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Abstract. This study explores an approach involving the 

adaptation of data sampling techniques within the hidden feature 

space of deep neural networks. By modifying traditional prototype 

selection and cleaning methods, our methodology eliminates noisy 

samples and condenses the data into representative points, thereby 

enhancing class separation and improving generalisation. A 

nearest-neighbours search in the hidden space enables more 

refined sample selection. Comprehensive experiments on four 

multi-class imbalanced hyperspectral datasets (Indian Pines, 

Salinas, PaviaU, and Pavia) demonstrated that combining over-

sampling in the spectral space with editing in the hidden feature 

space outperforms conventional sampling methods. The best 

results were achieved with configurations such as ROS-TL-H2 

and ROS-ENN-H3, which consistently yielded g-mean values 

above 0.90, showcasing the effectiveness of hidden-space editing. 

This strategy effectively balances class distributions while 

preserving informative samples, thereby improving classification 

performance and model robustness. Despite the increased 

computational complexity, the benefits justify its adoption in 

challenging scenarios involving class imbalance. The findings 

suggest that this approach may be particularly valuable for remote 

sensing and other highly imbalanced data classification tasks. 

Keywords: Deep learning, hidden layer space, multi-class 
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1 Introduction 
 
The classification of hyperspectral remote sensing images has become essential for spatial data analysis tasks. Several 

machine learning methods, such as deep learning neural networks (DL-NN), have been developed as classification models using 

datasets where each pixel is represented as a spectral feature vector [1]. However, the successful construction of accurate DL-NN 

depends on the intrinsic data characteristics [2].  

 

Semantically meaningful classes do not uniformly cover the Earth [3]; thus, the data obtained from remote sensing devices 

have land classes poorly represented by only a few pixels [4], [5]. This phenomenon is part of the class imbalance problem present 

in various datasets. For example, the BigEarthNet archive [6] has 19 classes, where 164,775 samples represent the Coniferous 

Forest class, and 194,148 samples are land class; in contrast, the Coastal wetlands and Beaches-dunes-sands classes only have 

1,566 and 1,536 samples, respectively. 
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The class imbalance negatively impacts the performance of DL-NN models, ignoring the less represented classes, either 

partially or entirely [7], [8]. Consequently, it remains a challenge in hyperspectral remote sensing image classification [9], where 

most research has focused on extending traditional class imbalance approaches to DL-NN [10]. 

This issue has been addressed using three primary strategies [11]: 1) special-purpose learning approaches, 2) data sampling, 

and 3) hybrid methods. From the first category, the proposals have been developed for specific problems and classifiers adapting 

the learning algorithms by incorporating cost functions [4], [5], [12], [13]. Nevertheless, their extrapolation to other imbalances 

domains is restricted for various drawbacks, including non-straightforward adaptations of the learning algorithms, a retraining 

process if the loss function is changed, and a deep knowledge of the learning algorithm  [11]. 
 

Data sampling algorithms have been widely used to address the class imbalance problem because they can be applied to any 

imbalance dataset problem and deep learning model [14], [15]. Thus, researchers are focused on balancing the classes by under-

sampling (US), over-sampling (OS), or both (hybrid methods) [16]. 

 

The first approach to reduce the majority classes involved the random elimination of samples; however, it has been reported 

that this straightforward strategy can discard valuable samples. Therefore, an informed technique to reduce majority classes is 

based on prototype selection methods that eliminate noisy or redundant instances. Some examples include editing methods like 

the Editing Nearest Neighbor (ENN) [17], the Wilson editing [18], the Tomek Links (TL) [19], and the condensing methods, such 

as the Condensed Nearest Neighbor rule (CondNN)  [20].  

 
In contrast to random under-sampling (RUS), random over-sampling (ROS) replicates samples to upsize the minority classes. 

Regardless, this straightforward strategy results in overfitting the learning model [10] and increasing the training time [21]. From 

the intelligent solutions focused on generating better minority samples, the most influential pioneer is the Synthetic Minority 

Over-sampling technique (SMOTE)  [22]. Its concept of generating artificial minority samples through interpolation has inspired 

the scientific community to create over 68 alternative versions [23], [24], [25], [26], [27]. 

 

Rendon et al. [16] show that hybrid methods can be improved if the selection strategy exploits the high-level features obtained 

from the output of a neural network (NN); that is, the nearest neighbor search is performed in this new output space rather than as 

it is usually done in the input feature space. Recognizing that the potential of deep learning models lies in the hidden layer [28], 

where the capacity to abstract and solve complex problems exists [29], and noting that each hidden node represents a dimension 

of the problem, this paper builds on Rendon's idea by utilizing the hidden output nodes to construct a hidden feature vector. This 
vector is subsequently employed to perform the nearest neighbor search, acting as the selection mechanism for two under-sampling 

algorithms: ENN and TL. 

 

This study analyzes four multi-class imbalanced hyperspectral remote sensing image datasets. We employ two over-sampling 

methods (ROS and SMOTE) alongside three types of feature vectors (input, hidden, and output), which are utilized independently 

and in combination with two under-sampling methods (ENN and TL). The hidden and output vectors were derived from a Deep 

Learning Multilayer Perceptron (DL-MLP) model. 

 

The main goal of this work is to evaluate the effectiveness of applying classical under and over-sampling techniques in the 

neural network hidden space and to improve their performance in the classification of multi-class and highly imbalanced 

hyperspectral datasets. The novelty of this perspective is that typical sampling approaches were designed to work in the feature 

space of the neural network. Thus, we take advantage of the potential of neural networks to transform feature space into hidden 
space, where the discrimination of class/region is more accessible than in the original space (the feature space).  On the other 

hand, classifying multi-class and highly imbalanced problems is a significant challenge that remains in force in remote sensing 

classification tasks. 

 

1.1 Related works 
 

The class imbalance problem represents a significant challenge in hyperspectral image classification. Various researchers 

have proposed methodologies to address this limitation in recent decades, as shown in Table 1. Traditional sampling methods 

include the Synthetic Minority Over-sampling Technique (SMOTE), developed by Chawla et al. [22], who achieved F1-Score 
values between 0.70-0.85 by generating synthetic instances. Batista et al. [30] improved this approach by combining SMOTE with 

cleaning techniques like Tomek Links and ENN, reaching AUC (Area Under the receiver operating characteristic Curve) values 

of 0.75-0.90. 
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Buda et al. [2] analyzed the integration of these methods into deep architectures. Their research demonstrated that 

combinations of under-sampling and oversampling improve the performance of CNNs in datasets such as MNIST and ImageNet, 

reaching 86-92% accuracy. LeCun et al. [29] provided the essential theoretical foundations for deep learning architectures (DNN, 

CNN, RNN), establishing benchmark parameters with exceptionally high precision (95-99%) and minimal error rates (1-5%) 

across multiple domains, laying the conceptual groundwork for future developments in the field. 

 

Specifically for hyperspectral images, Özdemir et al. [27] and Zhong et al. [26], implemented SMOTE-based strategies, 

obtaining G-mean (geometric mean) values of 0.85-0.89 and Kappa coefficients of 0.92-0.95. In parallel, Vuttipittayamongkol et 
al. [31] explored editing methods for noise reduction. Rendón et al. [16] proposed editing in the output space of multilayer 

networks, with G-mean values of 0.88-0.92. However, this approach does not leverage the intermediate representations generated 

in hidden layers. 

 

Our work introduces "Deep Edition," applying editing techniques in the transformed space of hidden layers of DL-MLP 

networks. Experiments conducted on four hyperspectral datasets demonstrate that the ROS-TL-H2 and ROS-ENN-H3 

configurations significantly outperform conventional methods, with G-mean values between 0.90-0.97, evidencing the 

effectiveness of this approach for problems with high spectral dimensionality and class imbalance. 

Table 1. Related class imbalance problem studies. 

Author Reference Model(s) Data Source Metrics & Values Distinctive 

Characteristics 

Buda et al., 2018 [2] CNN MNIST, 

CIFAR-10 and 

ImageNet 

Accuracy: 86–92% 

ROC AUC: 0.88–

0.94 

Under-sampling and 

Oversampling 

methods. 

Chawla et al., 2002 [22] Bayesian, 

C4.5 

UCI 

Repository 

F1-Score: 0.70–

0.85 

AUC: 0.82–0.95 

SMOTE 

Batista et al., 2004 [30] C4.5 UCI 

Repository 

AUC: 0.75–0.90 

F1-Score: 0.72–

0.88 

SMOTE + Tomek 

Links and SMOTE + 

ENN. 

Rendón et al., 2020 [16] Multilayer 

Perceptron 
(MLP) 

Images, UCI 

Repository 

G-mean: 0.88–0.92 

Accuracy: 92–96% 

Output-layer editing 

combined with 
hybrid methods of 

sampling. 

Özdemir et al., 2021 [27] CNN, 

DNN 

Hyperspectral 

images 

G-mean: 0.85–0.89 

Kappa: 0.82–0.87 

SMOTE 

Zhong et al., 2021 [26] CNN, 

Random 

Forest 

Hyperspectral 

images 

OA: 93–96% 

AA: 91–95% 

Kappa: 0.92–0.95 

SMOTE 

Vuttipittayamongkol 

et al., 2021 
[31] SVM, k-

NN 

UCI 

Repository 

G-mean: 0.80–0.86 

F1-Score: 0.78–

0.85 

Editing methods 

(ENN, TL) to reduce 

noise. 

LeCun et al., 2015 [29] DNN, 

CNN, 

RNN 

Multiple 

datasets 

Accuracy: 95–99% 

Error: 1–5% 

Theoretical 

underpinnings 

methods. 

Our work -- DL-MLP 

(4 hidden 

layers) 

Hyperspectral 

images (Indian 

Pines, Salinas, 
PaviaU, Pavia) 

G-mean: 0.90–0.97 

Rank: 4.25–7.25 

 

Deep Edition in 

hidden layers (ROS-

TL-H2, ROS-ENN-
H3). 

 

The paper is structured as follows. Section 2 describes the DL-MLP model, data sampling methods, and the proposed 

methodology. Section 3 details the experimental setup, while Sections 4 and 5 present and discuss the experimental results. Finally, 

Section 6 offers conclusions and future research directions. 
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2 Methods 
 

This section summarizes the DL-MLP model used as a classifier, from which the hidden feature vectors were obtained 
from each hidden layer. It also includes a general overview of the data sampling methods and the deep edition process for dealing 

with the multi-class imbalance problem. 

 

2.1 Deep Learning Multilayer Perceptron 
 

A DL-MLP is a feed-forward neural network composed of multiple layers of interconnected neurons. The input layer 

receives the input data vector 𝑥 ∈  ℝ𝑵, where 𝑁 represents the dimensionality of the input feature space, specifically the number 

of features or input variables processed by the neural network. In the context of hyperspectral imagery analysis presented in this 

study, 𝑁 corresponds to the number of spectral bands in the image. The hidden layers are located between the input and output 

layers, where feature space is transformed into hidden space, and the discrimination of class/region is more accessible than in the 

original space [28]. The output layer is represented by 𝑧 ∈  ℝ𝑱, where 𝐽 represents the dimensionality of the output space, 

specifically the number of classes or categories the neural network must classify. The neurons from the previous layer are fully 

connected using a synaptic weight 𝑤 to the following layer, and all neurons in each layer employ an activation function 𝜑(∙), 

usually sigmoid. Logistic and hyperbolic tangent functions are commonly used for their corresponding sigmoid function form 

[32].  

 

The input to a neuron 𝑖 on the 𝑙-th layer (Eq. 1) is defined by the product of the results from the activation function 𝜑(∙), 

which comes from the previous layer 𝑙 − 1, and the weights vector 𝑤 of the layer 𝑙.  ℎ represents a specific neuron in its respective 

layer and 𝑏𝑙 corresponds to bias weight. Then, the neuron output is a spatial transformation of 𝑟𝑖
𝑙 by the activation function, in this 

case, logistic (Eq. 2). 

 

Consider that when 𝑙 = 1,  𝑟𝑖 = ∑ 𝑤ℎ𝑖𝑥ℎℎ  (i.e., 𝑟𝑖 is the input to 𝑖-th neuron of the first hidden layer). 𝑤ℎ𝑖
𝑙  is the weight 

of the 𝑖-th input that is connected from the ℎ  neuron of the (𝑙 − 1) − 𝑡ℎ layer to the 𝑙 − 𝑡ℎ layer. 𝜑ℎ
𝑙−1 is the ℎ − 𝑡ℎ output node 

on the  (𝑙 − 1) − 𝑡ℎ hidden layer. Also, 𝐿 is the total number of hidden layers, and 𝐻𝑙 is the total of hidden neurons in the layer 𝑙. 
 

𝑟𝑖
𝑙 = ∑ 𝑤ℎ𝑖

𝑙  𝜑ℎ
(𝑙−1)

(𝑟ℎ
(𝑙−1)

),
ℎ

 (1) 

 

𝜑(𝑙)(𝑟𝑖
𝑙) =

1

(1 + 𝑒−𝛼𝑟𝑖
𝑙
)

, 
(2) 

where 𝛼 is the slope parameter of the sigmoid function. The output 𝑗 of the last layer in a DL-MLP is 𝑧𝑗 = 𝐹𝑗(𝑥, 𝑊). It depends 

on all parameters 𝑤 on all hidden layers, and it uses a linear combination of 𝜑(∙) to estimate of the transformation real {𝒇: ℝ𝑵 ⟶
ℝ𝑱}, which partitions the input space {𝒇: ℝ𝑵 ⟶ ℝ𝑱} into 𝐽 classification regions ℝ𝑱 [33]. 

 

The training is performed by methods based on the stochastic gradient descent [29]. For example, Adagrad adjusts the 

learning rate parameters; it performs changes of greatest magnitude for the less frequent parameters, while smaller changes are 
done for those that more often appear. In contrast, Adadelta searches for a reduced aggressiveness by decreasing the learning rate 

instead of accumulating previous gradients, thus offering a fixed-size accumulation. Another example is Adam, which modifies 

the learning rate and uses the exponentially decreasing average of past gradients for each parameter [34]. 

 

The main goal of training algorithms is tuning the neural network weights to allow that 𝐹(∙) perform a non-linear input-

output mapping for any classification or general regression problem; that is: if 𝑥 is the input vectors set, and 𝑡 is the wanted 

responses set, then the function 𝐹(𝑥) should estimate the best parameters associated with those specific sets and approximate the 

unknown function 𝑓(𝑥). The training method is designed to minimize the error 𝜀 (Eq. 3), which is arbitrarily small [32]. 

|𝐹(𝑥) − 𝑓(𝑥)| < 𝜀. (3) 
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2.2 Prototype Selection Methods with Over-Sampling 
 

Class imbalance exists when the difference between the number of instances in one or more classes is much more 

significant than the number of instances in another class (or classes) [15], [16]. It is commonly measured as a ratio (Eq. 4). 

𝐼𝑅 =
|𝐶𝑙𝑎𝑠𝑠𝑚𝑎𝑗|

|𝐶𝑙𝑎𝑠𝑠𝑚𝑖𝑛 |
, 

(4) 

where 𝐶𝑙𝑎𝑠𝑠𝑚𝑎𝑗  and 𝐶𝑙𝑎𝑠𝑠𝑚𝑖𝑛  are the most and less represented classes in the dataset, respectively. Because larger values of 𝐼𝑅  

imply higher class imbalance [31], it allows a quick overview of the nature of data and imbalance severity [10].  

 

In data sampling, researchers develop new proposals based on two primary questions 1) what samples should be 

eliminated and 2) how to generate new informative samples. This has led to informed strategies that heuristically answer these 

questions. Initially, achieving equal size between the classes was considered the solution to the class imbalance problem. However, 
increasing or reducing the classes to improve the classifier performance is insufficient since other complexities, such as high 

dimensionality, overlap, or class imbalance ratio, should be considered. For this reason, hybrid sampling methods combine over-

sampling (OS), such as ROS and SMOTE, with prototype selection techniques to remove only the majority samples. This solves 

some disadvantages that data sampling methods present when applied separately. 

 

Kubat & Matwin's [35] suggest that the prototype selection strategies should remove three kinds of majority samples: 1) 

borderline, 2) outlier, and 3) redundant. Tomek Links and editing techniques have been proposed to eliminate the examples of 

categories 1 and 2. In the case of redundant samples, the classical condensed nearest neighbor is employed to build a consistent 

set  [30]. Table 2 summarizes the methods used in this paper. 

 

Table 2. Description of data sampling approaches and editing methods studied in this work. 

Over-Sampling Algorithms (𝑶𝑺) 

Method SMOTE, Synthetic Minority Over-Sampling Technique  [22] 

Description SMOTE interpolates nearby instances of the minority class to create new 

synthetic instances until the balance of the class distribution is achieved. 

It takes a random instance from the minority class and finds its 𝑘 closer 
neighbors (of the same class); next, it chooses some of those closest 

neighbors and generates a new instance. 

 

Method ROS, Random Over-Sampling  [36] 

Description ROS duplicates minority instances randomly until the class distribution 

balance is reached 

 

Under-Sampling Editing Methods (𝑼𝑺) 

Method ENN, Editing Nearest Neighbor   [18] 

Description ENN calculates the 𝑘 nearest neighbors of any instance 𝑎 if the label of 

most of its nearest neighbors is not equal to 𝑎 label, then 𝑎 is erased 

because it can be noisy or one instance on the overlap region. 

 

Method TL, Tomek Links  [19] 

Description TL are sets of pairs of instances 𝑎 and 𝑏 from different classes, where 

not exist an instance 𝑐, such that d(a, c)  <  d(a, b) or d(b, c)  <  d(a, b),  

where 𝑑 is the distance between the paired instances. If two instances 

form a TL, both are deleted [30]. 

 

Hybrid Sampling Approaches (H𝑺) 

Method SMOTE-TL, SMOTE-ENN [30] 

Description The SMOTE method is used to balance the class distribution; next, 

editing methods (TL and ENN) are applied to erase the noise or overlap 

samples. 

 

Method ROS-TL, ROS-ENN [30] 

Description ROS balances the class distribution, then editing methods (TL and ENN) 

clean the resultant dataset of noise or overlap samples. 
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2.3 Deep Edition Strategy 
 

DL-MLP is sensitive to class imbalance [2]. During neural network training, the majority classes usually benefit, while 

the minority classes often lose accuracy [7]; this is constant for binary and multi-class problems [14]. For this reason, researchers 

have worked to address the class imbalance problem in this context [10], [37], [38].   
 

Unlike classical hybrid strategies where both over-sampling and under-sampling methods are applied consecutively in 

the input feature space, Rendon et al. [16] show that the cleaning strategies like ENN applied on the ANN output obtain better 

classification results than using the input feature space. This method can be summarized in four steps: 1) training the ANN with 

a Training Dataset (TRD) balanced by any over-sampling method, 2) applying ENN cleaning technique to the output of the ANN, 

and removing those instances from balanced TRD (BD) that are related to outputs suspected to be noise or atypical values, 3) 

training the ANN again with the resultant 𝐵𝐷𝑒𝑑𝑖𝑡𝑒𝑑(𝐵𝐷𝑒𝑑𝑖𝑡𝑒𝑑  ⊆ 𝐵𝐷), and 4) to evaluate the ANN performance with the Test 

Dataset (TD), where 𝑇𝑅𝐷 ⋂ 𝑇𝐷 ==  ∅, i.e., they are disjoint datasets. 

 

Motivated by the results obtained by Rendon et al., we hypothesize that the cleaning strategies can be improved if, instead 
of using the original feature space or the neural network output, the nearest neighbor search is performed on a transformed dataset 

containing high-level feature vectors. These vectors are obtained from the hidden layer representations of the neural network, 

where each hidden node encodes a dimension of the problem. This transformation provides a more structured and abstract feature 

space, potentially improving classification performance. As presented in previous works [28], [29] the values generated in the 

hidden layers correspond to a new vector of size 𝐻𝑙 (where 𝐻 is the total of hidden neurons in layer 𝑙), i.e., a new data 

representation of the input data (please see Eq. 1 and Eq. 2). 

 

Some authors suggest that this transformation results in a high-level feature vector [9]. As input data are mapped into a 

different feature space (hidden space), class separation may become more effective, even for non-linearly separable problems 

[32]. However, it is essential to note that this transformation and subsequent sample editing may affect the class balance. While 

the editing process primarily removes noisy or redundant instances from the majority class, in some cases, it may also reduce 
instances from the minority class. Therefore, monitoring the Imbalance Ratio (IR) after this transformation is recommended to 

determine if further adjustments are necessary before the second training phase. 

 

Therefore, for the 𝑙-th layer, we can extract a transformed dataset to which the cleaning strategy could be applied to 

identify the samples that can be eliminated. However, the deletion process is noteworthy because it is performed in the balanced 

dataset, that is, in the input feature space. 
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Fig. 1. Implementing the editing methods on the deep hidden neural network space. 

This study uses a DL-MLP, two cleaning methods (ENN and TL), and the methodology from Ref. [16]. The primary 

purpose of this paper is to study the classifier performance when ENN and TL methods are applied to the outputs of a hidden 

layer. We named this procedure Deep Edition because the nearest neighbor search processing occurs in the DL-MLP hidden space 

instead of the feature space. Fig. 1 shows the Deep Edition methodology, which can be divided into four stages: 

1. Over-sampling procedure: 𝑇𝑅𝐷 is balanced by SMOTE or ROS until reaching a relative class balance (𝐼𝑅 ≈ 1, Eq. 4). 

2. First training: the DL-MLP is trained 𝑙𝑖𝑛𝑖𝑡  epochs with resultant balanced training dataset (𝐵𝐷𝑠). 

3. Deep edition procedure: for a particular hidden layer, the cleaning algorithm is applied. Samples that the cleaning 

method marked in the hidden layers as suspicious to be outliers or noise are removed from 𝐵𝐷𝑠. 

4. Second training: the DL-MLP is trained again during 𝐼𝑒𝑛𝑑 epochs with the cleaned dataset 𝐵𝐷𝑠,𝑒𝑑𝑖𝑡
𝑙  and the classification 

performance is evaluated by using 𝑇𝐷. 

 

Figure 2 graphically summarizes the deep edition method, highlighting the main steps to simplify its understanding and 

working path. The source code of the proposed strategy is also available1. The deep edition block is an essential part of the 

proposed methodology for improving the classifier's performance in the presence of imbalanced data. This stage employs the two 

edition methods selected for this experimentation, ENN and TL, to eliminate noisy or irrelevant samples from the dataset. 

 

The ENN algorithm identifies those instances in the majority class whose class membership is inconsistent with their k-

nearest neighbors; these instances are considered noise and removed from the dataset. In other words, ENN looks for misclassified 

samples and removes them, assuming they are noise. On the other hand, the TL algorithm identifies the samples that form a 
Tomek-Link, which is a pair of samples of different classes that are the nearest neighbors of each other. Such samples are likely 

to be noisy or misclassified instances, so the algorithm removes the nearest neighbor of the opposite class sample. 

 

 
1 https://github.com/tonitk1978/Edicion_Profunda.git 

https://github.com/tonitk1978/Edicion_Profunda.git
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Fig. 2. Flowchart of the proposed Deep Edition strategy. Blue lines correspond to the over-sampling stage; yellow lines show that 

in each hidden layer, a new transformed dataset can be obtained where the nearest neighbor search can be performed; red lines 

indicate that the elimination of samples is performed in the original dataset in the input feature space. 

 

All these editing methods are systematically implemented across each hidden layer of the DL-MLP architecture. This 

hierarchical approach ensures that noise sample removal occurs at diverse abstraction levels, substantially enhancing the 

classifier's generalization capabilities. By eliminating noise and outliers from the dataset, the classifier can more effectively focus 

on learning the intrinsic underlying patterns within the data, consequently leading to superior performance in minority class 
classification, which is critical when dealing with highly imbalanced datasets. 

 

3 Experimental Set-Up  

 

This section details the datasets and their characteristics, the algorithms' parameters, and the performance metrics used 

in the experimental study. 
 

3.1   Data description 
 

This work uses Indian, Salinas, PaviaU, and Pavia datasets obtained from GIC (Grupo de Inteligencia Computacional, 

by its Spanish acronym)2 from hyperspectral images. The Indian and Salinas datasets were captured by NASA’s AVIRIS 

(Airborne Visible / Infrared Imaging Spectrometer) sensor3. They provided 224 bands at 10 nm width, ranging from 400 to 2500 

nm while excluding water absorption bands, with a spatial resolution of 3.7 m/pixel for both Indian and Salinas. The ROSIS 

(Reflective Optics System Imaging Spectrometer) sensor acquired images from Pavia University (PaviaU) and Pavia Center 

(Pavia) with 103 and 102 bands, respectively; their width is 4 nm, and both have a resolution of 1.3 m/pixel.  
 

Table 3 presents a compilation of the main characteristics of each dataset, highlighting the number of classes and the 

class Imbalance Ratio IR, which is computed in Eq. 4. 

 

 
2 http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes 
3 https://aviris.jpl.nasa.gov/ 

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://aviris.jpl.nasa.gov/
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Many hyperspectral remote sensing works analyze the Indian, Salinas, PaviaU, and Pavia datasets. However, most 

research does not consider class 0 (background) for the objectives of the studies because the usual solution for addressing class 

imbalance is to sample each class uniformly, often leading to the background being overlooked as a class (see Refs. [39], [40], 

[41]). Nevertheless, we are interested in going deep into the study of highly imbalanced problems in classifying hyperspectral 

remote sensing images. Therefore, we considered class 0 in the four studied datasets in this work. 

 

Thus, the resultant datasets are highly imbalanced; for example, the Indian dataset has 10,776 and only 20 samples in the 

majority and minority class, respectively, i.e., IR=538.8; a similar characteristic is observed in Pavia. In the remaining datasets 
(see Table 3), the class imbalance rate (IR) is lower than in India and Pavia but still highly imbalanced. 

Table 3. Database characteristics. Observe their (IR) mainly. 

Dataset Sensor Classes Samples Bands Width Resolution IR 

Indian AVIRIS 17 21,025 220 10 3.7 538.8 

Salinas AVIRIS 17 111,104 224 10 3.7 62.2 

PaviaU ROSIS 10 207,400 103 4 1.3 173.8 
Pavia ROSIS 10 783,640 102 4 1.3 236.7 

 

3.2   Free parameters specification 
 

Over-sampling and editing methods used on the input or feature space were obtained from Imbalanced-learn to Python 

module4. Each method was used with the parameters assigned by default, i.e., for ENN  𝑘neighbors  = 3; SMOTE 𝑘neighbors= 5. 

Deep Edition methods (see sec. 2.3) used the same parameters and source code hosted on website5.  

 

DL-MLP was developed using TensorFlow 2.0 and Keras 2.3.1 frameworks; the configuration is shown in Table 4. 

Although there are established methods for choosing the number of layers and neurons per layer in deep networks, these are 

typically designed for specific purposes and applications, suggesting a particular investigation [42], such optimization is not the 

focus of this study.  However, a general method commonly used in most cases serves as the best starting point to evaluate our 

proposed approach, recognizing that the primary goal of our research is to illustrate the effects of applying the editing methods in 
the hidden space rather than the feature space of the MLP.  

The configuration of the DL-MLP was determined using a trial-and-error iterative strategy [43]: 1) we began with two 

hidden layers (the minimum requirement for defining it as a DL-MLP) and assessed the network's performance on the validation 

set while increasing the number of layers; when performance on the validation set ceased to improve (or began to degrade), we 

identified four layers, and 2) we started with a small number of neurons per layer, gradually increasing this number; again, we 

evaluated the network's performance after each adjustment, and when performance on the validation set stopped improving (or 

started to degrade), we found the combination reported in Table 4. It is important to emphasize that we selected this network 

configuration not to optimize classification performance but to provide a stable experimental framework for evaluating the impact 

of sample editing in the hidden space. 

 

The learning rate was established at 0.001, and the training algorithm was Adam using 500 epochs and a batch size of 

500 for the databases Salinas and Indian, and 250 epochs with a batch size of 1000 for the rest of the databases. In Fig. 1, I𝑖𝑛𝑖𝑡  and 

I𝑒𝑛𝑑 were set to I𝑖𝑛𝑖𝑡 = I𝑒𝑛𝑑 = 250 epochs and a batch size of 500 to Salinas and Indian datasets, and I𝑖𝑛𝑖𝑡= I𝑒𝑛𝑑= 125  epochs and 

batch size of 1000 to PaviaU and Pavia. 

 

To enhance the reliability of our results, each DL-MLP configuration was trained and tested five times with different 

weight initializations. This ensures that a particular random initialization does not bias the reported findings. Given that the 

datasets have distinct characteristics, different configurations were tested. However, the results presented correspond to the best 

neural network configuration that provides a stable foundation for investigating the core research question: how editing methods 

influence classification performance when applied in the hidden space instead of the input feature space. 

 

 
4 https://imbalanced-learn.org/stable/ 
5 https://github.com/tonitk1978/Edicion_Profunda.git 

https://imbalanced-learn.org/stable/%7d
https://github.com/tonitk1978/Edicion_Profunda.git
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Table 4. DL-MLP configuration: number of layers, neurons by layer, and activation function for each case. The number of 
input and output neurons corresponds to the datasets presented in Table 3; they appear in the same order, i.e., first Indian, 
Salinas, and so on. 

Layer Neurons Activation Function 

Input layer    (H0) [220/224/103/102] -- 

Hidden layer 1   (H1) 50 ReLU 

Hidden layer 2   (H2) 40 ReLU 
Hidden layer 3   (H3) 30 ReLU 

Hidden layer 4   (H4) 20 ReLU 

Output layer (H5) [17/17/10/10] Softmax 

 

3.3   Classifier performance 
 

To measure the classifier performance, the hold-out method was used  [32]; it randomly split the originals datasets (sec. 

3.1) on training (TRD) 70% and testing (TD) 30%, where TRD ∩  TD == ∅ (disjoint sets).  
 

When evaluating the performance of a classifier for hyperspectral remote sensing images, accuracy or Kappa metrics are 

commonly used. However, these metrics can be inadequate when the dataset is highly imbalanced. For instance, suppose we have 

a dataset with ten classes, where each of the first nine classes has 100 samples, and the last class has only ten samples. If  the 

classifier accurately identifies all of the majority classes and misclassifies the minority class, the accuracy would be 98.9%, and 

the Kappa value would be 0.987. On the surface, it may appear that the classifier's performance is acceptable. However, the 

minority class is ignored, as noted in previous studies [44].  

 

Thus, alternative metrics for assessing classifier performance in imbalanced datasets have been suggested in the 

literature: AUC, the area under the Receiver Operating Characteristic (ROC) curve, which offers a thorough evaluation of the 

classifier's capability to differentiate among the different classes, precision/recall, which focuses on the classifier's ability to 

correctly identify positive samples (in this case, minority class samples) and reduce false positives, F1-score, which is a harmonic 
mean of precision and recall, among others [45]. These alternative metrics provide a more nuanced evaluation of the classifier's 

performance in highly imbalanced datasets and help to avoid ignoring the minority classes; however, they are not very informative 

when multiple datasets are present. 

 

In this work, we use the geometric mean (g-mean), which is a standard metric to assess the overall effectiveness of the 

classification when the training dataset is imbalanced and multi-class because it is sensitive to the classifier's performance on each 

class [46], [47], [48]. In the example mentioned above, the g-mean value will be 0; i.e., it reports that any class was misclassified. 

It is very useful when the dataset has multiple classes and high imbalance, just like the datasets studied in this paper (see Table 

3).  Eq. 5 defines the g-mean as a geometric average of the partial accuracy for each class [49], where J is the total of classes, and 

acc𝑗 is the classifier accuracy on the j class, i.e., I𝑖𝑛𝑖𝑡= (samples of the class j correctly classified)/( total of instances of the class 

j). Only when all accuracy rates of all classes are high enough, the g-mean can achieve a high value. It can be defined as follows: 

𝑔 − 𝑚𝑒𝑎𝑛 = √∏ 𝑎𝑐𝑐𝑗

𝐽

𝑗=1

𝐽

. 

(5) 

 

Finally, to streamline the analysis of our results, we employ the Friedman rank test  [50]. This test assigns a rank to each 

algorithm across all datasets, with the best-performing algorithm receiving rank 1, the second-best receiving rank 2, and so on. If 

there is a tie, we calculate the average ranks. 

 

4 Experimental results 
 

In this section, the main experimental results are presented. First, we analyze the performance of the editing methods 

(sec. 2.3) on each of the hidden layers of the DL-MLP (sec. 2.1). Then, the effectiveness of the classification is compared, 
considering all editing methods presented in this paper.  Finally, we study the performance of the eleven best editing sampling 

methods in each of the datasets used in this work, and a visual analysis of them is performed. 
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4.1   Analysis and comparison of editing methods performance in the hidden space 
 

This work aims to analyze the performance of training a DL-MLP with TRD edited in the hidden space, compared against 

the effectiveness of editing the TRD in the input space or output layers. Thus, we present the results layer by layer in Fig. 3; it 

summarizes the corresponding g-mean rank values obtained from DL-MLP classification (performed five times to reduce the 
effect due to randomness of the classifier) over all the datasets (see section 3.1) for each editing method in each DL-MLP layer. 

 

Subfigures (of Fig. 3) represent the experimental results of every data sampling method. Subfigures (of Fig. 3) represent 

the experimental results of every data sampling method. Then, the first one corresponds to TL (a), the second one to ENN (b), the 

third one to SMOTE-TL (c), the fourth one to SMOTE-ENN (d), the fifth one to ROS-TL (e), and finally the ROS-ENN (f) 

approach. In addition, in these subfigures, axis x shows the several layers of the DL-MLP, and axis y corresponds to the g-mean 

ranks values computed from the average g-mean over all datasets, i.e., results shown in the subfigures were obtained from the 

average of the model performed over the four hyperspectral datasets (see Table 3). 

 

The results shown in Fig. 3 show that the best option for applying TL and ENN is the input layer (or the feature space). 

However, these methods do not include an over-sampling method to deal with imbalanced class scenarios; thus, they only focus 

on deleting noise or outlier samples, which we consider insufficient when the dataset is highly imbalanced (see Table 4). 
 

Theoretical and empirical studies have shown that neural network performance is negatively affected if the class 

imbalance rate is not reduced. This is because, in the training stage, the neural network could ignore the less represented classes, 

either partially or altogether (see Refs. [7], [8]). Thus, it is necessary to use over-sampling methods, especially when the dataset 

is highly imbalanced, like the ones studied in this work. 

 

On the other hand, when ROS or SMOTE are combined with editing sampling methods, the best results are obtained in 

the hidden, output, or input space. Overall, Fig. 3 evidences that 50% of the best ranks obtained by editing methods (which include 

ROS or SMOTE) are localized in the hidden layers, while 25% are found in the output layer and 25% in the input layer. In other 

words, in most cases, the best option is to apply editing methods in the hidden layers. 
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Fig. 3. Ranks of classifier performance by layer of each editing method studied in this work. H1, H2, H3, and H4 

correspond to DL-MLP hidden layers, where H1 is the first hidden layer, H2 the second one, and so on (see Table 4 Input and 

Output correspond to H0, and H5 layers or input and output DL-MLP layers, respectively. 

 

 

After carefully analyzing the results presented in Figure 3, below is a more precise analysis, recalling that lower rank 
values (according to the Friedman test applied to the g-mean metric) indicate better performance: 

• Tomek Links: The input layer shows a rank value of 33.00, while the H2 layer (29.38) improves this result. H1 

(35.25) and H3 (33.00) perform slightly worse than the input, while H4 (32.00) and the output (30.12) maintain 

values close to or below that of the input. 

• Edited Nearest Neighbors: The input layer (32.62) outperforms H1 (34.25), H3 (34.25), H4 (34.00), and the 

output (35.00). H2 (32.62) is similar to the input layer. 

• SMOTE-TL: The worst location appears to be H4 (23.00), while layers H1 (16.25), H2 (15.25), H3 (16.62), and 

the output (16.25) exhibit more favorable values than the input (19.12). 

• SMOTE-ENN: The best performance is concentrated in the input layer (9.38). In comparison, layers H1 (17.62), 

H2 (12.75), H3 (17.12), H4 (19.88), and the output (20.00) yield higher ranks. 

• ROS-TL: The input layer (11.50) offers competitive results, although layer H2 (4.25) and the output (8.62) 
surpass it. H1 (12.50) and H3 (12.75) lag slightly behind. H4 (11.50) equals the input. 

• ROS-ENN: All hidden layers improve the value of the input layer (12.88). In particular, H3 (4.50) and H2 (7.25) 

stand out due to their lower ranks, while the output layer (12.50) achieves a slightly worse value than the input. 
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These findings demonstrate that editing methods significantly vary in performance depending on the network layer where 

they are applied. Especially when combining over-sampling methods (ROS or SMOTE) with under-sampling or noise removal 

methods (TL or ENN), the hidden layers often present a transformed feature space that, in specific configurations, enhances the 

network's capacity to handle scenarios with high class imbalance. Thus, according to the ranks analysis, the best results typically 

appear in intermediate layers, such as H2 or H3, depending on the specific combination of sampling techniques applied. 

 

4.2   Performance comparison of studied editing methods 
 

Fig. 4 presents a comparison of the effectiveness of several editing methods. Axis x displays the top eleven editing 

methods, including the classifier performance on the original dataset (i.e., the dataset without preprocessing). The suffixes H# 

(in the names of the methods) denote the respective layers of the DL-MLP (see Table 4); for example, H1 represents the first 

hidden layer, H2 indicates the second hidden layer, and so on, while the suffixes Input and Output refers to the input and output 

layers, or H0 and H5 layers. Axis y in Fig. 4a illustrates the average g-mean values across all datasets, and axis y in Fig. 4b shows 

their respective ranks. Fig. 4 complements Fig. 3, and both are useful for explaining the behavior of the editing methods discussed 

in section 2.3. 

 

 
Fig. 4. Performance comparison of the eleven best editing methods, including the original dataset, represented as (a) 

average g-mean values across all hyperspectral datasets and (b) rank values obtained by applying the Friedman test over the g-

mean results. 

 

Figure 4(a) shows that the g-mean for the original dataset is 0.330, indicating that the class imbalance problem 

significantly impacts these methods. In other words, the classifier’s performance is notably influenced by class imbalance, even 

when the quality of the training dataset is enhanced. The experimental results demonstrate that when ROS balances the TRD, the 

g-mean values exceed 0.900, with differences across various configurations. This highlights the apparent necessity to balance the 
class distribution, as the top eleven results, including the original TRD without edited processing, reveal that the first three 

positions are associated with editing methods applied in the hidden layers (ROS-TL-H2, ROS-ENN-H3, and ROS-ENN-H4), 

achieving g-mean values of 0.909, 0.907, and 0.905, respectively. The following positions were achieved through several ROS 

configurations to confirm the benefits of editing the TRD used by DL-MLP. These results indicate a trend toward improved 

performance when the TRD is edited within the hidden layer compared to when it is not edited or edited in the input or feature 

spaces. 

 

The rank analysis presented in Fig. 4b reinforces these findings, indicating that methods utilizing hidden layer editing 

consistently achieve lower ranks, with ROS-TL-H2 and ROS-ENN-H3 receiving ranks of 4.250 and 4.500, respectively. The 
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Original dataset records the highest rank (33.500), showcasing the considerable improvement attained through the proposed 

editing methods. The effectiveness of combining ROS with hidden layer editing is particularly evident, as g-mean values for 

modified approaches consistently exceed the baseline of the original configuration, maintaining values above 0.895 across most 

modified implementations. This performance difference underscores the significance of addressing class imbalance through 

advanced editing techniques, especially those operating in the hidden layer space of deep learning architectures. 

 

4.3   Editing methods analysis performance on individual hyperspectral image datasets 
 

In Fig. 5, the g-mean values are shown for each hyperspectral image dataset, where the x-axis represents the eleven best 

data sampling methods plus the original dataset, and the y-axis represents the corresponding g-mean values. The classifier’s 

performance on each dataset is distinguished by color: red for Salinas, green for PaviaU, blue for Indian Pines, and purple for 

Pavia. 

 

 
Fig. 5. g-mean values per hyperspectral dataset using the eleven best sampling configurations, including the performance 

of the original dataset. 

 

It is observed in Fig. 5 that values of g-mean =0.0 were obtained for the Indian Pines and Pavia datasets when the original 

TDS was used to train the classifier. This critical finding provides substantial evidence of the severe impact of class imbalance on 

classifier performance, particularly in complex hyperspectral scenarios. In contrast, the Salinas dataset demonstrates notably better 

performance without processing (original TDS, g-mean = 0.869), which aligns with its characteristics as the less imbalanced 

dataset in our study. PaviaU presents an intermediate performance with the original dataset (g-mean = 0.452), further supporting 

the correlation between imbalance severity and classification degradation. 

 

The systematic analysis reveals that over-sampling methods (ROS and SMOTE) substantially enhance classifier 

performance across most datasets. This improvement is particularly evident in the performance of ROS-TL-H2 and ROS-ENN-
H4, which achieve the highest g-mean values across all datasets: Salinas (0.970 - 0.972), Pavia (0.913 - 0.915), PaviaU (0.900 - 

0.892), and Indian Pines (0.852 - 0.840). The performance enhancement is most pronounced in the more imbalanced datasets, 

where the original classifier struggles significantly. 

 

A deeper examination of the results demonstrates that combining oversampling and editing methods in the hidden or 

output space consistently produces superior results across all datasets compared to non-mixed approaches. This synergistic effect 

is particularly noteworthy for ROS variants, which maintain remarkably stable performance levels: g-mean values consistently 
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exceed 0.800 for Indian Pines, 0.890 for PaviaU, 0.910 for Pavia, and 0.960 for Salinas. These robust results highlight the 

effectiveness of hybrid approaches in addressing class imbalance challenges. 

 

The performance patterns observed across various datasets provide valuable information about the relationship between 

dataset characteristics and method effectiveness. For example, while Salinas exhibits relatively high performance with minimal 

processing, the more challenging Indian Pines dataset demonstrates the critical need for advanced balancing techniques. These 

performance variations across datasets emphasize the importance of considering dataset-specific characteristics when selecting 

and implementing class-balancing strategies. 
 

Furthermore, the consistently superior performance of ROS-based methods, particularly when combined with hidden 

layer editing techniques, suggests that this approach effectively addresses the fundamental challenges of class imbalance while 

preserving essential spectral-spatial relationships within the hyperspectral data. This observation has significant implications for 

designing and implementing future classification systems for hyperspectral image analysis. 

 

The results illustrated in Fig. 5 demonstrate that class imbalance can significantly degrade classifier performance in 

highly unbalanced datasets such as Indian Pines and Pavia. In contrast, performance remains acceptable even without applying 

over-sampling techniques in databases with less imbalance, such as Salinas. The implementation of hybrid methodologies 

combining over-sampling and editing (either in the hidden or output layer) substantially increases g-mean values across all 

analyzed scenarios, which corroborates the efficacy of these strategies in addressing the imbalance problem in hyperspectral 
contexts. Mainly, "Deep Edition" demonstrates a more pronounced impact in those datasets characterized by more significant 

imbalance (such as Indian Pines), given that in these cases, the classifier experiences more severe degradation when using the 

original data without implementing any compensatory balancing strategy. 

 

5 Discussion 
 

The experimental results demonstrate that when classifying highly multi-class imbalanced hyperspectral image datasets, 
editing sampling strategies (ENN and TL) achieve optimal performance when applied in the hidden neural network space or output 

layer, combined with an oversampling method (as shown in Fig. 4). Although ENN and TL have traditionally been used to address 

class imbalance issues [17], [30], [35], their effectiveness in dealing with data overlap and noise is still relevant in contemporary 

research [51], [52], [53], [54], [55], [56], [57]. 

 

A key innovation in this work is the application of (ENN and TL), combined with (ROS and SMOTE), in the hidden 

neural network space rather than in the conventional feature space utilized in previous Nearest Neighbor rule contexts. This 

approach shows significant potential for enhancing model performance when handling overlapping and noisy data, which are 

common challenges in real-world machine learning applications, significantly when worsened by class imbalance issues, as noted 

in other works [31], [58]. 

 
Visual analysis reveals a critical trade-off: improvements in DL-MLP performance for minority classes can adversely 

affect majority class classification. This observation reinforces the need for effective strategies to balance performance across all 

classes. Regarding computational efficiency, while the deep edition data sampling approach is more complex than traditional 

feature space editing (requiring hidden space values from the DL-MLP, as detailed in section 2.3), the additional computational 

cost is justified by the significant accuracy improvements achieved for minority classes. 

 

Figures 6 and 7 illustrate the impact of the proposed deep edition data sampling approach on classification performance 

for the Indian and Pavia datasets, respectively. In both cases, subfigure (a) represents the ground truth, providing a reference for 

evaluating model predictions. Subfigure (b) presents the classification results obtained by the DL-MLP model trained with the 

original training dataset (TDS) without preprocessing. These results highlight the challenges associated with class imbalance and 

noisy data, particularly the misclassification of minority classes. In contrast, subfigure (c) in both figures reveals the improvements 

achieved by applying the ROS-TL-H2 approach, which leverages a combination of ROS and TL within the hidden neural network 
space. The visual comparison reveals a notable enhancement in the delineation of minority class regions, indicating reduced 

misclassification errors and improved representation of underrepresented classes. However, this refinement can sometimes lead 

to trade-offs in majority class classification. Despite this, the overall balance in class prediction is significantly improved, 

reinforcing the effectiveness of deep edition data sampling in mitigating the adverse effects of class imbalance while maintaining 

high classification accuracy. 
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Although the Deep Edition strategy significantly improves classification performance (particularly for underrepresented 

classes) it also introduces a higher computational burden. This is primarily due to the need to extract hidden layer activations, 

execute the editing process across multiple levels of abstraction, and retrain the DL-MLP with the resulting dataset. Therefore, 

training time is effectively doubled, and memory consumption increases compared to conventional sampling approaches applied 

in the input or output spaces. These computational requirements may pose limitations in large-scale or time-sensitive applications, 

especially when resources are constrained. Therefore, while the performance gains are substantial, a balanced evaluation 

considering both classification accuracy and computational cost is essential for assessing the practical applicability of the proposed 

method. 
 

   
(a) Ground truth (b) Original (c) ROS-TL-H2 

Fig. 6. Visual comparison of the classes identified in different representative cases of Indian dataset. (a) Ground truth, 

(b) Maps obtained by DL-MLP trained with the original TDS, i.e., without preprocessing, and (c) Map produced by DL-MLP 

using the ROS-TL-H2 approach. 

 

   
(a) Ground truth (b) Original (c) ROS-TL-H2 

Fig. 7. Visual comparison of the classes identified in different representative cases of the Pavia dataset. (a) Ground truth, 

(b) Maps obtained by DL-MLP trained with the original TDS, i.e., without preprocessing, and (c) Map produced by DL-MLP 

using the ROS-TL-H2 approach. 

 

Table 5 is a tabular representation that systematically synthesizes the fundamental findings of the study, facilitating the 

identification of performance patterns across different methodological categories and emphasizing the quantitative advantages of 

deep edition techniques in hidden layers for addressing class imbalance in hyperspectral image datasets. 

Table 5. Comparative performance analysis of data sampling and editing methods for imbalanced classification. 

Approach Technique Best g-mean Best rank Optimal 

layer 

Improvement 

vs. Original 

Best Result 

(Approach) 

No 

Preprocessing 

(Original) 

No 

preprocessing 
0.330 33.500 – – 

– (not 

applicable) 

Traditional 

Under-
sampling 

TL (Tomek 

Links) 
0.498 30.120 Input/H2 +50.9% 

ENN (0.512) 
ENN (Edited 
NN) 

0.512 32.620 Input/H2 +55.2% 
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Traditional 

Oversampling 

ROS (Random 

Oversampling) 
0.781 12.880 Input +136.7% 

ROS (0.781) 

SMOTE 0.764 9.380 Input +131.5% 

Hybrid 

Methods 

(Feature 

Space) 

ROS-TL-Input 0.835 11.500 Input +153.0% 

ROS-TL-

Input (0.835) 
ROS-ENN-

Input 
0.827 12.880 Input +150.6% 

Output Space 

Editing 

ROS-TL-

Output 
0.876 8.620 Output +165.5% ROS-TL-

Output 

(0.876) 
ROS-ENN-
Output 

0.868 12.500 Output +163.0% 

Deep Edition 

(our approach) 

ROS-TL-H2 0.909 4.250 H2 +175.5% ROS-TL-H2 

(0.909) ROS-ENN-H3 0.907 4.500 H3 +174.9% 

 

To highlight the distinctions between the proposed method and existing approaches, Table 6 systematically compares 

the primary strategies for addressing class imbalance in hyperspectral image classification. This comparison encompasses a 

comprehensive analysis that spans both the application space and mechanisms, precisely identifying the advantages and limitations 

of each approach. 

Table 6. Comparison of the Main Approaches for Imbalanced Classification. 

Author Reference Approach Applicati

on Space 

Primary 

Mechanism 

Advantages Limitations 

Vuttipittayamong

kol et al., 2021  

and 

 LeCun et al., 

2015 

 

[31], [29] Traditional 

under-

sampling 

methods 

(TL, ENN) 

Feature 

space 

(Input) 

Remove noisy 

or atypical 

samples in the 

original space. 

Computation

al simplicity, 

preservation 

of original 

data 

structure. 

Inability to capture 

nonlinear 

transformations, 

sensitivity to 

inherent noise. 

Özdemir et al., 

2021 

 
 and 

  

Zhong et al., 

2021  

[27], [26] Traditional 

over-

sampling 
(ROS, 

SMOTE) 

Feature 

space 

(Input) 

Generation of 

synthetic 

samples or 
duplication in 

the original 

space. 

Better 

balance in 

class 
distribution 

and 

preservation 

of the 

original 

structure. 

Risk of overfitting, 

generation of 

artificial instances 
in inappropriate 

regions. 

Rendón et al., 

2020 

 

 

[16] Output 

space 

editing 

Neural 

network 

Output 

space 

Application of 

editing 

techniques on 

neural network 

outputs. 

Exploitation 

of high-level 

transformed 

features. 

Limited to 

transformations of 

the final layer 

without exploiting 

intermediate 

representations. 

Our work -- Deep 
Edition 

(proposed) 

Neural 
network 

hidden 

space. 

Application of 
editing 

techniques on 

hidden layer 

representations. 

Leveraging 
hierarchical 

abstractions, 

better class 

separation in 

transformed 

spaces. 

Higher 
computational 

complexity, need 

for retraining. 

 

Notably, the broader implications of these findings could extend to other deep-learning architectures, particularly those 

employing fully connected or dense layers [28]. For instance, Convolutional Neural Networks (CNNs), which typically include 

input, convolutional, pooling, and fully connected layers [59], could benefit from this approach. The dense layers in these networks 

effectively function as MLPs. Furthermore, the flexibility of modern DL architectures, including transfer learning approaches [60] 
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and auto-encoder pre-training methods [59], suggests the potential adaptability of our findings. Additionally, DL models are 

versatile and flexible in their architecture and training, which facilitates their design and construction [9]. However, while these 

results are promising, specific studies are necessary to verify the effectiveness of our proposal in other contexts. 

 

6 Conclusions 
 

This research addresses hyperspectral image classification with significant class imbalance using an innovative "Deep 

Edition" approach. Our investigation shows that applying editing techniques (ENN and Tomek Links) in the hidden layers of deep 

neural networks, combined with oversampling methods (ROS or SMOTE), leads to substantial improvements in classification 

performance compared to traditional methodologies. 

 

Experimental analysis reveals that ROS-TL-H2 and ROS-ENN-H3 configurations achieve g-mean values of 0.909 and 

0.907, respectively, representing 175.5% and 174.9% increments compared to the preprocessing-free scenario (0.330). These 

results significantly surpass the performance of traditional strategies: classical under-sampling methods barely exceed g-mean 
values of 0.50, while conventional oversampling (ROS, SMOTE) in the feature space reaches approximately 0.78 and 0.76, 

respectively. 

 

Implementing hybrid techniques in the input space (ROS-TL-Input) improves performance up to 0.83-0.84, and their 

application in the output layer elevates this value to 0.87. However, the highest values are achieved in the transformed space of 

hidden layers, consistently exceeding 0.90. This finding underscores the advantage of intervening at intermediate levels of 

abstraction, where the transformed data structure facilitates more precise identification of noisy or atypical samples. 

 

The proposed methodology introduces greater computational complexity due to the need for retraining after the editing 

phase. Nevertheless, the additional cost is justified by the substantial improvement in classification performance, particularly for 

minority classes, which are typically overlooked in high-imbalance scenarios. 

 
Although the proposed method was implemented and evaluated using MLP architectures, its potential extension to other 

deep learning models, such as convolutional or recurrent networks, remains an open question since no empirical validation was 

conducted in this regard. This represents a current methodological limitation, and future work should investigate the adaptability 

of the editing scheme to architectures with different internal representations and learning dynamics. 

 

Future research lines could be oriented towards computational optimization of the process to reduce retraining-associated 

costs, automated selection of the optimal layer for applying editing techniques through metaheuristics, evaluation in more complex 

neural architectures, and application of Deep Edition in other domains characterized by high-dimensional imbalanced data. 

 

Deep Edition effectively addresses the class imbalance in hyperspectral image classification by leveraging intermediate 

representations generated by deep neural networks to enhance discriminative capacity in transformed spaces. Although the 
experimental results validate its effectiveness in this area, future studies are required to explore its applicability in other domains 

where class imbalance may influence the generalization capacity of deep learning models. 
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