029 

Watermelon healthy 2961 

Total 43267 

 

 
Fig. 5. Sample images for each class in the horticultural dataset. 
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3.1.2 Equipment used to obtain images of the dataset 
 

The image acquisition process was performed using various devices, as shown in Table 2. The images were captured at different 

times to ensure the dataset included sunny, darker, images with a controlled background, and images with a noisy background. 

This approach was intended to create a dataset that functions effectively in the agricultural sector and yields reliable results. 

Table 2. Equipment used. 

Device Resolution 

(MegaPixels) 

Smartphone Xiaomi Mi A3 32 

Smartphone Huawei P20 24 

Camera Canon EOS 250D 24.1 

 

3.1.3 Labeling 
 

Manual image labeling for object recognition is a common task, as it is essential for many supervised learning approaches. 

Consequently, various labeling tools have been developed (Fiedler et al., 2018). 

 

To train an object detection algorithm, each image in the dataset must be labeled. For this purpose, annotations were created in 

both the YOLO and PASCAL VOC formats. Several tools are available for labeling images and generating annotation files in 

TXT format for YOLO and XML format for PASCAL VOC. Some of the most used tools include LabelImg, makesense.ai, and 

Draw Bounding Box, among others. A sample of image labeling using the LabelImg tool is shown in Figure 6. 

 

 
Fig. 6. Screenshot from annotation tool used for labeling 

 

3.1.4 Dataset training 
 

For the detection and classification algorithms, training and validation were performed on a computer equipped with an Intel i5 

processor and an NVIDIA GTX 1050 Ti graphics card with 8GB of RAM. 

 

The training process for the classification algorithms was conducted using Python, Keras v2.2.4 (Chollet, 2015), and TensorFlow 

v1.15.0 (Abadi et al., 2015), which provide a framework for designing and implementing convolutional neural networks (CNNs). 



Huerta-Mora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(2) 2025, 84-97. 

91 

 

Applications and graphical visualizations were developed using the matplotlib library to facilitate the visualization of network 

activations and monitor the training progress. 

 

The dataset, which contains images of both healthy and diseased leaves, was used for this classification model. It was divided into 

80% for training and 20% for validation. The classification task was performed using convolutional neural networks, testing five 

different architectures. The characteristics of the architecture used are detailed in Table 3. 

Table 3. Trained architectures summary 

Network  

Architecture 

Depth Parameters 

(millions) 

Dimensions 

input size 

VGG16 16 15.6 224x224 

InceptionV3 48 23.7 299x299 

MobileNetV2 19 2.3 224x224 

ResNet50V2 50 27.4 224x224 

Xception 71 20.9 299x299 

 

The detection algorithm is highly versatile, making it suitable for implementation on mobile devices across different performance 

ranges. This is due to its low power consumption and the fact that the number of parameters during training depends on the number 

of convolutional layers in each architecture. A lower number of parameters results in faster real-time detection but decreases the 

likelihood of successful detection. Various frameworks facilitate the deployment of detection algorithms on mobile devices, with 

TensorFlow Lite being the most commonly used for Android. 

 

3.1.5 Implementations 
 

The trained detection model was implemented in a mobile application for the Android platform, developed using the Android 

Studio desktop application. The mobile implementation enables farmers and agronomy experts to perform detections more 

efficiently and accurately using their smartphones. 

 

Additionally, a Raspberry Pi microcomputer was used—a low-cost, single-board computer (SBC) designed to broaden access to 

computer technology and support computer science education in schools. For classification and image processing tasks, the 

Raspberry Pi Model 4 was selected. allowing low consumption implementation to image capture using either the official Raspberry 

Pi Camera Module (Pi-Camera) or a general-purpose USB webcam. 

 

The Raspberry Pi operates on a GNU/Linux-based system, which includes a vast collection of software, most of which is 

distributed under free or open-source licenses (Pastor, 2019). 

 

4 Results 
 

This section presents the results obtained from the detection application and its implementation on a microcomputer using the 

developed dataset. Evaluation metrics used to assess the performance of the trained detection algorithms are provided, along with 

a comparison of the training results, which will help ensure a proper evaluation of the dataset. Additionally, the results of 

convolutional neural network architectures for classification are presented, using evaluation metrics derived from the confusion 

matrix. 

 

4.1 Classification Model 
 

Figure 7 shows a flowchart of the real-time classification process using the micro-computer Raspberry Pi. A brief introduction of 

the classification process using the 4 processes consisting of image acquisition, image pre-processing, training, and evaluation is 

shown in the image. 
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Fig. 7. Flowchart for the Raspberry Pi 4 implementation 

 

A variety of evaluation metrics exist to measure a model’s performance, each assessing different aspects of its effectiveness. 

Performance was evaluated by comparing pre-trained models using various metrics. Typically, the performance of pre-trained 

models is assessed using a test dataset. 

 

Metrics such as Precision, Accuracy, Recall, and the F1-score were used to evaluate these models. 

Precision, also known as "positive predictive value," is defined in Equation (1). It measures the degree of certainty in the model’s 

predictions by indicating the proportion of predicted positives that are actually positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(1) 

Recall, also known as "Sensitivity," measures how effectively the model identifies positive instances. In other words, it evaluates 

the model's ability to correctly predict positive examples while also quantifying its ability to minimize false negatives. 

To calculate recall, the number of true positives is divided by the sum of true positives and false negatives, as shown in Equation 

(2). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(2) 

The F1-score, the measure of the efficiency of the trained model, is determined as the harmonic mean of the accuracy and recall. 

It focuses on the analysis of positive classes. A high value of this metric indicates that the model performs best in the positive 

class. It is defined in the equation (3). 

𝐹1 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(3) 

Typically, accuracy is the most commonly used metric to evaluate classification performance. This metric calculates the 

percentage of samples that are correctly classified and is represented in the equation (4). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

(4) 

At this stage, an evaluation of the pre-trained models for the plant disease classification task was performed on the different classes 

of the developed dataset. The results and training times are shown in the table 4. 
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Table 4. Testing performance (%) for each pre-trained model 

Network Architecture Recall Precision 

VGG16 85 92 

MobileNetV2 62 77 

InceptionV3 67 80 

ResNet50V2 79 87 

Xception 83 94 

 Accuracy F-Score 

VGG16 90 90 

MobileNetV2 61 64 

InceptionV3 65 60 

ResNet50V2 78 79 

Xception 89 86 

 Time (mins) 

VGG16 252 

MobileNetV2 134 

InceptionV3 208 

ResNet50V2 225 

Xception 240 

 

The VGG16 model has the highest recall value, indicating a low presence of false negatives across all classes. Conversely, a low 

recall value suggests a higher number of false negatives. Precision measures the proportion of correctly predicted positive cases, 

while recall quantifies the model's ability to detect actual positives. When these metrics are applied to multiple classes, the values 

obtained for each class are averaged in a weighted manner. The F1-score provides a balanced measure that combines precision 

and recall. When the dataset contains an equal number of images per class, precision and recall contribute equally to the F1-score. 

Accuracy represents the ratio of correct predictions to the total number of examples, expressed as a percentage, and reflects the 

model’s overall performance in a classification task. 

 

Among the tested architectures, VGG16 achieved the highest performance across all metrics. Its superior accuracy suggests that 

it is the most efficient architecture for this specific task. The difference lies in the number of parameters, as VGG16 has a lower 

depth compared to other architectures. However, when considering processing time, MobileNetV2 demonstrated the best 

efficiency, as it required the shortest training time due to its lower number of parameters. A lower parameter count improves 

computational efficiency compared to other architectures, with only a minor trade-off in accuracy. This trade-off is acceptable in 

scenarios where higher processing efficiency is prioritized, particularly for real-time applications with limited hardware resources. 

For low consumption device implementation on the Raspberry Pi, the trained model was exported as an H5 file, enabling 

portability to the microcomputer. Figure 8 illustrates the real-time classification process using the Pi-Camera. Each transfer 

learning architecture was deployed on the Raspberry Pi, with classification results summarized in Table 5. To validate the training 

of these convolutional neural network architectures, random tests were conducted using various classes. 

Table 5. Inference times on Raspberry Pi 4 B 

Network  

Architecture 

Time (seconds) 

VGG16 22 

InceptionV3 30 

MobileNetV2 12 

ResNet50V2 37 

Xception 27 
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Fig. 8. Classification example result for Transfer Learning models 

4.2 Detection model 
 

The evaluation of the foliar disease detection model was conducted using metrics that assess the performance of different detection 

algorithms. For this task, the YOLOv4 architecture was selected and trained using the object detection framework Darknet 

provided by YOLO. The training process lasted approximately 238 hours and was carried out on hardware consisting of an 

NVIDIA 1050 Ti GPU, an Intel i5 8-core processor with a clock speed of 3.6 GHz, and 8 GB of RAM. The trained detection 

model was tested using images from the dataset, as well as images not included in the training process. This approach ensured an 

unbiased evaluation, preventing results that could artificially inflate accuracy. After training, the model was converted to a TFLITE 

format for deployment on an Android mobile device. 

 

4.2.1 Mean Average Precision metric 
 

The mean Average Precision (mAP) or sometimes simply referred to as AP is a metric used to measure the performance of object 

detection models. It is defined by equation (5): 

𝑚𝐴𝑃 =  
∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃(𝑞)𝑄

𝑞=1

𝑄
 

(5) 

Where Q is the number of queries in the set and AverageP(q) is the average precision (AP) for a given query, q. 

 

The mean Average Precision (mAP) for object detection is the average of the AP calculated for all classes. The mAP for a set of 

detections is the average of the interpolated Average Precision (AP) for each class, where the AP for each class is determined by 

the area under the precision/recall (PR) curve for the detections. The PR curve is constructed by assigning each detection to its 

most overlapping ground truth object instance (Henderson & Ferrari, 2017). AP (Average Precision) is a widely used metric for 

measuring the accuracy of target detectors. Mean accuracy calculates the average accuracy value for retrieval, ranging from 0 to 

1. A comparison of mAP results for different detection models is presented in Table 6, and a comparison of training times for 

these models is presented in Table 7. 

Table 6. Average Precision performance per class and detection model (%) 

Crop YOLOv4 YOLOv4-tiny YOLOv3 YOLOv3-tiny 

Basil blotch leaf miner 98.3 88.33 83.73 69.04 

Basil downy mildew 98.97 89.83 86.78 75.84 

Basil healthy 98.6 82.93 84.72 63.76 

Chiltepin pepper early bacterial blight 97.99 0.00 0.00 0.00 

Chiltepin pepper healthy 0.00 64.90 83.95 0.00 

Chiltepin pepper whitefly 53.17 90.78 83.17 84.50 

Cucumber angular leaf spot 89.92 98.39 96.96 96.37 

Cucumber gummy stem blight 94.09 88.08 82.16 68.34 

Cucumber healthy 88.45 92.46 90.70 87.94 

Cucumber mosaic virus 98.42 91.09 87.06 88.22 
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Cucumber whitefly 0.00 98.09 98.36 97.44 

Melon angular leaf spot 99.24 93.94 91.34 87.26 

Melon gummy stem blight 95.00 2.13 0.00 0.00 

Melon healthy 35.63 40.25 38.83 27.22 

Melon whitefly 100.00 54.74 57.36 41.33 

Pineapple healthy 46.90 30.73 24.15 18.79 

Pumpkin healthy 86.10 87.34 83.06 81.11 

Pumpkin leaf blight 54.10 82.14 74.67 71.59 

Radish fusarium rot 1.47 0.00 0.00 0.00 

Radish healthy 72.99 70.83 70.10 56.49 

Serrano pepper healthy 27.10 89.45 86.70 74.26 

Spinach healthy 93.89 82.45 74.16 66.62 

Sweet potato healthy 93.83 71.07 56.12 46.62 

Watermelon healthy 77.64 25.12 17.68 19.15 

mAP 70.90 67.29 64.66 55.08 

 

Table 7. Training time for detection models 

Network Architecture Time (hours) 

YOLOv4 248 

YOLOv4-tiny 55 

YOLOv3 172 

YOLOV3-tiny 38 

 

4.2.2 IOU metric 
 

The Intersection over Union (IoU) evaluation metric is commonly used to measure the overlap between two bounding boxes or 

masks, as well as to assess the accuracy of an object detector on a given dataset. Any algorithm that produces predicted bounding 

boxes as output can be evaluated using the IoU metric (Cowton et al., 2019). 

 

In practice, it is highly unlikely that the (x, y) coordinates of the predicted bounding box will exactly match those of the ground 

truth bounding box. Due to various factors such as the image pyramid scale, sliding window size, and feature extraction methods, 

a perfect match between the predicted and ground truth bounding boxes is unrealistic. 

 

Therefore, we need an evaluation metric that rewards predicted bounding boxes that overlap significantly with the ground truth. 

Figure 9 presents examples of both good and poor intersections over the union scores (Rosebrock, 2016). 

 
Fig. 9. Different results and visual behavior for Intersection over Unions. 

 

As shown, bounding boxes that are predicted and overlap more with the ground truth bounding boxes have higher scores than 

those with less overlap. This makes Intersection over Union (IoU) an excellent metric for evaluating custom object detectors. 

A comparison of IoU results using different detection models is presented in Table 8. 
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Table 8. IOU for detection models 

Network Architecture IOU (%) 

YOLOv4 62.23 

YOLOv4-tiny 52.43 

YOLOv3 64.53 

YOLOV3-tiny 49.35 

 

4.3 Mobile application 
 

The process of obtaining a prediction for crop status begins with an image captured by the camera, as shown in Figure 10. The 

detection model then identifies whether the crop leaves are diseased or healthy and calculates the probability of detection for the 

identified image. A key limitation in the development of this research lies in the dataset, which was created under sanitary 

restrictions. The work was conducted using an urban garden with shade netting, but there was insufficient image collection from 

larger rural areas to capture better images under actual agricultural conditions. 

 

In addition, to train very accurate models for disease detection, we might need a dataset with a larger number of images in each 

class and a larger number of crops. But, due to the lack of availability of public datasets and the absence of real scenarios for field 

work, our approach offers a feasible direction to address the current problem of disease detection. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Different results for object detection and classification from the implemented Android App 

 

5 Conclusions 
 

Precision agriculture is a critical sector for feeding the growing global population, which demands increasing amounts of food. 

Therefore, it is essential to grow healthy crops to meet this demand. Farmers in many regions still rely on rudimentary techniques 

to achieve sustainable harvests. However, these methods are not entirely reliable, as various factors—such as severe droughts, 

pests, viruses, bacteria, and burns—can significantly impact crops, leading to considerable economic losses. 

 

This dataset was developed to support the agricultural sector and is available to anyone interested in creating systems capable of 

detecting foliar diseases. Although datasets developed in the last five years cover a limited range of crops, they are insufficient to 

capture the vast diversity of crops that have not yet been represented. Moreover, many of these datasets include images taken 

under suboptimal conditions, which could affect the accuracy of foliar disease detection. 
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This research presents a methodology for developing a dataset that will aid both the agricultural sector and home-based urban 

gardens. The methodology includes the implementation of an app capable of detecting foliar diseases in crops such as cucumber, 

radish, melon, basil, and chili chiltepin, among others, using deep learning algorithms. 

 

An architecture based on You Only Look Once (YOLO) version 4 was used to detect plant leaves, and models were trained with 

various convolutional neural networks to identify diseases in the detected leaves. These models were integrated into an Android 

application for real-time detection on mobile devices. 

 

Evaluations were conducted using metrics like mean average precision (mAP), which proved useful in demonstrating the 

efficiency of the trained models. The results were favorable, achieving an mAP of 70.90%. This percentage reflects the average 

of accuracies across all trained crops and is critical for ensuring accurate detection of healthy and diseased leaves. These results 

will be valuable in improving detection systems for crop health. 
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