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Abstract. This study proposes a methodology for the classification 

of vocal pathologies by comparing voice signals with 

electroglottographic (EGG) signals. The segmentation of the voice 

signal into temporal components and its transformation into 

recurrence plots through intuitionistic fuzzy clustering provides 

input for a deep learning model to classify voices as healthy or 

pathological. The results obtained show that the Inception-v3 

model, when using intuitionistic clustering, achieves superior 

accuracy — particularly with EGG signals — reaching a peak 

performance of 87.8%. Furthermore, the F1 score is 0.885 for EGG 

and 0.860 for speech, demonstrating better performance on EGG 

signals. 
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1 Introduction 

 

Voice pathology refers to disorders affecting the quality, pitch, loudness, or function of the voice, 

often caused by structural abnormalities, neurological conditions, or psychological factors. The 

complexity of vocal signals, which depend on variables such as frequency, intensity and temporal 

characteristics, complicates the precise classification of pathologies (Abdulmajeed et al, 2022). 

Furthermore, traditional diagnostic methods that rely on auditory perception are susceptible to bias, 

owing to variability in the listener's experience and environmental conditions. In light of these 

challenges, there has been an increasing exploration of artificial intelligence (AI) techniques as a 

more objective and systematic approach to analyzing and classifying speech signals (Park et al., 

2023; Ksibi et al., 2023). This has led to the development of novel methodologies and more 

specialized databases for training these models (Park et al., 2023; Ksibi et al., 2023; Harar et al., 

2025).  

 

A review of studies on vocal pathology detection reveals a diversity of approaches leveraging deep 

learning techniques, with each addressing unique challenges in the field. While several works (Islam 

et. al., 2022; Liu et al., 2023) focus on convolutional neural networks (CNNs) for feature extraction 

and classification, others integrate CNNs with recurrent neural networks (RNNs) to capture temporal 

dynamics (Ksibi et al., 2023), achieving higher accuracy. Additionally, feature extraction techniques 

have evolved to incorporate dynamic and static features from voice samples, allowing for more 

robust classification frameworks (Abdulmajeed et al, 2020; Omeroglu et al., 2022; Kumar et al., 

2023). Support Vector Machines (SVM) and other machine learning algorithms continue to be 

widely utilized for their effectiveness in detecting specific pathologies like vocal nodules and polyps, 
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often achieving high accuracy rates (Mohammed et al, 2020). Other studies address class imbalance 

issues using fuzzy cluster oversampling or SMOTE, improving model robustness on datasets with 

underrepresented pathologies (Fan et al. 2021; Lee et al., 2023). Transfer learning has been shown 

to be effective in handling limited datasets by leveraging pre-trained models (Mittal & Sharma, 2023; 

Won & Kim, 2024), while novel features such as "pitch difference" and automated processes for 

specific disorders such as vocal cord polyps further refine detection methods (Changwei et al., 2020). 

Taken together, these studies demonstrate the potential of deep learning to advance voice pathology 

detection but also underscore the need for standardized datasets and validation protocols to ensure 

clinical applicability. 

 

In addition, there has been a growing trend towards the integration of multimodal data in vocal 

pathology research, combining acoustic analysis with electroglottography (EGG) signals to better 

understand vocal fold function during phonation and improve diagnostic accuracy (Abdulmajeed et 

al, 2022). This approach allows researchers to correlate physiological and acoustic features, 

providing a deeper insight into the mechanics of voice production. There has also been an emphasis 

on standardised databases for training machine learning models to address variability in data quality 

and improve classification robustness. Notable datasets in the field of pathological voice 

classification include the Massachusetts Eye and Ear Infirmary (MEEI) Voice Disorder Database 

includes over 1,400 samples of sustained vowels and passages but has limitations related to recording 

environments (Fang, 2019). The Saarbruecken Voice Database (SVD) offers high-quality recordings 

in German, making it suitable for various research applications (Woldert-Jokisz, 2007). The Arabic 

Voice Pathology Database (AVPD) features recordings from Arabic speakers collected under 

standardized conditions, addressing linguistic diversity (Mesallam, 2017). Additionally, the 

VOICED Database on PhysioNet contains clinically verified samples from 208 individuals, along 

with demographic and medical data (Goldberger et al., 2000). Together, these resources facilitate the 

study of various vocal pathologies, including cysts, vocal fold paralysis, and polyps, while enhancing 

the overall reliability of machine learning models in this field; but,  are mostly accessible through 

specific permissions, licenses, or collaborations, and not all are entirely free. 

 

In this context, the present research proposes a methodology for the classification of vocal 

pathologies using both the voice signal and electroglottography (EGG) signals, with the additional 

objective of comparing the performance of the methodologies. Each signal is segmented into 

windows of a specific size in order to preserve important patterns. The generation of recurrence 

graphs for each window captures recurring patterns of vocal fold vibration. An intuitionistic fuzzy 

clustering approach is then employed to classify these segments into two homogeneous groups based 

on similarities. The recurrence graphs thus obtained are then processed by a deep learning model to 

identify relevant patterns and features in the visual data. 

 

The rest of this paper is organized as follows. Section 2 presents some theoretical concepts, Section 

3 describes in detail the composition of the methodology, with special emphasis on the generation of 

recurrence plots and their mathematical basis. Section 4 presents the experimental results. The final 

section offers conclusions deriver from  results and recommendations for future work. 
 

2 Preliminaries 
 

This section will present the fundamental concepts necessary for the development of this work. The 

section will commence with a discussion of recurrence plots, which are utilized for the analysis of 
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temporal patterns. The different types of set theory, including classical, fuzzy and intuitionistic fuzzy, 

will also be addressed, as these allow us to deal with uncertainty in different ways. Finally, a brief 

description of the deep learning models that will be used throughout the study will be introduced, in 

order to contextualize their use and application. 

 
2.1   Recurrence plot 

 

A recurrence plot (RP) is a technique for the analysis of nonlinear data that can be considered as a 

visualization of a square matrix, where each element represents the time at which a state of a dynamic 

system is repeated. When applied to speech signals, the recurrence plot illustrates the instants at 

which the signal exhibits similar patterns or periodicities in time, thereby enabling the visualization 

of the signal’s structure and recurrent characteristics in the time domain (Marwan, 2007). The 

recurrence plot can be expressed mathematically as follows: 

 

𝑅𝑖𝑗 = Θ(ℰ𝑖−∥ 𝑥𝑖⃗⃗⃗  − 𝑥𝑗⃗⃗⃗  ∥), 𝑥𝑖⃗⃗⃗   ∈  ℜ𝑚 , i, j = 1, … , n (1) 

 

where 𝑛 is the number of states or moments considered 𝑥𝑖, ℰ𝑖 is a threshold distance, ∥·∥ a 

norm (e.g. Euclidian norm) and Θ(·) is a Heaviside function.  

 

2.2   Set theory: Classical, Fuzzy and Intuitionistic Sets  

 

Set theory, a foundational branch of mathematics, is the study of the properties and relationships 

between collections of objects. In its classical form, a set is defined as a well-defined collection, 

where the membership of an element is determined in a precise and binary way: an element either 

belongs to the set or it does not. However, the classical theory is not always suitable for modeling 

situations where the membership of an element is uncertain or fuzzy. To address this limitation, fuzzy 

sets and intuitionistic fuzzy sets have emerged as extensions of classical set theory. These extensions 

allow for the handling of imprecision and uncertainty in a more flexible manner, thereby expanding 

the scope of the theory. In classical set theory (Kunen, 2014), a set is defined by a precise and 

absolute membership rule. That is to say, the membership of an element 𝑥 to a set 𝐴 is expressed by 

a binary proposition: 𝑥 ∈ 𝐴 o 𝑥 ∉ 𝐴. In the context of classical data clustering, the best-known 

algorithm is K-means (Ahmed, 2020), which attempts to divide a data set into 𝐾 groups (clusters) 

by minimising the squared distance between the points and the cluster centres. Its objective function 

is: 

J(𝑋;𝑈, 𝑉) = ∑∑‖𝑥𝑖

𝑘

𝑗=1

𝑛

𝑖=1

− 𝑣𝑗‖
2
 

(2) 

 

where n is the number samples X =  𝑥1, 𝑥2, … , 𝑥𝑛, k the number of clusters, 𝑥𝑖 is the ith point. 𝑣𝑗 is 

the centroid of the jth cluster and ∥ 𝑥𝑖 −  𝑣𝑗 ∥2 is the squared Euclidean distance between data point 

𝑥𝑖 and cluster centroid 𝑣𝑗. The objective of the K-Means algorithm is to find the centroids 𝑣𝑗 that 

minimize this function. These centroids are updated with the average of the points assigned to each 

cluster.  It has been demonstrated that the efficacy of this algorithm is contingent upon two factors: 
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first, the elements must be clearly distinguishable and secondly, the boundaries between the sets must 

be exact.  

 

As an extension of classical set theory, fuzzy set theory aims to model the uncertainty and 

imprecision inherent in many real-world phenomena. In a fuzzy set, the membership of an element 

𝑥 to a set 𝐴 is not a binary proposition, but a numerical value 𝜇𝐴(𝑥) in the interval [0, 1], representing 

the membership degree of 𝑥 to the set 𝐴. This function, called a membership function, makes it 

possible to describe vague or fuzzy concepts such as 'high temperature', 'light weight' or 'young 

person', where there is no exact boundary between the elements that belong to the set and those that 

do not. Fuzzy C-Means (FCM) is a fuzzy clustering algorithm that assigns each point a degree of 

membership to each cluster, as opposed to a binary assignment as in K-Means (Kahraman, 2016). 

The objective function of FCM is as follows: 

𝐽(𝑋; 𝑈, 𝑉) = ∑∑𝜇𝑖𝑗
𝑚𝑑2(𝑥𝑖, 𝑣𝑗)

𝑐

𝑗=1

𝑛

𝑖=1

 
(3) 

where 𝑐 is the number of clusters, 𝑈 is a membership matrix that contains the memberships degrees 

𝜇𝑖𝑗  and 𝑚 is a fuzziness parameter, 𝑑2(𝑥𝑖, 𝑣𝑗)is the distance between the sample xI and the cluster 

centroid 𝑣𝑗. The objective is to minimize this function by iteratively updating the centroids and 

membership values until convergence. The centroids 𝑣𝑗 are recalculated as a weighted combination 

of all data points, where the weights are the fuzzy memberships 𝜇𝑖𝑗 . This process continues until the 

centroids and membership values stabilize. The centroids, 𝑣𝑗, are recalculated as a weighted 

combination of all data points: 

𝑣𝑗 =
∑ 𝜇𝑖𝑗

𝑚𝑛
𝑖=1 𝑥𝑖

∑ 𝜇𝑖𝑗
𝑚𝑛

𝑖=1

 
(4) 

Meanwhile, the fuzzy memberships 𝜇𝑖𝑗  are updated by a fuzzy membership function, which depends 

on the distance between each data point xI and each centroid 𝑣𝑗. 

𝜇𝑖𝑗 =
1

∑ (
‖𝑥𝑖 − 𝑣𝑗‖

2

‖𝑥𝑖 − 𝑣𝑘‖2)

2
𝑚−1

𝑐
𝑘=1

 
(5) 

 

Intuitionistic fuzzy sets (IFS) (Xu & Wu, 2010) represent an extension of traditional fuzzy sets, 

incorporating not only the membership of an element to a set, but also the degree of non-membership, 

along with a third component termed "hesitant." An intuitionistic fuzzy set is formally characterised 

by a membership function, 𝜇(𝑥), a non-membership function, 𝜈(𝑥), and an indeterminacy function,  

𝜋(𝑥), satisfying the relation 𝜇(𝑥) +  𝜈(𝑥) ≤ 1. This approach facilitates enhanced flexibility in the 

representation of elements that are not exclusively partial members of a set, but also exhibit 

indeterminate characteristics with respect to their relationship with the set. This enables modelling 

scenarios where there is not only an uncertain degree of membership, but also an indeterminacy 

about whether or not an element should be incorporated into the set. 
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2.3   Deep Learning Models 

 

Deep learning, as a subset of machine learning, utilizes artificial neural networks to model intricate 

patterns in data, emulating the cognitive functions of the human brain.This approach is characterized 

by its multi-layered architecture, which allows for the automatic learning of features from large 

datasets without the need for explicit programming for each specific task. The efficacy of deep 

learning has been particularly notable in various domains, including image recognition, natural 

language processing, and speech recognition. In these domains, deep learning has outperformed 

traditional methods by effectively capturing complex data representations (Lim & Zohren, 2021; 

Purwono et al., 2023).  

 

Among the various architectures within the field of deep learning, SqueezeNet distinguishes itself 

by its capacity to attain accuracy comparable to that of more extensive models while concurrently 

diminishing the number of parameters. This efficiency renders it particularly well-suited for 

deployment in environments where resources are limited (Iandola, 2016). A similar approach is seen 

in GoogLeNet, which introduces inception modules to convolutional neural networks (CNNs). These 

modules utilize varying filter sizes within the same layer, offering a novel perspective on CNN 

design. This design enables the model to capture different aspects of the input data effectively, 

enhancing its performance in image classification tasks (Szegedy, 2015). InceptionV3, an evolution 

of GoogLeNet, further optimises performance through advanced techniques such as factorised 

convolutions and aggressive regularisation. These enhancements allow InceptionV3 to recognise 

complex patterns in images more efficiently than its predecessors (Szegedy, 2016). On the other 

hand, ResNet50 uses a unique strategy known as residual learning, which incorporates skip 

connections to facilitate the training of very deep networks - sometimes comprising hundreds of 

layers - without running into the vanishing gradient problem. This architecture has been widely 

adopted for image classification tasks due to its robustness and efficiency (He et al., 2016).  These 

architectures exemplify the capabilities of deep learning models in addressing a range of challenges 

across diverse domains. 

 

3 Proposed methodology 

 

This research presents a methodology for classifying vocal pathologies, as shown in the general 

diagram in Figure 1. The methodology involves analyzing electroglottography (EGG) signals, which 

are normalize to a [0,1] range to ensure uniform magnitude. Each signal is then segmented into 350-

sample windows, capturing local patterns and fine details. This segmentation further aids in data 

augmentation by generating multiple segments from the same signal, enriching the training dataset. 

Furthermore, a recurrence plot is generated for each signal window, thereby capturing recurrent 

patterns in vocal fold vibrations during phonation and facilitating the identification of salient 

features. These graphs are derived from an intuitionistic fuzzy clustering approach, which facilitates 

the categorization of signal segments into two homogeneous sets based on their similarities. After 

generating the recurrence plots, they are processed by deep learning. 
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Fig. 1. Proposed methodology for speech processing. 

 

The clustering process employed to generate the recurrence graphs is founded on the theory of 

intuitionistic fuzzy sets. Given a set of data 𝑋 = { 𝑥1, 𝑥2,… , 𝑥𝑛} to be clustered into 𝑐 groups. The 

formulation of a clustering algorithm necessitates the establishment of an objective function that 

seeks to minimize the distances between the centers of the groups and the data. This is due to the fact 

that the proximity of a data point to a center corresponds to an elevated degree of membership. The 

objective function that has been formulated is as follows:  

𝐽𝑚 (𝑋𝐼𝐹𝑆;𝑈,𝑉𝐼𝐹𝑆) = ∑ ∑ 𝑢𝑖𝑘
𝑚

𝑐

𝑘=1

𝑛

𝑖=1

𝑑
2
(𝑥𝑖𝑗, 𝑣𝑘𝑗)

 

 

(6) 

where 𝑈 = (𝑢𝑖𝑘)𝑐×𝑛 is the intuitionistic fuzzy cluster partition of  𝑋𝐼𝐹𝑆 , each 𝑢𝑖𝑘 is defined as the 

membership degree of the ith element (𝑥𝑖) with respect to the jth cluster. 𝑋𝐼𝐹𝑆 = {𝑥1, 𝑥2,… , 𝑥𝑛} are N 

intuitionistic fuzzy elements, with each 𝑥𝑖 is represented as intuitionistic fuzzy set of the form 𝑥𝑖 =

{𝜇(𝑥𝑖), 𝜐(𝑥𝑖), 𝜋(𝑥𝑖)}, where 𝜇(𝑥𝑖), 𝜐(𝑥𝑖)and 𝜋(𝑥𝑖) stand for membership, nonmembership and hesitant 

degrees, respectively. 𝑉𝐼𝐹𝑆 = (𝑣1, 𝑣2
,… , 𝑣

𝑘
)is the prototypes-vector, with each component given by 

membership, non-membership and hesitant indexes, such as 𝑣𝑘 = {𝜇(𝑣𝑘), 𝜐(𝑣𝑘), 𝜋(𝑣𝑘)}. 𝑑
2
(𝑥𝑖, 𝑣𝑘) is 

a distance measure (e.g. Euclidean intuitionitic fuzzy distance) between 𝑣𝑘 (cluster center) of each 

region and 𝑥𝑖 (data points). 𝑚 is a fuzziness parameter (e.g. 𝑚 = 2), 𝑐 the number of cluster, 𝑛 is the 

number of elements. To minimize 𝐽𝑚, it is necessary to choose a membership matrix (𝑈 = (𝑢𝑖𝑘)𝑐×𝑛) 

and 𝑣𝑘 based on the following equation: 

𝑢𝑖𝑗 =
1

∑ (𝑑
2
(𝑥𝑖, 𝑣𝑘)

𝑑
2
(𝑥𝑖, 𝑣𝑙)

)

2
𝑚−1

𝑐
𝑗=1

 

 

(7) 

𝜇(𝑣𝑘) =
∑ 𝑢𝑖𝑘

𝑚𝑛
𝑖=1 𝜇(𝑥𝑖)

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑖=1

 

 

(8) 
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𝜐(𝑣𝑘) =
∑ 𝑢𝑖𝑘

𝑚𝑛
𝑖=1 𝜈(𝑥𝑖)

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑖=1

 (9) 

𝜋(𝑣𝑘) =
∑ 𝑢𝑖𝑘

𝑚𝑛
𝑖=1 𝜋(𝑥𝑖)

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑖=1

 

 

(10) 

Subsequently, these components must be integrated to generate prototypes for the purpose of 

computing: 

𝑉𝑘
𝐼𝐹𝑆 = (𝜇(𝑣𝑘), 𝜐(𝑣𝑘), 𝜋(𝑣𝑘))

 (11) 

 

4 Experimentation  

 

This section presents the results of the experiments carried out. First, the dataset used for the 

evaluation are described. The experiment was designed in two phases: (1) to demonstrate, through 

the evaluation of several deep learning models, the contrast of the recurrence graphs obtained from 

classical, fuzzy and intuitive sets, (2) to compare the performance of the results of the classification 

of voice signals with the EGG signals to determine whether the integration of vocal cord vibration 

data improves the accuracy and reliability of the classification of voice signals. 

 
4.1   Database 

 

The Saarbrücken Voice Database (SVD) is a rich collection of voice recordings established at 

Saarland University in Germany, designed to support research in speech processing and linguistics. 

It includes recordings from over 2,000 speakers, representing a diverse array of dialects, accents, and 

speech pathologies. Each recording session is conducted under controlled conditions to ensure high 

audio quality and is accompanied by electroglottography (EGG) signals that provide insights into 

vocal fold vibration during speech. The Figure 2 presents an example of the signals.  The database 

prioritizes speaker anonymity by assigning unique identification numbers, allowing researchers to 

access specific recordings without compromising privacy. Its user-friendly web interface enables 

detailed searches based on various criteria such as age, gender, and speech characteristics, while 

offering multiple download formats for flexibility in research applications (Woldert-Jokisz, 2007). 

The performance of the proposal is evaluated through the consideration of two categories: normal 

voice and pathological voice. A balanced subset of 660 samples is utilized for each category. The 

training of deep learning models is conducted with 70% of the data, while the remaining 30% is 

allocated for validation purposes. 

 

 
Fig. 2. Healthy and pathological samples in time domain. (a) Voice Signal (b) EGG Signal 
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4.2   Metrics 

 

The evaluation of vocal pathology classification models will be conducted using the confusion matrix 

(Figure 3) and the several parameters derived from it. The following performance metrics are 

presented to evaluate the effectiveness of the models used, which are derived from the results of the 

confusion matrix (Sankaran & Kumar, 2024).  
 

 
Fig. 3. Confusion matrix 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 
(12) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 
(13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 
(14) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 
(15) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

 
(16) 

𝐸𝑟𝑟𝑜𝑟 =  
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 
(17) 

𝐹𝑃𝑅 = 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

 
(18) 
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where TP are true positives, TN are true negatives, FP are false positives and FN are false negatives. 

Accuracy is measured as the proportion of correct predictions out of all predictions made. Precision 

measures the proportion of predicted positives that are truly positive, while recall, or sensitivity, 

reflects the ability to correctly identify positive instances. The F1-score is the harmonic mean of 

precision and recall, useful in imbalanced classes. Additionally, specificity measures the ability to 

correctly identify negative instances, complementing recall. The error rate, defined as the proportion 

of incorrect predictions, is another fundamental metric, though its utility is limited in imbalanced 

classes. The false positive rate (FPR) assesses the proportion of negative instances misclassified as 

positive, and a low FPR indicates a model’s ability to avoid incorrectly classifying negatives. These 

metrics provide a comprehensive evaluation of model performance, particularly in cases with class 

imbalance or nuanced error analysis needs. In addition, The Kappa coefficient (Vieira et al., 2010) 

and Matthews correlation coefficient (MCC) (Chicco & Jurman, 2020) provide deeper insights into 

model performance. Kappa measures agreement, with values close to 1 indicating strong 

concordance. The MCC, ranging from -1 to 1, considers all confusion matrix elements and is 

especially useful in imbalanced datasets.  

𝐾𝑎𝑝𝑝𝑎 =  
𝑇 × (𝑇𝑃 + 𝑇𝑁) − [(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)]

𝑇2 − [(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)]

 
(19) 

𝑀𝐶𝐶 =  
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁))

 
(20) 

 

where 𝑇 is the total number of observations, i.e., the number of elements in the confusion matrix. 

These metrics provide a more detailed understanding of how the model is performing in terms of its 

errors and its ability to distinguish between classes. The combined use of these metrics allows for a 

more accurate and complete evaluation of the model's performance on classification tasks. 
 

4.3 Implementation Details 

 

The hyperparameter tuning was performed through a manual procedure based on validation, aiming 

to improve the model's accuracy and generalization while aligning with the specific characteristics 

of the dataset. The learning rate was fine-tuned within the range of 0.0001 to 0.001 to ensure stable 

convergence. The dropout rate was set between 0.3 and 0.5 to mitigate overfitting, while L2 

regularization was tested with coefficients ranging from 0.0001 to 0.001 to enhance generalization. 

The Adam optimizer was employed for its efficiency in updating parameters. Batch sizes of 32, 64, 

and 128 were assessed, and the number of epochs varied between 10 and 50. Cross-validation was 

used to evaluate the different hyperparameter combinations, enabling the selection of the most 

appropriate values for each model. The primary focus of this research was model accuracy; therefore, 

processing times were not a consideration. However, the broader goal is to optimize computational 

efficiency and refine the model for potential deployment in clinical or real-time environments. 
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4.4   Performance Results  

 

The contrast between the recurrence plots generated by the classical, fuzzy and intuitionistic fuzzy 

clustering techniques is shown in Figure 4. It presents examples of the plots generated by each 

clustering technique for both a pathological and a healthy signal. In these plots, the differences 

between each type of clustering can be seen, revealing that fuzzy intuitionistic clustering manages to 

condense the information more completely than the other methods. This ability to condense 

information makes it possible to identify relevant patterns more clearly, which is useful for the 

classification of speech signals. This behaviour is observed in both speech and EEG signals, 

highlighting the usefulness of the approach in finding structure in the data and improving the analysis 

of signals in both pathological and healthy contexts. 

 

 
Fig. 4 Sample recurrence plot obtained. Voice Signal Methods: (a) Classical, (b) Fuzzy, (c) 

Intuitionistic.  EGG Signal Methods: (d) Classical (e) Fuzzy (f) Intuitionistic. 

 

 

In order to validate these results and to assess the performance of the classification models, a more 

detailed and quantitative analysis is performed. Table 1 shows the comparative accuracy results of 

different classification models applied to speech and EGG signals. The results reveal that 

intuitionistic methods consistently outperform classical and fuzzy approaches for both categories of 

signals, with Inception-v3 standing out by achieving a maximum accuracy of 0.878 on the EGG 

signal using the intuitionistic method. While ResNet-50 shows inferior performance when 

classifying speech signals, its performance improves significantly with EGG signals, reaching an 

accuracy of 0.720 with the classical approach. Furthermore, the EGG signal generally shows better 

results compared to the voice signal, suggesting that it contains more distinctive features that 

facilitate classification. This analysis highlights the effectiveness of intuitionistic techniques in 

improving the accuracy of classification models in specific contexts, and suggests that the choice of 

model and clustering technique is crucial for optimising performance in classification tasks. 
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Table 1. Accuracy results of different models using recurrence plots obtained by clusterings techniques. 

Models Voice signal EGG signal 

 Classical Fuzzy Intuitionistic Classical Fuzzy Intuitionistic 

SqueezeNet 0.630 0.756 0.781 0.619 0.649 0.706 

GoogLeNet 0.650 0.739 0.787 0.615 0.688 0.766 

ResNet-50 0.594 0.783 0.825 0.720 0.814 0.852 

Inception-v3 0.728 0.828 0.845 0.744 0.851 0.878 

 

 

To complete the analysis, Table 2 presents various performance metrics of the Inception-v3 model 

using the intuitionistic clustering approach on the speech and EGG signals. The results show that the 

EGG signal is the most suitable choice for classification, with a higher F1 score (0.885) compared 

to the speech signal (0.860), reflecting a better balance between precision and recall. Moreover, the 

recall is significantly higher for the EGG signal (0.937 vs. 0.876), indicating a higher effectiveness 

in detecting positive cases. Although the specificity is slightly higher for the speech signal (0.857) 

than for the EGG signal (0.812), the overall performance in terms of precision and ability to detect 

positives makes the EGG signal preferable in applications where correct identification of vocal 

features is crucial. The low error values (0.155 for speech and 0.122 for EGG) and the high results 

for the Matthews Compensation Coefficient (MCC) and Kappa confirm the effectiveness of the 

model in classifying both signals, highlighting the performance of the Inception-v3 model with 

intuitionistic clustering in this context. 

Table 2. Inception-v3 performance comparison with speech and EGG signals. 

Metrics Voice Signal EGG Signal 

 F1_score 0.860 0.885 
Specificity 0.857 0.812 
Precision 0.866 0.834 

Error 0.155 0.122 
Recall 0.876 0.937 
FPR 0.143 0.188 
MCC 0.705 0.816 
Kappa 0.690 0.885 

 

Table 3 presents a comparison with some recent methods documented in the literature, selected 

within a similar setting to ensure a fair comparison. The results indicate that the proposed method 

demonstrates competitive performance, outperforming the majority of the compared approaches in 

terms of accuracy. Notably, it surpasses methods such as Islam et al. (2022), which, despite 

employing convolutional neural networks (CNNs) and raw speech signals, do not attain the same 

level of accuracy as the proposed method. In a similar vein, Won & Kim's (2024) approach attained 

commendable outcomes with EGG signals and transfer learning, underscoring its efficacy in terms 

of accuracy and reduced computational demands. Although Kumar et al.'s (2023) approach achieves 

superior accuracy, it employs a multimodal strategy that necessitates the additional processing of 

specific features, thereby augmenting its complexity. In contrast, the proposed method utilises raw 

signals and employs a transformation to recurrence graphs using intuitionistic fuzzy clustering, a 

process which contributes to reducing computational complexity. 
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Table 3. Comparison with some current methods in the literature. 

a H:Healthy and P:Pathological 

 

5 Conclusions 

This research presents a methodology to classify vocal pathologies by comparing both voice 

and electroglottography signals using clustering and deep learning techniques. For each 

signal, recurrence plots were generated capturing the relevant patterns using three clustering 

approaches: classical, fuzzy and intuitionistic. The intuitionistic approach showed a superior 

ability to condense the information more completely, which facilitated the identification of 

discriminative patterns in the signals. The obtained recurrence plots were processed by deep 

learning models to classify the signals and to compare the performance of the voice and EGG 

signals. The results obtained show that the Inception-v3 model, using intuitionistic clustering, 

achieves excellent accuracy, especially on the EGG signals, with a maximum performance 

of 87.8%. Furthermore, the F1 score is 0.885 for EGG against 0.860 for voice, and the recall 

rates are 0.937 for EGG and 0.876 for voice. Although the specificity is slightly higher for 

voice signals (0.857) than for EGG (0.812), the error values are low, 0.122 for EGG and 

0.155 for voice, supporting the effectiveness of the Inception-v3 model with intuitionistic 

clustering in the classification of voice pathologies. In addition, when evaluated in a fair 

manner against established literature-based methods, the proposed approach exhibits 

competitive performance, surpassing the majority of the compared approaches in terms of 

accuracy. In contrast to more intricate methods, the proposed approach maintains both high 

accuracy and efficiency by employing raw signals and reducing computational complexity 

through recurrence graphs with intuitionistic fuzzy clustering. Future work will explore 

multimodal approaches that combine both speech and EGG signals to improve classification 

accuracy and reliability. 
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