
 

 
www.editada.org 

International Journal of Combinatorial Optimization Problems and 

Informatics, 16(3), May-Aug 2025, 512-528. ISSN: 2007-1558. 

https://doi.org/10.61467/2007.1558.2025.v16i3.856 

_______________________________________________________________________________________ 

 

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved. 

Feature Selection through Filtering with Mono and Multi-Objective Memetic 

Algorithms Using Correlation 

 
Daniel E. Zamarron-Escobar1, Jesús D. Teran-Villanueva1, Salvador Ibarra-Martinez1 and  

Aurelio A. Santiago-Pineda1 

1 Universidad Autónoma de Tamaulipas, Facultad de Ingeniería Tampico 

a2223338026@alumnos.uat.edu.mx, jdteran@docentes.uat.edu.mx, sibarram@docentes.uat.edu.mx, 

aurelio.santiago@uat.edu.mx  
 

Abstract. Feature selection is the process of extracting the most 

relevant features from a dataset, helping to reduce its 

dimensionality by eliminating non-essential features. This leads to 

simpler, faster models and optimises training efficiency. This 

paper presents two memetic algorithms: one employs a mono-

objective filter method as a fitness function, while the other adopts 

a multi-objective approach. The latter uses the number of 

attributes in the dataset as the first objective, and the sum of 

Pearson’s correlations for the selected attributes as the second. 

Additionally, we apply a novel approach to the use of correlation 

for attribute selection within the aforementioned memetic 

algorithms. Both proposals aim to identify the most relevant 

attributes to reduce the dimensionality of twelve test datasets. The 

performance of the selected features was evaluated using a J48 

decision tree. The results showed a reduction in the number of 

attributes ranging from 14% down to 5%, while accuracy varied 

from −5% up to 11%, with an average improvement of over 4% 

(considering only those datasets where accuracy changed). 
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1 Introduction 
 

Nowadays, we are required to process information daily. This information processing is evident with increased data science and 

analysis usage. In data science, we find data preprocessing to be an essential element for information extraction. 

 

Furthermore, we find multiple techniques to enhance data in data preprocessing by cleaning, normalizing, carrying out imputation, 

attribute selection, and attribute engineering, among others. 

 

Datasets are expected to have high dimensionality, which causes high computational cost. These datasets come from real-world 

applications such as face recognition (Kim et al., 2002), speech recognition (Lima et al., 2003), DNA microarray analysis (Yu & 

Liu, 2004), content-based image retrieval (Dy & Brodley, 2001), among other areas. 

 
After applying all the needed data preprocessing, we use Data Mining, defined as analyzing data and extracting information by 

using statistical models, artificial intelligence, machine learning, and analytical tools to condense that information into more 

manageable form (Han et al., 2011; Pal, 2011; Algarni, 2016). 

 

Data Mining collects many features related to their field of study to create an abstract model. A feature is an individual measurable 

property associated with its corresponding model (Chandrashekar & Sahin, 2014). 

 

Despite having a very detailed model, we try to find a subset of features of the model. This subset helps reduce the computational 

cost, taking irrelevant and/or noisy information out, resulting in easier processing to other tasks (Lu et al., 2007). Finding a subset 

that could minimize the number of features needed to extract the most relevant information is known as the curse of dimensionality 

(Verleysen & François, 2005). There are different techniques to reduce the dimensionality, called Attribute Selection (also known 
as Feature Selection) (Kumar & Minz, 2014). 
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One of the classical techniques for extracting the most relevant feature is Principal Component Analysis – PCA (Pearson, 1901). 

PCA is a linear method for dimensionality reduction, simplifying data into the most essential features as the main advantage. One 

of the drawbacks of PCA is the high computational cost for large datasets because calculating the covariance matrix is directly 

proportional to the number of features (Van Der Maaten et al., 2009).  

 

Another approach to solve the curse of dimensionality is using evolutionary algorithms like genetic, ant colony optimization, and 

particle swarm optimization, among others (Abd-Alsabour, 2014). Evolutionary algorithms are metaheuristics applied to solve 
optimization problems by simulating natural biological evolution. Their key feature is producing multiple solutions, allowing 

them to explore many solutions. 

 

These evolutionary algorithms need a mechanism called fitness function to evaluate their solutions. This function could use two 

of the following evaluation methods: Filter and wrapper methods (Talavera, 2005; Nnamoko et al., 2014).  

 

Filter methods use an evaluation function to measure solutions, employing the dataset's attributes to give a score to the solutions. 

The advantages of filter methods are easy to implement, saving computational cost (Talavera, 2005). 

 

Wrapper methods employs multiple subsets of features from the dataset to train and calculate classification accuracy until it finds 

the best subset. While its reductions solve feature selection, this method has a high computational cost, does not scale with a high 
number of features, and is tied to model information (Nnamoko et al., 2014). 

 

Hybrid approaches employ filtering and wrapping methods (Kundu & Mallipeddi, 2022), combining their best advantages to find 

better solutions. 

 

 

2 State of the Art 
 

Deb et al. (2000) presents a fast, non-dominated sorting for multi-objective problems called Non-Dominated Sort Genetic 

Algorithm II (NSGA-II); this is used by some other authors that study attribute selection with multi-objective approaches. NSGA-

II improves its previous iteration, which had higher computational complexity from 𝑂(𝑀𝑁3)  to 𝑂(𝑀𝑁2), lack of elitism, and 

the need to define a parameter for diversity purposes. This improved algorithm approach categorizes all the possible solutions of 

the population into fronts based on their dominance relationships, where higher Pareto fronts dominate the solutions in lower 

Pareto fronts. NSGA-II also includes crowding distance as a diversity mechanism to encourage a better solution space in the 

Pareto front. Additionally, with these improvements, NSGA-II, at its core, has all the benefits of evolutionary algorithms, in this 

case, Genetic Algorithm, with selection, crossover, and mutation operators to evolve through generations. 

 

Kannan and Ramaraj (2010) explored a new approach in featured selection using a memetic algorithm with their Local Search 

using Symmetrical Uncertainty (SU) as correlation-based filter ranking. Their proposed Local Search calculates SU for every 

feature and ranks them in descending order. From this ranking, it selects features essential for classification without overlapping 
with other relevant features and removes them from the ranking up to having no more features excluded. Their proposed local 

search allows them to explore attribute subsets by adding or removing attributes to ensure finding the best individual attributes. 

Additionally, their algorithm uses Subset Size-Oriented Common Feature for the cross-over operator and Bit-Flip for the mutation 

operator in their evolutionary algorithm in conjunction with their proposed Local Search. 

 

Yildirim et al. (2021) tested two alternatives for reducing features of high-dimensional space applied for speech emotion 

recognition with two metaheuristics approaches, an NSGA-II and a Cuckoo Search. The authors use IEMOCAP and EMO-DB 

databases to transform audio clips into a dataset representation of those two databases. For each metaheuristic, they generate their 

initial population through random generation and Relieff generation. Afterward, Cuckoo Search tries to maximize classification 

accuracy using three criteria: K-nearest neighborhood, bagged decision tree, and support vector machine. NSGA-II minimizes the 

number of features while maximizes accuracy. The results showed that their proposed methods had comparable classification 
accuracy while significantly reducing the number of features. 

 

Kundu and Mallipeddi (2022) proposed a hybrid filter multi-objective evolutionary algorithm (HFMOFEA) where the two main 

objectives are minimizing the number of features selected and maximizing the classification accuracy calculated by Support 

Vector Machine (SVM). The authors' approach to feature selection is as follows: they first divide the target dataset into training 

and testing sets. Later, they initialize the population with solutions taken from the training set, where each solution's chromosome 
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is a binary chromosome corresponding to one of the ten proposed filter methods. Furthermore, the authors select a defined number 

of best-ranking methods into the chromosome as 1. After producing the algorithm population, they start with the multi-objective 

evolutionary part based on the NSGA-II framework from Deb et al. (2000) until reaching the termination criterion. It finalizes 

selecting the optimal Pareto front. 

 

Benito et al. (2023) presents a comparative study on feature selection techniques applied to five datasets and proposes a Tabu 

Search metaheuristic using a wrapper. Traditional techniques used for this comparison are Entropy, Correlation, and Principal 

Component Analysis (PCA). For entropy feature selection, they calculated entropy and sorted features in descending order, 
removing features below a certain defined threshold. Using the correlation method, they calculated the correlation matrix, 

following a procedure similar to entropy, sorting in descending order and removing features below a threshold. For PCA, they 

calculated the first two principal components. Then, they evaluated the Euclidean distance between those two components to 

create two subsets grouped by quartiles, one with features included in quartile 1 only and the other features in quartiles 1 and 2. 

Their proposed method is as follows: they start by defining a binary array to represent the feature that will be used; they use a J48 

classification tree to calculate the accuracy and use it as their objective function. Additionally, they use exchange movements to 

navigate through the neighborhood and look for the best possible solution. Once a solution is located, the algorithm will lock that 

move in the Tabu list for a specific time. Their results showed that the proposed methodology outperformed all other techniques. 

However, they mentioned that the correlation method is faster to implement, has a low computational cost, and has an acceptable 

performance. 

 
This paper proposes two approaches for selecting the most important attributes: a mono-objective memetic algorithm with a filter 

method using Pearson's correlation matrix and a multi-objective NSGA-II memetic algorithm with a filter method. Our multi-

objective proposal searches for the following two objectives: minimize the most relevant attributes of the dataset and the remaining 

attribute's correlation sum. 

 

 

3 Proposed Methodology 
 

We define the datasets used to test out all our memetic algorithms. Table 1 shows the twelve dataset names, number of attributes, 

and number of records. UCI Machine Learning Repository (Kelly et al., 2023) provided all the datasets used in this paper. 

 

Table 1. List of Datasets 

Dataset 
Number of 

Attributes 

Number of 

Records 

Australian Credit 15 690 

Balance Scale 4 625 

Breast Cancer Wisconsin 9 683 

Ecoli 8 336 

Glass 9 214 

Ionosphere 34 351 

Iris 4 150 

SoyBean Small 35 45 

Teaching Assistant 5 151 

Thyroid (Training) 22 3772 

TicTacToe 9 958 

Wine 13 178 

 

 

Algorithm 1 presents our proposed mono-objective memetic algorithm. The objective is to find a combination of attributes that 

provides the minimum sum of their correlation. The process starts by calculating the correlation matrix for the current dataset in 

the test in Line 1 To calculate the correlation matrix, we remove all id-related alphanumeric attributes and other attributes with 
the same value on all records because in both cases are entirely useless for classification purposes.  
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In the case of Breast Cancer Wisconsin's correlation matrix, we removed 16 of 699 records with missing values on the Barei 

Nuclei attribute. These records correspond to 2.3% of total records counts, opting to apply Listwise imputation to those records. 

Even though we are losing information removing those records, Graham (2009) recommends it is less than 5% of total missing 

values to apply Listwise imputation. 

 

 

Algorithm 1: Proposed Mono-Objective Memetic Algorithm  

1 CalculateCorrelationMatrix(Dataset)  

2 Population ← GenerateInitialPopulation(PopulationSize)  

3 Population ← CalculateFitnessValue(Population)  

4 BestSol  ← CalculateBestSolution(Population)  

5 While(IterationsWithoutImprove < MaxIterations)  

6     While(CalculatePopulationAlive < PopulationSize)  

7         ParentA, ParentB ← SelectParentsFromPopulation(Population)  

8         If(CalculateCrossOver() < MutationPercentage)  

9             NewSol ← CrossOver(ParentA, ParentB)  

10         Else  

11             NewSol ← SelectRandomParent(ParentA, ParentB)  

12             NewSol ← ApplyLocalSearch(NewSol)  

13         NewSol ← CalculateFitnessValue(NewSol)  

14         InsertNewSolutionIntoPopulation(NewSol)  

15     FitMeanValue ← CalculateFitnessMeanValue(Population)  

16     Population ← RemoveSolutionsFromPopulation(FitMeanValue)  

17     BestSol ← CalculateBestSol(Population)  

18     IterationsWithoutImpove ← BestSolChanged(BestSol)  

 
 

Before generating the population, we establish the representation of a valid solution. We are defining a binary vector of 𝑛 length 

as a solution. Where 𝑛 is the number of attributes, a value of 1 on the 𝑖 position of the binary vector means that attribute 𝑖 will 

remain in the dataset for classification, whereas a value of 0 means otherwise.  

 

Figure 1 shows an example of a solution dataset. Using Iris dataset, this dataset has four attributes: SepalLength, SepalWidth, 

PetalLength, and PetalWidth; our binary vector representing the solution, has 1 on the first and second positions of the vector, 

and 0 on the remaining attributes. Therefore, SepalWidth and PetalLength remain for calculations while SepalLength and 

PetalWidth are not considered. 

 

 
Fig. 1. Example of a solution vector. 

 

We generated a random solution by creating a binary vector and setting 0 or 1 randomly to each position. The process ensures 

that solutions contain at least 25% of the vector length with the value of 1. This process continues until the solutions fulfill the 

previously stated condition. 

 

With a solution created, we calculate it's the fitness value in Equation 1: 
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         𝑀𝑖𝑛(𝐹𝑉) = ∑ ∑ 𝐶𝑜𝑟𝑟(𝑎𝑖 , 𝑎𝑗)𝑎𝑗∈𝐴𝑎𝑖∈𝐴 | 𝑠𝑖  =  1 ∧ 𝑠𝑗  =  1 ∧ 𝑖 ≠ 𝑗 (1) 

 

Where 𝐴 =  {𝑎1,  𝑎2, . . ., 𝑎𝑛} is the set of attributes, 𝑠𝑖 and 𝑠𝑗  are binary values on 𝑖 and 𝑗 position of 𝑆𝑜𝑙 =  {𝑠1,  𝑠2, . . ., 𝑠𝑛}, 

such that if 𝑠𝑘  =  1 it means that the attribute will be considered to remain in the dataset and 𝑠𝑘  =  0 otherwise. 

 

We have two operators to create solutions: CrossOver and Mutation Operators, in which either operator has a random percentage 
chance of being selected. Both operators select two parents randomly and differently. 

 

Once the selection process ends, the algorithm randomly chooses between the CrossOver or the Mutation operator, seen in Line 

8. If the algorithm selects the CrossOver operator, then select a random position in the solution vector to make a single point 

cross-over, where the first parent will copy from the beginning of the solution to that cross-over position to the offspring. The 

second parent will continue to copy from that position onwards to the end of the parent. Figure 2 illustrates an example of a single 

point cross-over. We define a single point cross-over in position 3, and from 𝑆𝑜𝑙1 the algorithm copies its values to the offspring 

up to the single point cross-over, then it will resume copying starting up from 𝑆𝑜𝑙2. 

 

 
Fig. 2. Single point cross-over operator example. 

 

 

The Mutation operator applies a local search to the offspring from a random parent. Then, copy this parent entirely to the offspring 

and apply local search. This local search will try to select one of the already selected attributes in the solution vector and exchange 

its value with positions where the attributes in the vector are not considered. This exchange applies to all attributes taken, the 

process ends after finding the first position that improves the fitness value or visiting every possible neighbor. Figure 3 provides 

a visual example of this operator. 

 

 
Fig. 3. Mutation operator example. 
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After completing the offspring generation to fill the population, we calculate the mean fitness value of the population as seen in 

Line 15 and proceed to remove solutions above the mean fitness value up to a limit to avoid removing too many solutions of the 

population. Afterwards it will update the best solution known if there is a better solution found up to this point. 

 

Algorithm 1 will continue until we find a new best solution for a defined number of iterations without improvement. 

 

One of the downsides of the mono-objective memetic algorithm is forcing solutions with at least 25% of the total number of 

attributes.  
 

After producing our memetic proposal for reducing the dimensionality of datasets, we explained that all our solutions created 

should have at least 25% of the total number of attributes. This prerequisite ensures that multiple attributes are needed for 

calculating the fitness value; otherwise, it would calculate incorrect values to solutions. 

 

From this issue, we came up with another alternative that uses a multi-objective approach instead of limiting the number of 

attributes removed. This new approach is a memetic algorithm based on (Deb et al., 2000) NSGA-II that uses two objectives: 

minimizing the dataset's number of removed while minimizing the sum of the correlation matrix for the remaining attributes. 

 

When discussing multi-objective approaches, it is a requirement that objectives be against each other's objective. In this case, if 

we want to minimize the sum of the correlation matrix for the remaining attributes, the optimal case will be when there are no 
remaining attributes. In contrast, the other objective pushes in the opposite direction, trying to minimize the removed attributes. 

 

The main differences between the mono-objective memetic algorithm and this multi-objective version are in Lines 3, 15 to 17 for 

Algorithm 2. 

 

 

Algorithm 2: Proposed Multi-Objective Memetic Algorithm  

1 CalculateCorrelationMatrix(Dataset)  

2 Population ← GenerateInitialPopulation(PopulationSize)  

3 Population ← CalculateNormalizedFitnessValue(Population)  

4 BestSol  ← CalculateBestSolution(Population)  

5 While(IterationsWithoutImprove < MaxIterations)  

6     While(CalculatePopulationAlive < PopulationSize)  

7         ParentA, ParentB ← SelectParentsFromPopulation(Population)  

8         If(CalculateCrossOver() < MutationPercentage)  

9             NewSol ← CrossOver(ParentA, ParentB)  

10         Else  

11             NewSol ← SelectRandomParent(ParentA, ParentB)  

12             NewSol ← ApplyLocalSearch(NewSol)  

13         NewSol ← CalculateFitnessValue(NewSol)  

14         InsertNewSolutionIntoPopulation(NewSol)  

15     ParetoElements ← NSGAIISelection (Population)  

16     Population ← RemoveSolutionsFromPopulation(ParetoElements)  

17     BestSol ← CalculateBestSol(Population)  

18     IterationsWithoutImpove ← BestSolChanged(BestSol)  

 

 

For this version, Equation 2 shows the new fitness value function for evaluating solutions:  

 

         𝑀𝑖𝑛(𝐹𝑉) = (∑ ∑ 𝐶𝑜𝑟𝑟(𝑎𝑖 , 𝑎𝑗)𝑎𝑗∈𝐴  / 𝑆𝑢𝑚𝐶𝑜𝑟𝑟)𝑎𝑖∈𝐴 ∗  |𝐴| | 𝑠𝑖  =  1 ∧ 𝑠𝑗  =  1 ∧ 𝑖 ≠ 𝑗 (2) 
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Where 𝐴 =  {𝑎1,  𝑎2, . . ., 𝑎𝑛} is the set of attributes, 𝑆𝑢𝑚𝐶𝑜𝑟𝑟 is the sum of correlation of all attributes, 𝑠𝑖 and 𝑠𝑗  are binary 

values on 𝑖 and 𝑗 position of 𝑆𝑜𝑙 =  {𝑠1,  𝑠2, . . ., 𝑠𝑛}, such that if 𝑠𝑘  =  1 it means that the attribute will be considered to remain 

in the dataset and 𝑠𝑘  =  0 otherwise. 

 

Additionally, we calculate the score of the J48 Classifier Algorithm using SciKit Learn implementation for all solutions to track 
their classification accuracy. 

 

The function NSGAIISelection in Line 15 based on (Deb et al., 2000), is described as follows: for every solution in Population, 

we evaluate the solution against the other solutions in the Population through dominated Pareto fronts. We define two ways to 

assess which solution dominates the other or is equally dominated. The first identifies the solution with the lowest fitness value 

of the two solutions, and the second evaluates the selected number of attributes in the solution. A solution is dominated if both 

evaluations of a solution dominate the others; therefore, the first solution dominates the second, and the second solution is 

dominated by the first. Solutions that dominate each other by one evaluation are considered non-dominated and equivalent, 

meaning they have the same rank. 

 

After we evaluated all solutions with each other, we sorted the solutions by Pareto fronts. We defined a Pareto front as groups 

where solutions are non-dominated by each other. The first Pareto front constitutes the best-found solutions, and they dominate 
the rest of the solutions in the remaining Pareto fronts; the second Pareto front dominates Pareto fronts below it while being 

dominated by the first front. This is true for all Pareto fronts.   

 

Once we have all the front calculated, in Line 16, we select half of the population for the next iteration and the other for elimination; 

the process is as follows: adding the number of solutions from the first to last Pareto front while not exceeding our threshold. 

When we reach a Pareto front where the sum of fronts exceeds the threshold, we calculate their crowding distance for all the 

solutions, which is the Euclidean distance between two neighboring solutions. The algorithm sorts the crowding distance in 

descending order, taking solutions up to filling, reaching a threshold of 50% of the population. 

 

This can be visually illustrated in Figure 4. Where 𝑃𝑡  are solutions carried over from the previous generation, 𝑄𝑡 are newly created 

solutions for this generation, 𝑃𝑡  ∪  𝑄𝑡  is the population, 𝐹𝑡 are the Pareto fronts, and the threshold is defined as the half of the 

population. 

 

 
Fig. 4. NSGA-II Sort. 
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Finally, selects the best solution and updates it if improves the best known one in Line 17. We use the J48 classification scores to 

select the highest score as the best solution. If a solution ties in with the best-known solution's score, the one with the least number 

of attributes is selected. 

 

Algorithm 2 will continue until we find a new best solution for a defined number of iterations without improvement. 

 

4 Results 
 

Before going into the results, it is essential to explain the selection of the attributes where 𝑠𝑖 = 1. On the one hand, keeping the 

attributes with a low correlation value 𝑆𝑢𝑚𝐶𝑜𝑟𝑟 ≈  0 implies that the attributes do not contain duplicate information. On the 

other hand, we are keeping attributes where its 𝑆𝑢𝑚𝐶𝑜𝑟𝑟 ≈  1 suggests that those attributes with high correlation values do 

contain duplicate information. Ultimately, logic would indicate using attributes that do not contain or have low overlapped 

information where 𝑆𝑢𝑚𝐶𝑜𝑟𝑟 ≈  0.  

 

Nevertheless, to avoid assumptions, we will test subsets of attributes 𝑍 and 𝑍′. 𝑍 subset contains the attributes selected by our 

methodology (𝑆𝑢𝑚𝐶𝑜𝑟𝑟 ≈  0) and 𝑍′ subset is the complement of 𝑍, such that 𝑍 ∪ 𝑍′  =  𝐴. For our experimentation, we used 

Python Version 3.11.5 with Pandas Version 2.1.0 and SciKit Learn Version 1.3.1's J48 Classifier implementation to calculate their 

classification scores. Table 1 presents the datasets employed for our tests.  

 

Table 2 shows the number of attributes and J48 value for each 𝑍 and 𝑍′. We can appreciate that 𝑍′J48 score has equal or higher 

precision over 𝑍 for all datasets. Most of the dataset's number of attributes of 𝑍′ have a higher count over 𝑍.Nowadays, we are 

required to process information daily. This information processing is evident with increased data science and analysis usage. In 

data science, we find data preprocessing to be an essential element for information extraction. 

 

Table 2. Dataset's accuracy and number of attributes 

Dataset 

Z Z’ 

Number of 

Attributes 

J48 Classification 

Accuracy 

Number of 

Attributes 

J48 Classification 

Accuracy 

Australian Credit 4 74.64 10 79.71 

Balance Scale 2 60 2 69.6 

Breast Cancer Wisconsin 5 92.7 4 96.16 

Ecoli 3 67.65 4 80.88 

Glass 2 65.12 7 81.4 

Ionosphere 11 85.92 22 91.55 

Iris 2 56.67 2 100 

SoyBean Small 14 100 7 100 

Teaching Assistant 2 51.61 3 54.84 

Thyroid (Training) 7 91.13 14 99.87 

TicTacToe 2 61.46 7 85.42 

Wine 4 80.56 9 97.22 

 

Considering the results of Table 2, the best option is using 𝑍′ where 𝑆𝑢𝑚𝐶𝑜𝑟𝑟 ≈  1. Table 3 shows the results of our methodology. 

First, we define Unmodified as the number of attributes found in the instance before any reduction is applied. Mono-Objective 

shows the results using the Filter Method Mono-Objective Memetic Algorithm. NSGA-II shows the results obtained by the Filter 
Method Multi-Objective NSGA-II Memetic Algorithm. The parameters used for the Memetic Algorithm in both of our proposals 

are as follows: population size is set to 100 elements, Cross-Over and Mutation are set to 90% and 10% respectively and it ends 

until 25 generation pass without improvement. 
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Table 3. Results of our proposed methods 

Dataset 

Unmodified Mono-Objective NSGA-II 

No of 

Attributes 

J48  

Accuracy 

No of 

Attributes 

J48  

Accuracy 

No of 

Attributes 

J48  

Accuracy 

Australian Credit 14 82% 11 81% 6 91% 

Balance Scale 4 74% 2 67% 2 70% 

Breast Cancer Wisconsin 9 96% 7 91% 5 98% 

Ecoli 7 83% 5 79% 4 85% 

Glass 10 74% 7 84% 7 84% 

Ionosphere 34 85% 26 87% 20 96% 

Iris 4 100% 2 100% 2 100% 

SoyBean Small 36 100% 30 90% 19 100% 

Teaching Assistant 5 61% 3 55% 3 68% 

Thyroid (Training) 21 100% 16 91% 19 100% 

TicTacToe 9 96% 7 76% 7 91% 

Wine 13 92% 10 92% 10 100% 

 

The results show reductions in both of our proposed methods, showing that NSGA-II has equal to better reductions in most datasets 

than the Mono-Objective. Figures 5 and 6 show the dataset's reduction represented as percentage values. Unmodified columns are 

the dataset's total number of attributes, thereby showing 100%, showing the total usage of their attributes.  

 

 
Fig. 5. Attribute reduction results – Part 1. 
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Fig 6. Attribute reduction results – Part 2. 

 

A critical difference between our Mono-Objective and NSGA-II proposal is using classification accuracy to select the best solutions 

instead of just the correlation value. The first one uses correlation as the only value to reduce attributes, and the latter one uses the 

NSGA-II using number of attributes combined with the correlation normalized value to select the best solutions. This difference 
will be shown when we analyze the classification accuracy of these two proposals, as the Mono-Objective is using correlation 

alone as mentioned before and we are limiting the minimum amount of attributes it can have an impact on what attributes are 

selected; In contrast, the NSGA-II using both a normalized correlation and number of attributes, could produce better selections 

of attributes as both objectives are trying to balance each other. We can view the behavior of the classification accuracy in the 

next figures. 

 

Figures 7 and 8 show the dataset's classification accuracy as percentage values. NSGA-II performance in most datasets ties or 

exceeds accuracy on Unmodified and Mono-Objective. Finally, considering both attribute reduction and classification accuracy 

results, we can conclude that NSGA-II outperforms the other two methods. 

 

 
Fig. 7. Classification accuracy results – Part 1. 
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Fig. 8. Classification accuracy results – Part 2. 

 

 

To corroborate the statistical difference among all our proposals, we used two different nonparametric statistical tests (Rainio et 
al., 2024). For our case study, we chose to run Friedman's and Wilcoxon's tests to verify our results to our attribute reduction and 

classification results. The first statistical test assesses if there is a difference between all proposals, and the latter evaluates if there 

is a difference between any of the pairing proposals. We define the null Hypothesis as having no real difference between our 

proposals. To reject or accept this Hypothesis, we look for the p-value or probability value calculated from the tests and compare 

it to , the level of significance. If the p-value is smaller ,  there is a statistical difference in the test, rejecting the null Hypothesis; 

on the other hand, a higher value means accepting the null Hypothesis. We set  to 95% equivalent to 0.05 p-value. 

 

Table 4 and 5 present the results for Friedman and Wilcoxon tests, respectively applied to the attribute reduction values from 

Table 3. 

Table 4. Friedman’s test result on attributes 

Friedman’s Test 

 Ranks 

Methodology Mean Ranks 

Unmodified 3.00 

Mono-Objective 1.67 

NSGA-II 1.33 

   

P-Value 0.000 

   

 

Our focus is to minimize the number of attributes in the dataset; therefore, we are looking for the lowest Mean Rank in the test. 

According to the Friedman Results in the attribute reduction, the Mean Rank of NSGA-II is 1.33, close to Mono-Objective with 

1.67. Both proposals have a lower Mean Rank than the Unmodified version. Furthermore, the 𝑃 − 𝑉𝑎𝑙𝑢𝑒 ≈  0 means a statistical 

difference among the three tests. 
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Table 5. Wilcoxon’s test result on attributes 

Wilcoxon’s Test 

 

Ranks Test Statistics 

  N Mean Rank Sum Rank Z P-Value 

Unmodified - 

NSGA-II 

Negative Rank 0 - - 

-3.09 0.002 
Positive Rank 12 6.50 78.00 

Ties 0 - - 

Total 12 - - 

Mono-Objective - 

NSGA-II 

Negative Rank 1 3.00 3.00 

-1.57 0.116 
Positive Rank 5 3.60 18.00 

Ties 6 - - 

Total 12 - - 

 

The results from Wilcoxon show a statistical difference between Unmodified and NSGA-II with a 𝑃 − 𝑉𝑎𝑙𝑢𝑒 =  0.002. On the 

other hand, while comparing the Mono-Objective and NSGA-II, there is no clear statistical difference between both proposals with 

a 𝑃 − 𝑉𝑎𝑙𝑢𝑒 =  0.116, meaning that both proposals are statistically equivalent. However, NSGA-II tends to produce better results, 

as shown in the Positive Sum of Rank with a value of 18. Therefore, adding more datasets for testing may reduce the  𝑃 − 𝑉𝑎𝑙𝑢𝑒 

to show a significant statistical difference. 

 

Additionally, we show the Friedman and Wilcoxon nonparametric tests for the classification accuracy in Table 6 and 7, 
respectively; from the results presented in Table 3. 

Table 6. Friedman’s test result on classification accuracy 

Friedman’s Test 

 Ranks 

Methodology Mean Ranks 

Unmodified 2.04 

Mono-Objective 1.33 

NSGA-II 2.63 

   

P-Value 0.002 

   

 

Here, we focused on maximizing the classification accuracy; hence, we aim for higher Mean Ranks. The Friedman test shows 

NSGA-II as the top Mean Rank with a value of 2.63; furthermore, the Unmodified version outperformed the Mono-Objective. 

Regarding this last result, the Mono-Objective excessively reduces the number of attributes, negatively impacting classification 

accuracy. 

 

The Wilcoxon test regarding the classification accuracy shows that NSGA-II outperformed the Mono-Objective alternative with a 

significant statistical difference with a 𝑃 − 𝑉𝑎𝑙𝑢𝑒 =  0.005. On the other hand, the Unmodified version barely reached statistical 

equivalence with a 𝑃 − 𝑉𝑎𝑙𝑢𝑒 =  0.066, as we can see in the Negative Sum of Rank of 38, NSGA-II has better classification 

accuracy performance; hence, we believe that by using more datasets NSGA-II might reach statistical difference. 
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Table 7. Wilcoxon’s test result on attributes 

Wilcoxon’s Test 

 

Ranks Test Statistics 

  N Mean Rank Sum Rank Z P-Value 

Unmodified - 

NSGA-II 

Negative Rank 7 5.43 38.00 

-1.84 0.066 
Positive Rank 2 3.50 7.00 

Ties 3 - - 

Total 12 - - 

Mono-Objective - 

NSGA-II 

Negative Rank 10 5.50 55.00 

-2.81 0.005 
Positive Rank 0 - - 

Ties 2 - - 

Total 12 - - 

 

Therefore, the NSGA-II proposal has a better balance between minimizing the number of attributes and maximizing classification 

accuracy than the Mono-Objective and the Unmodified alternatives. 

 

Finally, we carried out the Principal Component Analysis (PCA) technique using SciKit Learn’s PCA implementation to extract 

the PC1 (Principal Component 1)  

 

Table 8 presents the PC1 weighting attributes from Iris Dataset in descending order. In this case, we only selected PetalLength 

attribute because the following attribute SepalLength has a noticeable weight difference when comparing to PetalLength. The 

remaining attributes are not considered because they had even lower weighting values. From this extraction we calculate the 
attribute reduction percentage and the classification accuracy for all datasets using the most significant attributes selected from 

PC1. The final results of this extraction for our datasets are in Table 9. 

Table 8. Iris Principal Component 1 

Dataset Weight 

PetalLength 0.857 

SepalLength 0.361 

PetalWidth 0.358 

SepalWidth 0.085 

 

PCA has a high attribute reduction level on most datasets due to the selection of the best attributes according to the value of their 

principal components; this can be a drawback as we remove information that could help for classification purposes. 

Table 9. PCA results on datasets 

Dataset 
Number of 

Attributes 

Principal Component 1 

(PC 1) 

PC 1 Number of 

Attributes  

PC1 J48 Classification 

Accuracy 

Australian Credit 14 99.89 1 70% 

Balance Scale 4 25.00 1 56% 

Breast Cancer Wisconsin 9 69.05 7 96% 

Ecoli 7 51.62 4 75% 

Glass 10 47.62 2 72% 

Ionosphere 34 31.34 12 85% 

Iris 4 92.46 3 100% 

SoyBean Small 36 47.93 4 70% 

Teaching Assistant 5 63.40 1 48% 

Thyroid (Training) 21 32.37 2 91% 
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TicTacToe 9 15.18 4 67% 

Wine 13 99.81 1 67% 

 

Now, we can compare our NSGA-II results from Table 3 with PCA results from Table 8.  Figures 9 and 10 show the difference 

between reduction in the number of attributes. 

 

 
Fig. 9. NSGA-II vs PCA attribute reduction comparison – Part 1. 

 

 
Fig. 10. NSGA-II vs PCA attribute reduction comparison – Part 2. 

 

Figures 11 and 12 show the difference between their classification accuracy using a J48 decision tree. 
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Fig. 11. NSGA-II vs PCA classification accuracy comparison – Part 1. 

 

 

 
Fig. 12. NSGA-II vs PCA classification accuracy comparison – Part 2. 

 

We can see that in most test cases, PCA uses fewer attributes than NSGA-II. Nevertheless, as expected, PCA classification scores 

are lower than the NSGA-II; this indicates that the attribute selection done by the PCA is inefficient. We believe that PCA exerts 

this behavior because it has several disadvantages, such as: features being determined by linear correlations, principal components 

are based on estimations of means and covariance from variables from the original dataset (Palo et al. 2021). Additionally, the 

main purpose of PCA is to produce new attributes that can explain the behavior of the dataset. 
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5 Conclusions and Discussions 
 

 
In this paper, we propose two attribute selection techniques, thus reducing dataset dimensionality. The proposals are a mono-

objective memetic algorithm and a multi-objective memetic non-dominated sorting genetic algorithm (NSGA-II). Both proposed 

algorithms employ a different approach, using correlation to select the most relevant attributes in datasets to solve the curse of 

dimensionality. 

 

At first, we supposed that keeping attributes with low correlation hinted that we get more information from the dataset as greater 

entropy because attributes show us distinct significance. Nevertheless, when selecting Z' and determining what produced better 

results, we realized conserving attributes sharing similar likelihood was appropriate. This selection could mean the other attributes 

may contain noise or trash values. Keeping the characteristics with a high correlation value implies that those attributes "tell" the 

same story. There is a pattern that describes the class of each dataset's record. 

 
It is essential to reaffirm that when calculating the correlation matrix, we set every value to its absolute value, meaning that a 

strong negative correlation is still a high correlation between two attributes; the negative or positive indicates a direction between 

that correlation, going from attribute one to attribute two or otherwise. We chose to research correlation as an absolute positive or 

negative value. 

 

The results show a noticeable improvement in the dimensionality reduction of the reference dataset for both techniques. 

Furthermore, NSGA-II gained the edge over alternative accuracy and attribute reduction techniques. Regarding attribute selection, 

NSGA-II statistically outperformed the memetic algorithm, while regarding accuracy, NSGA-II improved the memetic algorithm 

statistically and nearly obtained a statistical difference against the reference dataset, missing only 1.6%.  

 

As we stated in our results sections, NSGA-II performance was achieved due to both objectives, the number of attributes, and the 

normalized correlation value, balancing each other and selecting the best solution by calculating the accuracy with a J48 Classifier, 
in contrast to the Mono-Objective, which uses only the correlation values to pick out the best solution with also restrictions such 

as limiting the number of attributes selected in solutions, that restriction is not used in NSGA-II.  

 

We also suspect that the different ways of picking up the best solution in each proposal are a possible reason why NSGA-II 

outperforms the Mono-Objective proposal. The solution selection with the best classification accuracy inside the Pareto front for 

the NSGA-II gives an edge regarding the Mono-Objective selection, even with the same number of attributes. 

 

Therefore, in future work, we propose using more test datasets with a higher number of attributes or a classification accuracy 

between 60% to 80% to evaluate the performance of NSGA-II and to identify if it can reach a statistical difference compared to 

the reference dataset; that is because a higher number of attributes could show a diverse range of results as each method selects 

what it considers the best attributes and the suggested accuracy classification seems to be inclined to higher variability when 
selecting attributes. 

 

Additionally, enhancing or re-designing the fitness function in the NSGA-II variant might improve the results so far, as it can help 

improve the solution selection and increase accuracy. 

 

Finally, PCA attribute reduction outperformed all other proposals; however, this extremely high level of reduction had a great 

negative impact on the classification accuracy, which was seriously compromised. Therefore, producing worse results than NSGA-

II in all the datasets except the Iris dataset, which is extremely easy to classify. 
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