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Abstract. This research addresses the problem of scheduling 

electric vehicle charging times, with the primary objective of 

minimising total tardiness, defined as the waiting time beyond the 

specified charging duration. The complexity arises from multiple 

interacting constraints, making it difficult to produce a feasible 

schedule that also minimises tardiness. As this problem is NP-

hard, this study proposes a metaheuristic approach integrating a 

cellular processing algorithm with a Greedy Randomised Adaptive 

Search Procedure (GRASP). This paper provides a detailed 

implementation and description of the methods, along with a 

comprehensive calculation of the objective function, addressing 

areas that require further exploration in the existing literature. 
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1 Introduction 
 
The growth of electric vehicles (EVs) has emerged as one of the most significant trends in the automotive industry over the past 

decade, with global sales reaching 17 million units in 2024 (Energy Agency, 2024). Forecasts indicate that by 2030, more than 

50% of new car sales will be electric (Edison Guasumba-Maila et al., 2021), with substantial contributions from Latin American 

countries (Ramírez et al., 2021). This shift is primarily driven by heightened awareness of climate change and the urgent need 

for sustainable transportation solutions. The exponential rise in the popularity of EVs can be attributed to several factors, 

including their operational cost efficiency, substantial reduction in environmental impact, and superior performance compared to 

fossil fuel-powered vehicles (Arias Pérez & García, n.d.; Dora Morín García Presenta et al., 2015). 

 

Several elements have fueled the growth of EVs, such as government incentives, stringent environmental regulations (Sanz 

Arnaiz & González Fabre, n.d.), and technological advancements driven by consumer demand. Countries worldwide have 

adopted policies to promote the uptake of electric vehicles, including subsidies, tax reductions, and other incentives for 

manufacturers (Plug In America, n.d.; Schmerler Vainstein et al., 2019). For instance, Norway has successfully increased EV 
adoption to over 54% of total car sales by implementing aggressive tax incentives and exemptions from tolls and parking fees 

(Figenbaum & Kolbenstvedt, 2016). This model could serve as a blueprint for other nations aiming to enhance their EV market 

share. 

 

Significant advancements in battery technologies have enabled electric vehicles (EVs) to achieve greater range and reduced 

charging times, with innovations like solid-state batteries promising further improvements in safety, energy density, and 

longevity (Chen & Shi, n.d.). These technological advancements have encouraged more automotive manufacturers to enter the 

EV market, as evidenced by the rapid growth in global EV sales, which reached almost 14 million in 2023 (VIRTA, 2024). 

However, a critical limitation remains inadequate charging infrastructure, particularly in developing countries (Gorky Reyes-

Campaña & Javier Guanuche-Larco, 2021). The International Energy Agency predicts that the number of EVs on the road will 

reach approximately 230 million by 2030 (Sanz Arnaiz & González Fabre, n.d.), signifying a substantial shift towards cleaner 
and more sustainable transportation. 
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While the anticipated growth of EVs is expected to have a profound impact on the automotive industry and the broader 

economy, driving investments in clean energy and reducing greenhouse gas emissions, it also presents challenges. The surge in 

EV demand is likely to result in a considerable increase in energy consumption, alongside the existing limitation of charging 

stations (Gelmanova et al., 2018). According to a 2019 report by the McKinsey Global Institute, the demand for electricity to 

power EVs could increase by 30% by 2030, leading to potential stress on existing energy infrastructures (Timo Möller et al., 

2019). The electric vehicle charging scheduling problem is particularly complex and is classified as NP-hard due to the 

multitude of constraints and variables involved, including charging times, vehicle arrival patterns, and the physical limitations of 

charging infrastructure. This complexity necessitates the use of advanced optimization techniques such as heuristic and 
metaheuristic approaches like genetic algorithms, simulated annealing, local search methods, or particle swarm optimization to 

find feasible solutions within reasonable computational times. Moreover, the existing charging infrastructure is often inadequate 

to support the rapid increase in EV adoption. This challenge is exacerbated by the “range anxiety” experienced by potential EV 

users, a concern driven by the insufficient availability of charging stations (Shrestha et al., 2022). As a result, innovative 

solutions are urgently needed to optimize the electric vehicle charging scheduling problem, which necessitates strategic planning 

for charging station utilization and the effective management of energy resources. Efficient scheduling of charging times is 

essential to minimize waiting times and maximize the effective use of charging infrastructure. 

 

To tackle this challenge, this research focuses on developing innovative optimization algorithms specifically aimed at 

addressing electric vehicle charging scheduling problems. By enhancing the efficiency of charging station utilization and 

optimizing the allocation of resources, the study aims to contribute significantly to the sustainable management of electric 
vehicle infrastructures. The proposed algorithms will not only improve the operational performance of charging stations but also 

facilitate a more effective integration of EVs into the existing power grid. This work seeks to provide practical solutions that 

align with the growing demand for electric vehicles while ensuring reliable and efficient energy consumption. 

 

In conclusion, while the rise of electric vehicles represents a critical step toward a more sustainable future, it is accompanied by 

significant challenges that must be addressed. The development of robust charging infrastructures and innovative scheduling 

algorithms will be pivotal in unlocking the full potential of EVs as a viable alternative to traditional vehicles, thus contributing 

to a cleaner environment and a more sustainable energy landscape. 

 

 

2 Methodology 

 
This research addresses the electric vehicle (EV) charging scheduling problem, which is classified as NP-hard due to its 
complexity and the multitude of constraints involved. To find feasible and near-optimal solutions within reasonable 

computational times, the use of optimization algorithms is proposed, specifically a Greedy Randomized Adaptive Search 

Procedure (GRASP) and a Cellular Processing Algorithm (CPA) that incorporates GRASP within each processing cell (PCell). 
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Fig. 1. Methodology flowchart for solving the EV charging scheduling problem using optimization algorithms. 

 

Figure 1 illustrates the overall methodology employed in this study. The process begins with an initial assignment proposal, 

considering essential variables such as line assignment, arrival time, charging duration, and due date. Specific characteristics of 

the charging stations are then incorporated, including the number of vehicles, tardiness, and loading times. Various constraints 

are also considered, such as the maximum number of vehicles per line, energy imbalance, and inherent problem constraints. 

Based on these considerations, optimization methods GRASP and CPA are applied to generate and refine solutions, ultimately 

aiming to minimize total tardiness in the EV charging schedule. 

 

The primary objective is to minimize total tardiness, defined as the waiting time beyond the specific charging time for each 

vehicle. The problem involves scheduling 𝑛 vehicles across 𝑚 charging lines, considering variables such as arrival time (𝑡𝑖), 
charging duration (𝑝𝑖), due date (𝑑𝑖), and the characteristics of the charging stations. Constraints include a maximum number of 

vehicles per line, energy balance across lines, and the condition that vehicles cannot depart before their charging is complete. 

Given the NP-hard nature of the problem, heuristic and metaheuristic algorithms are suitable for obtaining high-quality 

solutions. 

 

A GRASP algorithm is first implemented to generate initial solutions. GRASP is an iterative process combining a greedy 

randomized construction phase and a local search procedure to refine solutions. In the version with Due Date Reordering 

(Algorithm 1), vehicles are reordered based on their due dates to prioritize those with earlier deadlines. 

 
Algorithm 1 

1: 𝑆𝑜𝑙←∅ 
2: 𝑏𝑒𝑠𝑡←∅ 
3: LoadVehicles() 

4: InitializeParameters() 

5: ReorderVehiclesByDueDate() 

6: for 𝑖←1 to 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do 

7: 𝑆𝑜𝑙←𝐴𝑠𝑠𝑖𝑔𝑛𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠() 
8: 𝑡𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠←𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠(𝑆𝑜𝑙) 
9: if 𝑡𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠<𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡)then 
10: 𝑏𝑒𝑠𝑡←𝑆𝑜𝑙 
11: end if 

12: end for 

13: Output: 𝑏𝑒𝑠𝑡 
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In the version without DDR (Algorithm 2), vehicles are not reordered, the algorithm processes them in their original sequence. 

 
Algorithm 2 

1: 𝑆𝑜𝑙←∅ 
2: 𝑏𝑒𝑠𝑡←∅ 
3: LoadVehicles() 

4: InitializeParameters() 

5: for 𝑖←1 to 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do 
6: 𝑆𝑜𝑙←𝐴𝑠𝑠𝑖𝑔𝑛𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠() 
7: 𝑡𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠←𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠(𝑆𝑜𝑙) 
8: if 𝑡𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠<𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡)then 
9: 𝑏𝑒𝑠𝑡←𝑆𝑜𝑙 
10: end if 

11: end for 

12: Output: 𝑏𝑒𝑠𝑡 
 

To enhance solution quality, a Cellular Processing Algorithm (CPA) is incorporated, where each PCell applies the GRASP 

algorithm (Algorithm 3). The CPA allows for parallel processing and information sharing between cells, potentially leading to 

better solutions. 

 

 
Algorithm 3 

1: Input: Number of PCells 𝑛 
2: Output: Optimized results 

3: Initialize PCells 𝑛 
4: for each PCell 𝑖 from 1 to 𝑛 do 
5: Initialize parameters for PCell[𝑖] 
6: end for 

7: repeat 

8: for each PCell 𝑖 from 1 to 𝑛 do 
9: Apply GRASP: 

10: Initialize candidate solution 

11: repeat 

12: Select component from candidates based on greedy criteria 

13: Add component to candidate solution 

14: until stopping criteria for construction are met 

15: Local Search(candidate solution) 

16: end for 

17: Check for Stagnation: 

18: if stagnation is detected then 

19: Print ”Stagnation detected, terminating process.” 

20: break 

21: end if 

22: Preference Communication Process for Roulette Selection Parameter Adjustment 

23: until termination criteria are met 

24: Output: 𝑓𝑖𝑛𝑖𝑠ℎ 
 
The algorithms were implemented using C++, and the code structure follows the pseudo-codes presented. Key 

components include Data Structures, which comprise custom data constructs designed to efficiently handle vehicle and 

scheduling information. Sorting Mechanisms are applied to organize vehicles by due dates or other prioritized criteria, 

supporting a streamlined greedy selection process. Constraint Handling involves algorithmic checks for operational 

constraints, such as the maximum number of vehicles per production line and adherence to energy balance requirements, 

before assigning vehicles to slots. Performance Metrics focus on total tardiness, providing a quantitative measure for 
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evaluating solution quality. The scheduling model for vehicle charging management considers various essential variables 

and constraints, each representing specific aspects of the assignment process to ensure operational efficiency. 
 
Line Assignment (𝐿𝑖): The charging line to which vehicle 𝑖 is assigned. 

Arrival Time (𝑡𝑖): The time at which vehicle 𝑖 arrives at the charging station. 

Charging Duration (𝑝𝑖): The time required to fully charge vehicle 𝑖. 
Due Date (𝑑𝑖): The latest time by which vehicle 𝑖 should be charged and ready for departure. 

Number of Vehicles (𝑛): Total vehicles to be scheduled. 

Tardiness (𝑇𝑖): The delay beyond the due date for vehicle 𝑖. 
Loading Times (𝐶𝑖): The actual time when vehicle 𝑖 starts charging. 

Maximum Vehicles per Line: Each charging line can accommodate a limited number of vehicles simultaneously. 
Energy Imbalance: The difference in the number of vehicles or total charging time across lines should not exceed a specified 

threshold to maintain energy balance. 

Inherent Constraints: Vehicles cannot be removed from the charging line before their charging is complete. 

 

The optimization process involves applying the GRASP algorithm to generate initial solutions and then refining them using the 

CPA. The GRASP algorithm constructs solutions by iteratively selecting components based on a greedy function and 

randomization to explore diverse regions of the solution space. The CPA enhances this process by allowing multiple PCells to 

process solutions in parallel, sharing information to avoid local optima and improve overall solution quality. 

After generating initial solutions, they are evaluated based on total tardiness and other performance metrics. If necessary, 

solutions are refined using local search procedures within the GRASP algorithm or by adjusting parameters in the CPA to 

escape stagnation and explore new solutions. The optimized schedules aim to minimize total tardiness while satisfying all 
constraints. The methodologies employed provide a balance between solution quality and computational efficiency, making 

them suitable for practical applications in EV charging station management. 

 

 

3 Results 
 

In this section, the comparative results of the proposed methods for scheduling electric vehicle (EV) charging are presented, the 
standard Greedy Randomized Adaptive Search Procedure (GRASP), an enhanced version incorporating Dynamic Demand 

Response (GRASP DDR), and the Cellular Processing Algorithm (PCEL). The objective is to minimize the total tardiness in EV 

charging schedules across various instances, ensuring efficient utilization of charging infrastructure and adherence to user 

requirements. 

 

Table 1 displays the total tardiness obtained by each method across 30 Type 1 instances. Each instance represents a specific set 

of vehicles and scheduling constraints. The total tardiness is calculated as the sum of delays beyond the desired completion 

times for all scheduled vehicles. Lower tardiness values indicate better scheduling performance. The results in Table 1 show that 

the standard GRASP method outperforms GRASP DDR and PCEL in the majority of instances. Specifically, GRASP achieves 

lower total tardiness in 17 out of 30 instances. This suggests that GRASP provides more efficient scheduling in terms of 

minimizing delays. However, GRASP DDR outperforms GRASP and PCEL in 7 instances, and PCEL outperforms both 
GRASP and GRASP DDR in 6 instances, indicating that each algorithm can be more effective under certain conditions. These 

results suggest that while GRASP is generally superior, GRASP DDR and PCEL have potential advantages in specific 

scenarios. For example, GRASP DDR excels in dynamic environments with variable resource availability, and PCEL proves 

particularly effective in highly congested situations. 
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Table 1. Tardiness in hours for Type 1 Instances GRASP DDR vs GRASP vs PCEL 

Type 1 Instances GRASP DDR GRASP PCEL 

Instance 1 305.2 271.6 388.8 
Instance 2 153.1 159.6 315.5 

Instance 3 113.3 98.3 141.7 

Instance 4 147.3 78.4 153.8 

Instance 5 112.3 114.5 191.3 

Instance 6 153.2 36.4 174.1 

Instance 7 672.3 599.2 354.7 

Instance 8 97.8 132.3 148.5 

Instance 9 261.4 246.6 160.9 

Instance 10 138.2 90.7 144.3 

Instance 11 249.0 200.5 295.9 

Instance 12 125.9 118.9 198.3 
Instance 13 110.4 83.4 176.2 

Instance 14 532.2 395.1 141.2 

Instance 15 324.6 144.7 222.4 

Instance 16 92.5 107.4 208.8 

Instance 17 88.2 94.0 257.2 

Instance 18 163.9 204.5 292.5 

Instance 19 180.6 200.1 243.9 

Instance 20 198.8 194.7 233.9 

Instance 21 129.5 75.1 82.5 

Instance 22 74.3 70.2 192.2 

Instance 23 111.8 96.3 391.0 

Instance 24 290.8 254.3 205.9 

Instance 25 322.6 218.6 206.1 

Instance 26 145.4 113.7 168.1 

Instance 27 113.6 118.2 79.15 

Instance 28 257.6 180.5 221.3 

Instance 29 325.9 296.8 410.8 

Instance 30 294.3 151.0 179.3 

 

To further evaluate the proposed methods, results were compared with those obtained by other authors in the literature. Table 2 

presents this comparison, including results from a Genetic Algorithm (GA) (García-Álvarez et al., 2015), a GRASP method, and 

a Memetic Algorithm (MA) (García-Álvarez et al., 2018). 

 

Table 2. Methods Comparison for Type 1 Instances 

N 𝚫 GA GRASP MA GRASP DDR* GRASP* PCEL* 

20 0.2 5442.3 5348.3 5210.8 6285.8 5145.3 6580 

 

In Table 2, 𝑁 represents the number of vehicles, and Δ is a parameter related to the balance constraint. The GRASP method 

developed in this study achieves the lowest total tardiness among all compared algorithms, demonstrating superior performance 

in minimizing delays in EV charging schedules under the given constraints. Although GRASP DDR and PCEL do not 

outperform the GRASP implementation in terms of total tardiness, they remain competitive when compared to the GA, the 

GRASP, and the MA. This indicates that GRASP DDR and PCEL have potential benefits that may be realized in specific 
scenarios. Specifically, GRASP DDR shows advantages in scenarios with moderate congestion or variability in charging times 

or due dates, while PCEL demonstrates strengths in highly challenging conditions, such as high congestion, tight deadlines, or 

limited charging infrastructure. To gain deeper insights into the scheduling patterns of the employed methods, the visual 

representations generated by the algorithms were analyzed. 

 



S. Yustre et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 529-539. 

 

535 

 

 

 
Fig. 2. Scheduling Vehicles Over Time at Charging Stations using GRASP DDR. 

 

In the Gantt charts, the X-axis represents time, while the Y-axis corresponds to individual charging stations, with a dotted blue 

line indicating the maximum capacity constraint. Each colored bar represents an EV charging session. When a session exceeds 

its predetermined due time, meaning the finish time is later than the set deadline, the excess time is computed as its tardiness. 

 

Sessions that finish exactly on time without tardiness are colored green. For sessions with tardiness, a continuous color gradient 

is used, yellow indicates slight delays, orange signals moderate delays, and red represents severe delays. Rather than assigning 

fixed numerical thresholds to these colors, the tardiness values are normalized relative to the maximum tardiness observed in the 

instance. This approach transparently converts any delay beyond the due time into a quantifiable measure of tardiness while 

maintaining an adaptable visual representation. 
 

Figure 2 presents the vehicle schedule over time for the three lines under a Type 1 instance (instance 7) with N = 20 and Δ = 0.2, 

as generated by the GRASP DDR algorithm. Although the figure primarily illustrates the temporal distribution of tardiness, the 

analysis reveals an overall tardiness of 672.3 hours. 
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Fig. 3. Scheduling Vehicles Over Time at Charging Stations using GRASP. 

 

Figure 3 illustrates the vehicle scheduling over time across the three lines for the same Type 1 instance (instance 7) with N = 20 

and Δ = 0.2, as obtained using the GRASP algorithm. The underlying analysis indicates a total tardiness of 599.1 hours. 
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Fig. 4. Scheduling Vehicles Over Time at Charging Stations using CPA. 

 

In contrast, Figure 4 presents the schedule for the same instance and parameters, but obtained using the Cellular Processing 

Algorithm (CPA). The graphical distribution of tardiness over time corresponds to a markedly lower cumulative delay of 354.7 

hours, highlighting the enhanced performance of the CPA approach in minimizing delays under these conditions. 

 

Analyzing Figures 2, 3, and 4 reveals that the CPA achieves more efficient vehicle-to-charging-station scheduling, resulting in 

fewer vehicles experiencing significant tardiness. In contrast, the GRASP and GRASP DDR methods display charging session 

distributions that, in certain cases, lead to increased delays, particularly during peak demand periods. These observations 

corroborate that each algorithm exhibits specific advantages depending on the scenario. 
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Fig. 5. Tardiness Distribution for GRASP, GRASP DDR and PCEL Models. 

 

The violin plot in Figure 5 shows the distributions of tardiness values for each model, highlighting the density and variability of 

the data. It reveals that all models have right-skewed distributions, with GRASP and GRASP DDR showing more pronounced 

tails due to high maximum tardiness values compared to their medians. This indicates that while GRASP performs best on 

average, it may struggle with certain instances, leading to higher variability. PCEL, despite higher average tardiness, offers more 

stability, which could be crucial in applications requiring predictable outcomes. 

 

 

4 Conclusions and future work 
 

The comparative analysis of GRASP, GRASP DDR, and CPA for electric vehicle charging scheduling demonstrates that the 

standard GRASP algorithm provides superior solutions, achieving the lowest total tardiness across the evaluated instances and 

constraints. GRASP consistently outperforms GRASP DDR and CPA, as well as other algorithms from the literature, such as 

Genetic and Memetic Algorithms, highlighting its effectiveness in optimizing EV charging schedules and reducing delays. This 

underscores the robustness of the GRASP approach in contributing to more efficient management of charging infrastructure. 

 
The GRASP method developed in this study also surpasses other algorithms from the literature, such as the Genetic Algorithm 

and Memetic Algorithm, under the instances and constraints considered. This highlights the effectiveness of the approach in 

optimizing EV charging schedules and reducing delays. 

 

While GRASP DDR and CPA do not outperform GRASP overall, their competitive performance in certain instances suggests 

that they may be more suitable under specific conditions. Further investigation is needed to identify these conditions and fully 

exploit the potential of GRASP DDR and CPA. 

 

The analysis of the scheduling visualizations provides valuable insights into how each method allocates charging sessions over 

time. The graphical representations help to identify congestion periods and capacity constraints that affect scheduling efficiency; 

these tools are key to understanding and improving scheduling algorithms. In summary, this study demonstrates that the 

proposed algorithms are effective tools for scheduling EV charging, improving upon previous methods and contributing to more 
efficient management of charging infrastructure. 

 



S. Yustre et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 529-539. 

 

539 

 

 

As outlined in the methodology, future work will focus on the improvement of the Cellular Processing Algorithm (CPA) for EV 

charging scheduling. It is anticipated that the CPA, with its ability to model complex interactions and dynamic behaviors within 

the system, will outperform the current algorithms. The CPA’s inherent parallelism and adaptability make it a promising 

approach for handling the increasing complexity and scale of EV charging networks. 

 

Future work will involve implementing and testing the CPA in various scenarios, comparing its performance against GRASP 

and GRASP DDR. It is expected that the CPA will provide improved scheduling efficiency, reduced tardiness, and enhanced 

scalability. Additionally, the aim is to investigate the integration of machine learning techniques to further optimize scheduling 
decisions based on real-time data and predictive analytics. 

 

References 
 

Arias Pérez, D., & García, J. U. (n.d.). Influencia del vehículo eléctrico sobre la fiabilidad de los sistemas eléctricos. 
Chen, G., & Shi, X. (n.d.). A deep reinforcement learning-based charging scheduling approach with augmented Lagrangian for 

electric vehicle. 
Dora Morín García Presenta, M. Y., Carranza Gerardo, H., Hernández Luis Daniel, H., Arroyo Francisco Javier, M., Covarrubias 

Laura Denisse, M., Herrera Sagrario, M., & Segura Cesar Alejandro, M. (2015). Ingeniería Industrial Materia: Fundamentos de investigación. 

Vehículos eléctricos vs. vehículos convencionales. Índice Contenido. 
Edison Guasumba-Maila, J. I., Andrés Trujillo-León III, M., & Andres Rojas-Cobos, D. I. (2021). Feasibility of electric vehicles in 

the world energy problem / Viabilidade dos veículos elétricos no problema energético mundial, 6, 1084–1095. 
https://doi.org/10.23857/pc.v6i8.3001 

Figenbaum, E., & Kolbenstvedt, M. (2016, June). Learning from Norwegian battery electric and plug-in hybrid vehicle users: 
Results from a survey of vehicle owners. 

García-Álvarez, J., González, M. A., & Vela, C. R. (2015). A genetic algorithm for scheduling electric vehicle charging. GECCO 
2015 - Proceedings of the 2015 Genetic and Evolutionary Computation Conference, 393–400. https://doi.org/10.1145/2739480.2754695 

García-Álvarez, J., González, M. A., & Vela, C. R. (2018). Metaheuristics for solving a real-world electric vehicle charging 
scheduling problem. Applied Soft Computing Journal, 65, 292–306. https://doi.org/10.1016/j.asoc.2018.01.010 

Gelmanova, Z. S., Zhabalova, G. G., Sivyakova, G. А., Lelikova, О. N., Onishchenko, О. N., Smailova, А. А., & Kamarova, S. N.  
(2018). Electric cars. Advantages and disadvantages. Journal of Physics: Conference Series, 1015(5), 052029. https://doi.org/10.1088/1742-
6596/1015/5/052029 

Gorky Reyes-Campaña, G. I., & Javier Guanuche-Larco, D. I. (2021). Ciencias Técnicas y Aplicadas: Artículo de investigación, 
7(5), 937–958. https://doi.org/10.23857/dc.v7i5.2291 

Peña Ordóñez, C., & Pleite Guerra, J. (n.d.). Estudio de baterías para vehículos eléctricos. 
Plug In America. (n.d.). Incentivos para vehículos eléctricos. Retrieved February 24, 2023, from 

https://pluginamerica.org/espanol/incentivos/ 
Ramírez, W. G., Río-Belver, R. M., de Alegría, I. M., & Letzkus, C. M. (2021). Análisis de la contribución científica 

Latinoamericana en la temática de los vehículos eléctricos. Dirección y Organización, 75, 62–73. https://doi.org/10.37610/dyo.v0i75.610 
Sanz Arnaiz, I., & González Fabre, R. (n.d.). Análisis de la evolución y el impacto de los vehículos eléctricos en la economía 

europea. 
Schmerler Vainstein, D., Velarde Sacio, J. C., Rodríguez González, A., & Solís Sosa, B. (2019). Electromovilidad: Conceptos, 

políticas y lecciones aprendidas para el Perú. 
Shrestha, S., Baral, B., Shah, M., Chitrakar, S., & Shrestha, B. P. (2022). Measures to resolve range anxiety in electric vehicle users. 

International Journal of Low-Carbon Technologies, 17, 1186–1206. https://doi.org/10.1093/ijlct/ctac100 
Timo Möller, Asutosh Padhi, Dickon Pinner, & Andreas Tschiesner. (2019). The future of mobility is at our doorstep. 

 

 

 

 

https://doi.org/10.23857/pc.v6i8.3001
https://doi.org/10.1145/2739480.2754695
https://doi.org/10.1016/j.asoc.2018.01.010
https://doi.org/10.1088/1742-6596/1015/5/052029
https://doi.org/10.1088/1742-6596/1015/5/052029
https://doi.org/10.23857/dc.v7i5.2291
https://pluginamerica.org/espanol/incentivos/
https://doi.org/10.37610/dyo.v0i75.610
https://doi.org/10.1093/ijlct/ctac100

