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Abstract. Sugarcane is one of Mexico’s principal crops (INEGI, 

2025), playing a crucial role in the sugar industry and its 

derivatives. However, various diseases pose a threat to sugarcane 

cultivation, resulting in significant economic losses due to the 

large-scale eradication of crops. Early and accurate identification 

of diseases is essential for effective management, yet it remains 

challenging without specialised knowledge. Deep learning tools 

can facilitate the detection of such diseases. This study presents a 

comparative analysis of three state-of-the-art deep learning 

architectures—EfficientNetV2B0, DenseNet121, and 

ResNet101V2—for sugarcane disease detection. Using a dataset 

of 7,000 sugarcane leaf images categorised into five classes 

(healthy and four disease types), the evaluation of these models 

was based on multiple classification metrics. The findings 

highlight competitive performance among the models, showcasing 

their respective strengths and limitations in terms of accuracy and 

computational efficiency. This analysis offers valuable insights 

into deep learning-based approaches for sugarcane disease 

detection, supporting the development of practical solutions for 

the agricultural sector. 
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1 Introduction 
 

A significant challenge Mexican farmers face is crop disease management, which reduces yields and results in expensive treatment 

measures. In sugarcane cultivation, diseases such as rust, yellow leaf virus, mosaic, and red rot have particularly severe economic 

consequences, threatening productivity and profitability (Viswanathan & Rao, 2011). Effective disease management relies on 

early detection, as timely intervention can minimize losses and prevent widespread outbreaks. However, traditional methods, such 

as expert visual inspection, are time-consuming, labor-intensive, and prone to human error, particularly in large-scale farms where 

manual monitoring is impractical. Recent advancements in deep learning offer promising solutions for the early detection and 

classification of plant diseases through automated image analysis. Convolutional neural networks (CNNs), in particular, have 
demonstrated high accuracy in identifying disease symptoms in plant leaves, enabling faster diagnoses than conventional 

techniques. By leveraging deep learning models trained on annotated datasets of sugarcane leaf images, farmers can implement 

cost-effective, scalable, and real-time disease monitoring systems. These innovations not only enhance agricultural productivity 

but also contribute to sustainable farming practices by reducing the excessive use of pesticides and other chemical treatments. 

 

In the literature, various deep learning models designed to address the challenge of plant disease classification are found. In 

(Srivastava et al., 2020), the authors achieved an Area Under the Curve (AUC) of 90.2% using Inception v3 and VGG-19 models 

in combination with different classifiers, demonstrating the potential of CNN-based architectures for plant disease identification. 

More recently, (Li et al., 2023) introduced the SLViT model, a vision transformer-based approach, reaching an accuracy of 

98.87%, highlighting the advancements in transformer architectures for image classification tasks. Similarly, (Hemalatha et al., 

2022) achieved a 98% accuracy utilizing the LeNet-5 model, reinforcing the efficacy of traditional CNNs in feature extraction for 
disease detection. 

 

Beyond general plant disease classification, some studies have focused on sugarcane-specific applications. Authors in 

(Alencastre-Miranda et al., 2020) employed AlexNet for classifying sugarcane billets, achieving a Matthews Correlation 
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Coefficient (MCC) of 80%. Their work underscores the importance of robust models tailored for sugarcane disease detection, as 

accurate classification at different growth stages is crucial for disease management. Furthermore, research in related agricultural 

domains has provided valuable insights into transferable methodologies. For example, (Rao et al., 2021) achieved a remarkable 

99.3% accuracy in mango and grape leaf disease classification using AlexNet, demonstrating that while crops may differ, the 

underlying deep learning techniques for disease detection remain broadly applicable. These studies collectively emphasize the 

potential of deep learning in precision agriculture, paving the way for more efficient, scalable, and automated disease diagnosis 

systems across various crops. 

 
This paper presents a comparative study on the effectiveness of three state-of-the-art deep learning models—EfficientNetV2B0 

(Tan & Le, 2021), DenseNet121 (Huang et al., 2017), and ResNet101V2 (He et al., 2016)—in classifying sugarcane leaf diseases. 

Each of these models differs in architectural design, computational efficiency, and feature extraction capabilities, making their 

evaluation in this specific application essential. Since deep learning models for sugarcane disease detection are intended for field 

deployment, the selection of these three models for comparison was based on their performance characteristics. Specifically, for 

their ability to good problem generalization, memory usage, and their demonstrated strong performance in various image 

classification tasks (Deng et al., 2009). A brief description of each model is described below: 

 

EfficientNetV2B0, known for its optimized compound scaling and improved training efficiency, offers a balanced trade-off 

between accuracy and computational cost. Its ability to achieve high performance with fewer parameters makes it particularly 

advantageous for deployment in real-world agricultural settings, such as mobile or edge devices. However, its reduced model size 
compared to deeper architectures may limit its feature extraction capacity in highly complex datasets, potentially impacting 

accuracy when distinguishing between visually similar disease symptoms. 

 

DenseNet121 introduces dense connectivity, where each layer receives inputs from all preceding layers, improving gradient flow 

and feature reuse. This architecture enhances learning efficiency and often achieves superior performance with fewer parameters 

compared to traditional deep networks. A key advantage of DenseNet121 is its ability to capture intricate leaf disease patterns 

while maintaining computational efficiency. However, the increased number of connections can lead to higher memory 

consumption during training, making it less ideal for resource-constrained environments. 

 

ResNet101V2, an improved version of the original ResNet, leverages deep residual connections to address the vanishing gradient 

problem, allowing it to train very deep networks effectively. Its depth enables robust hierarchical feature extraction, which is 
beneficial for distinguishing complex disease patterns in sugarcane leaves. However, its larger model size and higher 

computational demands can slow down inference, making it less suitable for real-time or low-power applications. 

 

To summarize these descriptions Table 1 presents a comparison of these models, providing a clearer understanding of their 

capabilities and limitations. 

 

Based on the results obtained in this study, the key contributions of this work are outlined as follows: 

1. A comprehensive model evaluation. By systematically comparing EfficientNetV2B0, DenseNet121, and ResNet101V2 

for sugarcane disease detection. 

2. Identification of the best model. By demonstrating that EfficientNetV2B0, pre-trained on ImageNet, outperforms the 

other tested models in terms of classification accuracy and generalization. 

3. Performance insights. Providing a detailed analysis of the tested models' strengths and limitations across various 
classification metrics offers valuable insights for researchers and practitioners in agricultural applications. 

4. A pre-processed dataset of sugarcane leaf images. By making available a public ready-to-use dataset of 7,000 

sugarcane leaf images categorized into five classes, contributing to the standardization of sugarcane disease classification 

tasks. 

5. Potential for real-world deployment. Establishing a foundation for future implementation of the best-performing 

model in this work as a real-time sugarcane disease detection tool for practical agricultural use. 

 

The remainder of this paper is organized as follows: Section 2 outlines the experimental methodology used to evaluate the tested 

models and determine the most effective approach for sugarcane disease detection. Section 3 details the implementation of this 

methodology and presents a statistical analysis of the obtained results. Finally, Section 4 shows the conclusions of this study. 
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Table 1. Comparison between the evaluated models 

Feature EfficientNetV2B0 DenseNet121 ResNet101V2 

Architecture Type Scaled CNN (EfficientNet 

family) 

Densely Connected CNN Residual CNN (ResNet family) 

Model Depth Shallow (smallest in 

EfficientNetV2) 

Moderate (121 layers) Deep (101 layers) 

Number of Parameters ~7.1 millions ~8 millions ~44.6 millions 

Memory Usage Low (efficient use of 

parameters) 

High (dense connections 

require more memory) 

Very high (deep network, large 

footprint) 

Training Speed Fastest Moderate Slowest (due to depth) 

Inference Speed Fastest Slow (due to feature reuse) Slower than EfficientNet 

Generalization Ability Very high (optimized scaling) High High 

Best for Low-resource environments, 

and efficiency-focused 

applications 

Tasks requiring efficient 

feature reuse. 

Applications needing deep feature 

extraction. 

 

2 Methodology 

 
The primary objective of this study was to detect diseases in sugarcane leaves by evaluating a set of deep learning models from 

the literature and selecting the most effective one for accurate classification. A systematic comparison of multiple architectures 

was conducted to identify a model that balances high accuracy and robustness in real-world agricultural applications. The 

experimental methodology, illustrated in Figure 1, consisted of three key stages: 

 

1. Image Pre-processing: This stage involves cleaning and preparing the input images to enhance their quality before 

feeding them into the deep learning models to increase dataset diversity, improve generalization, and mitigate potential 

overfitting during training. 

2. Model Training: The selected deep learning architectures, as discussed in Section 1, were trained on the pre-processed 

dataset. Each model underwent hyperparameter tuning to maximize classification performance. Evaluation metrics such 
as accuracy, precision, recall, and F1-score were used to assess their effectiveness in distinguishing between healthy 

and diseased sugarcane leaves. 

3. Analysis of results: After training, an analysis of the models' performance based on their classification metrics determined 

the best-performing model for this task. 
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Figure 1. Experimental methodology 

 

3 Experiments and Results 

 
The experimentation followed the methodology described in Section 2, implemented with Python and TensorFlow. The 

experiments were run on a workstation with an Nvidia RTX 3090 Ti GPU, a 12th generation Intel Core i9 processor, 128GB of 
RAM, and Ubuntu 22.04 as the operating system. The detailed implementation of this setup is described below. 

 

3.1 Dataset Description 

 
This study used two datasets of sugarcane leaf images sourced from the Kaggle platform. The first dataset comprises images 

categorized into five classes: Rust, Yellow Leaf Virus, Mosaic, Red Rot, and Healthy Leaves (Daphal et al., 2022). The second 
dataset contains images, divided into two classes: Healthy Leaves and Yellow Leaf Virus (Ruhin, 2023). When combined, the total 

number of images reached 3,785, with the following class distribution: Yellow Leaf Virus (1,339), Mosaic (462), Red Rot (518), 

Rust (514), and Healthy Leaves (952). Figure 2 illustrates examples of the final dataset. 

 

 
Figure 2. Image examples: a) Rust, b) Yellow Leaf Virus, c) Mosaic, d) Red Rot, and e) Healty Leaf 

3.2 Image Pre-processing 

 
The dataset pre-processing primarily involved data augmentation, a crucial step in improving the model’s robustness and 

generalization capabilities. Given the natural variability in sugarcane leaf appearances due to differences in lighting conditions, 

angles, and environmental factors, the dataset's diversity was artificially increased through this task. This process helps mitigate 

overfitting by enabling the model to learn more invariant and discriminative features. 
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The techniques implemented included image rotation, which simulated different viewing angles of the leaves; zooming, which 

allowed the model to focus on varying levels of detail within the images; and image skewing, which introduced slight distortions 

to account for perspective changes and natural deformations. Additionally, transformations like horizontal and vertical flipping, 

brightness adjustments, and random cropping were used to further enhance variability in the dataset. 

 

As a result of this augmentation process, the dataset was expanded, ensuring a more balanced and comprehensive training set. 

Each class, was increased to 1,500 images, providing sufficient samples for deep learning models to effectively learn disease-

related patterns while reducing the risk of bias toward specific conditions. This enriched dataset played a pivotal role in improving 
the reliability and robustness of the trained models, making them more capable of accurately identifying sugarcane leaf diseases 

in real-world scenarios. The final version of this pre-processed dataset is available in an external public repository (Crespo-

Sanchez, 2025). 

 

3.3 Model Training 

 
The implemented models consist of two main components: (1) a feature extraction stage that leverages the architectures of the 

three tested models—EfficientNetV2B0, DenseNet121, and ResNet101V2—implemented in TensorFlow with their default 

parameters as defined by the original authors, and (2) a classification stage using a dense neural network, whose parameters were 

determined empirically based on classification performance. The experiments include both pre-trained models initialized with 

ImageNet weights (Deng et al., 2009) and models with randomly initialized weights for feature extraction, resulting in six distinct 

configurations. Table 2 provides a detailed overview of these. 

 
Table 2. Tested model configurations 

Configuration Feature Extraction Model Classifier Architecture 

1 EfficientNetV2B0  

(Pre-trained) 

A hidden layer of 860 dense units with a ReLU activation function, followed by  

an output layer with 5 units and a softmax activation function. 

2 DenseNet121 

(Pre-trained) 

A hidden layer with 680 dense units, L2 regularization of 0.01, a dropout rate  

of 0.4, and ReLU activation, followed by an output layer with 5 units and 

softmax activation. 

3 ResNet101V2 

(Pre-trained) 

A hidden layer of 800 dense units with a ReLU activation function, followed by 

an output layer with 5 units and a softmax activation function. 

4 EfficientNetV2B0 

(Random) 

A hidden layer of 860 dense units with a ReLU activation function, followed by 

an output layer with 5 units and a softmax activation function. 

5 DenseNet121 

(Random) 

A hidden layer with 680 dense units, L2 regularization of 0.01, a dropout rate of 

0.4, and ReLU activation, followed by an output layer with 5 units and softmax  

activation. 

6 ResNet101V2 

(Random) 

A hidden layer of 800 dense units with a ReLU activation function, followed by 

an output layer with 5 units and a softmax activation function. 

 
To ensure a rigorous and unbiased evaluation of the deep learning models, the stratified k-fold cross-validation strategy with a 

value of k = 5 was employed during training and testing. With this value of k, the dataset was partitioned into 80% for training 
and 20% for testing in each fold, ensuring that the final evaluation was conducted on an independent subset of data not seen during 

training. Also, within each fold training set, a further split was applied, where 80% of the data was used for model training, and 

the remaining 20% was allocated for validation. Following this partitioning strategy, each fold consisted of 4,800 images for 

training, 1,200 for validation, and 1,500 for testing. Using a class-stratified approach ensures that the training, validation, and 

testing sets maintain the same proportion of images per class. This also allowed to assess the model’s generalization ability while 

reducing the risk of overfitting specific data distributions. 

 

Each configuration underwent 31 repetitions of the stratified k-fold cross-validation process, leading to a total of 155 (𝑘 × 31)  

executions. By performing multiple runs, variations due to weight initialization, stochastic optimization, and random data splits 

were accounted for, ensuring a comprehensive evaluation of each model’s performance. 
 

For each execution, standard performance metrics, including accuracy, precision, recall, and F1-score, were used to assess the 

model's classification effectiveness. These metrics were computed in micro-average and macro-average formats to provide a 

more detailed understanding of model performance across all disease categories. The micro-average aggregates contributions 
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from all classes to calculate a global metric, making it particularly useful when dealing with class imbalances. In contrast, the 

macro-average treats each class equally, providing insight into how well the model performs across different disease categories, 

regardless of class distribution. 

 

This extensive validation approach ensured the robustness and reliability of the results, allowing to confidently identify the most 

effective tested model for sugarcane leaf disease classification. 

 

3.4 Analysis of Results 
 

The classification results were analyzed to evaluate each model's performance. A comparative assessment of model accuracy is 

presented below, while additional performance metrics, including precision, recall, and F1-score, as described in Section 3.3, can 

be found in Appendix B. This supplementary resource provides a more detailed breakdown of the models' behavior across various 

evaluation criteria, ensuring transparency and facilitating further research. 

 
Figure 3 illustrates the accuracy distribution of each model across the training, validation, and test sets, with the corresponding 

numerical configurations detailed in Table 2. This analysis revealed that all models achieved stable learning behavior throughout 

the training process, with no signs of overfitting or underfitting. The absence of overfitting suggests that the models effectively 

generalized to unseen data. The lack of underfitting indicates models successfully captured the essential patterns required for 

accurate sugarcane leaf disease classification. 

 

When comparing model performances, it is observed that configurations 1, 2, and 4 consistently outperformed 3, 5, and 6, 

achieving higher average accuracy across all dataset partitions. Notably, configurations 1, 2, and 4 also demonstrated lower 

variance in their accuracy distributions, signifying stable learning dynamics and reliable convergence toward optimal 

classification performance. The reduced variance suggests that these models are less sensitive to fluctuations in training conditions 

and can maintain strong predictive capabilities across different samples. 

 
However, this analysis also identified a bias in the accuracy distribution across all configurations, suggesting potential underlying 

factors affecting performance. This bias is evident in the boxplots of Figure 3, where all accuracy distributions exhibit left 

skewness. This skewness may arise from variations in disease symptom visibility or inherent architectural biases within the 

models. Further investigation is needed to determine whether additional augmentation strategies or alternative feature extraction 

methods could mitigate this effect and enhance overall classification robustness. 

 

By analyzing these findings, valuable insights into the strengths and limitations of each model are gained to refine this approach 

to sugarcane leaf disease classification and improve the reliability of automated disease detection systems. 

 

 

 
Figure 3. Tested configurations’ accuracy distribution 
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The skewness in the accuracy distributions prompted a normality test to check for conformity to a normal distribution. The 

Shapiro-Wilk test was applied to each set of results —training, validation, and test accuracies for all configurations— which is 

commonly used to detect deviations from normality, particularly in small to moderate sample sizes. 

 

The results of the Shapiro-Wilk test revealed that, in all cases, the computed p-values were less than 0.001, indicating strong 

evidence against the null hypothesis of normality. This confirms that none of the distributions satisfied the normality assumption, 

reinforcing the initial observation of skewed distributions. Given this finding, non-parametric statistical measures provided a more 

robust approach to summarize and compare models’ performance. 
 

Accordingly, Table 3 presents a statistical summary of the accuracy results, reporting the median (𝑥) and interquartile range (IQR) 

for each model across the training, validation, and test image sets. The median, as a central tendency measure, provides a more 

reliable indicator of model performance in the presence of skewed data, as it is less sensitive to outliers compared to the mean. 

The IQR, which represents the range between the first and third quartiles, captures the spread and variability of the accuracy 

values, offering insights into each model’s consistency. A smaller IQR suggests more stable performance, while a larger IQR 

indicates greater variability in accuracy across different training iterations. 

 

These statistical measures help provide a more accurate and fair assessment of model effectiveness, ensuring that conclusions are 

not disproportionately influenced by extreme values or distributional biases. 
 

Table 3. Accuracy results for each model architecture 

Accuracy 

Configuration                Training                Validation                  Test 

          𝑥         IQR 𝑥         IQR 𝑥       IQR 

1 0.996 0.005 0.979 0.009 0.977 0.009 

2 0.972 0.028 0.950 0.031 0.944 0.033 

3 0.877 0.148 0.850 0.131 0.844 0.139 

4 0.960 0.031 0.912 0.029 0.912 0.025 

5 0.904 0.053 0.877 0.057 0.876 0.056 

6 0.885 0.102 0.850 0.093 0.852 0.101 

 
Among the six configurations tested, configuration 1 demonstrated the best overall performance, achieving the highest 𝑥 across 

all dataset partitions: the training, validation, and test sets. Additionally, this one exhibited the smallest IQR, suggesting not only 
strong overall performance but also consistent accuracy across different folds and data splits. This consistency is particularly 

valuable for ensuring that the model can generalize well to unseen data, reducing the risk of overfitting to specific subsets of the 

training data. While configuration 1 clearly outperformed the others, it is worth noting that all of them yielded reasonably 

substantial results, with the lowest 𝑥 in the test set being 0.844, achieved by configuration 3. This still represents a strong level of 

classification performance, indicating that all were capable of accurately detecting sugarcane leaf diseases, albeit with varying 

degrees of effectiveness. 

 

Despite the relatively strong performance of the models, a more nuanced evaluation was required to determine if there were any 

statistically significant differences in their performance. To this end, the Kruskal-Wallis test helped assess whether significant 

differences existed among the performances on the test image set. The Kruskal-Wallis test is particularly appropriate when 
normality assumptions are violated, as was the case in these execution results. 

 

Following the Kruskal-Wallis test, Dunn’s post hoc test was applied to conduct pairwise comparisons between the distributions 

of the test set accuracies. This allowed for a more detailed exploration of which configuration specifically differed from each 

other in terms of performance. The results of these tests are illustrated in Figure 4, providing a visual representation of the pairwise 

differences and highlighting whether any specific configuration outperformed others with statistical significance. Conducting 

these additional analyses ensured that the observed differences in performance were not due to random chance and could be 

confidently attributed to the inherent characteristics of the models themselves. 
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Figure 4. Dunn's post hoc test p-values 

The p-values obtained from the post hoc tests (see Figure 4) provide critical insight into the statistical significance of the 

differences in performance between the six configurations. Most of these pairs showed significant differences, with p-values being 

less than 0.05, indicating that the observed differences in accuracy were unlikely to have occurred by chance. This suggests that 

certain models consistently outperformed others across multiple folds and data partitions. However, there were notable exceptions, 

particularly when comparing configurations 3 vs. 5 and 3 vs. 6. In these cases, the p-values were higher than the 0.05 threshold, 

indicating no statistically significant differences in performance between these pairs. This outcome suggests that either 

configuration 3, 5, or 6 could be chosen interchangeably without significantly impacting the overall performance concerning the 

metrics considered in this study. 

 

Given that configuration 1 achieved the highest 𝑥 across all dataset partitions —training, validation, and test— and demonstrated 
statistically significant differences in performance compared to the others in the post hoc tests, this one was selected as the best 

of the tested models for the task of detecting diseases in sugarcane. The superior performance of configuration 1, coupled with 

the consistent results observed across different data splits, suggests that it is the most reliable choice for real-world deployment 

in disease detection applications. Its ability to distinguish sugarcane leaf diseases with high accuracy and consistency, integrated 

with its statistically significant advantage over the other configurations, makes it the best model, at least in this study, for 

improving disease management in sugarcane agriculture. 

 

4 Conclusions 
 

This study presented a comparative analysis of deep learning models from the literature to evaluate their effectiveness in detecting 

sugarcane diseases. Among the tested models, EfficientNetV2B0 pre-trained on the ImageNet dataset achieved the highest 

performance across commonly used classification metrics. In addition to delivering the best results, this model demonstrated 

strong generalization capabilities for sugarcane disease detection. 

 

The experiments demonstrated that these techniques are computationally feasible and can be successfully applied to agricultural 
disease detection tasks. By leveraging deep learning models for sugarcane leaf disease classification, the study highlighted the 

potential for developing robust tools for early disease detection. Such tools are critical for supporting the growth and sustainability 

of the agricultural sector, as early identification of diseases can lead to more timely and efficient interventions, ultimately 

improving crop yield and reducing the economic impact of crop diseases. The findings suggest that deep learning-based image 

classification models are not only effective but also scalable, offering a promising solution for large-scale deployment in real-

world agricultural settings. These advancements could significantly contribute to more informed decision-making and precision 

agriculture, enhancing productivity and developing sustainable farming practices. 

 

Future work includes deploying the top-performing model as a real-time sugarcane disease detection system. This could be 

implemented as a publicly accessible web or mobile application, allowing farmers and agricultural professionals to quickly 

diagnose plant health by capturing and analyzing leaf images. Additionally, integrating this model into an easy-to-use interface 

would facilitate widespread adoption, making advanced deep learning-based diagnostics more accessible to the agricultural sector. 
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Appendix A Nomenclature definition 

 
Table 4 shows the definitions of the acronyms used in this paper. 

 
Table 4. Acronym definitions 

Acronym Definition 

CNNs  Convolutional Neural Networks 

AUC  Area Under the Curve 

MCC  Matthews Correlation Coefficient 

ReLU Rectified Linear Unit 

L2 regularization    regularization technique to avoid overfitting 

IQR Interquartile range  

𝑥 Median 
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Appendix B Classification metrics’ results 

 
This section shows the rest of the performance metrics used for the evaluation of the tested models. 

 
Table 5. Micro average precision results 

Micro Average Precision 

Configuration                Training                Validation                  Test 

          𝑥         IQR 𝑥         IQR 𝑥       IQR 

1 0.997 0.005 0.979 0.010 0.977 0.010 

2 0.972 0.028 0.950 0.032 0.945 0.033 

3 0.878 0.148 0.850 0.131 0.845 0.140 

4 0.961 0.031 0.913 0.030 0.912 0.025 

5 0.904 0.053 0.878 0.058 0.876 0.057 

6 0.886 0.102 0.851 0.094 0.853 0.101 

 

 

 
Table 6. Micro average recall results 

Micro Average Recall 

Configuration                Training                Validation                  Test 

          𝑥         IQR 𝑥         IQR 𝑥       IQR 

1 0.997 0.005 0.979 0.010 0.977 0.010 

2 0.972 0.028 0.950 0.032 0.945 0.033 

3 0.878 0.148 0.850 0.131 0.845 0.140 

4 0.961 0.031 0.913 0.030 0.912 0.025 

5 0.904 0.053 0.878 0.058 0.876 0.057 

6 0.886 0.102 0.851 0.094 0.853 0.101 

 

 
Table 7. Micro average F1-Score 

Micro Average F1 Score 

Configuration                Training                Validation                  Test 

          𝑥         IQR 𝑥         IQR 𝑥       IQR 

1 0.997 0.005 0.979 0.010 0.977 0.010 

2 0.972 0.028 0.950 0.032 0.945 0.033 

3 0.878 0.148 0.850 0.131 0.845 0.140 

4 0.961 0.031 0.913 0.030 0.912 0.025 

5 0.904 0.053 0.878 0.058 0.876 0.057 

6 0.886 0.102 0.851 0.094 0.853 0.101 
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Table 8. Macro average precision results 

Macro Average Precision 

Configuration                Training                Validation                  Test 

          𝑥         IQR 𝑥         IQR 𝑥       IQR 

1 0.997 0.005 0.980 0.009 0.978 0.009 

2 0.973 0.025 0.953 0.029 0.948 0.028 

3 0.896 0.116 0.868 0.103 0.862 0.108 

4 0.962 0.028 0.916 0.028 0.916 0.024 

5 0.913 0.040 0.892 0.041 0.889 0.039 

6 0.896 0.072 0.867 0.057 0.866 0.063 

 

 
Table 9. Macro average recall 

Macro Average Recall 

Configuration                Training                Validation                  Test 

          𝑥         IQR 𝑥         IQR 𝑥       IQR 

1 0.997 0.005 0.979 0.010 0.977 0.010 

2 0.972 0.028 0.950 0.032 0.945 0.033 

3 0.878 0.148 0.850 0.131 0.845 0.140 

4 0.961 0.031 0.913 0.030 0.912 0.025 

5 0.904 0.053 0.878 0.058 0.876 0.057 

6 0.886 0.102 0.851 0.094 0.853 0.101 

 

 

 
Table 10. Macro average F1-Score 

Macro Average F1-Score 

Configuration                Training                Validation                  Test 

          𝑥         IQR 𝑥         IQR 𝑥       IQR 

1 0.997 0.005 0.979 0.010 0.977 0.010 

2 0.972 0.028 0.950 0.032 0.944 0.033 

3 0.878 0.150 0.849 0.136 0.846 0.141 

4 0.961 0.031 0.913 0.029 0.912 0.026 

5 0.904 0.054 0.877 0.058 0.876 0.058 

6 0.886 0.110 0.850 0.101 0.849 0.100 

 


