

International Journal of Combinatorial Optimization Problems and Informatics, 16(3), May-Aug 2025, 378-390. ISSN: 2007-1558. https://doi.org/10.61467/2007.1558.2025.v16i3.841

Ranking of educational innovation of the State governments of Mexico: An analysis with the ordered weighted average operator

Claudia Lizbeth Tirado-Gálvez¹, Martín Isimayrt Huesca-Gastélum², Héctor Melesio Cuén-Díaz¹, Luis Alessandri Perez-Arellano¹ and Ernesto León-Castro³

¹ Universidad Autónoma de Sinaloa. Calle Universitarios ote. 1894, Ciudad Universitaria,80013, Culiacán, Sinaloa, México.

² Universidad Autónoma de Occidente. Blvd. Lola Beltrán Km 1.5, Culiacán, Sinaloa, México.

³ Instituto Tecnológico de Sonora, Unidad Navojoa, Ramon Corona sin número Colonia ITSON, Sonora, México C.P.85860.

claudia.tirado@fca.uas.edu.mx, martinhuesca@hotmail.com, melecuen@uas.edu.mx, herrerapamela@uas.edu.mx, ernesto.leon243151@potros.itson.edu.mx

Abstract. This study aims to classify the educational innovation	Article Info
of Mexico's state governments using the ordered weighted	Received January 31, 2025
averaging (OWA) operator and its extensions. This method	Accepted March 17, 2025
generates a ranking of the Mexican federal entities and constructs	
an educational innovation index. The results indicate that Mexico	
City has the highest evaluation levels, while Baja California Sur	
ranks lowest. Applying this technique not only enables these	
territories to be ranked according to the relative importance of	
each criterion, but also produces alternative scenarios that	
underscore the relevance of these elements. Therefore, the	
information is valuable for policymakers, as it supports the	
allocation of resources based on areas of opportunity. Finally, the	
document illustrates the application of the OWA operator and its	
extensions to classify the educational innovation of Mexico's state	
governments.	
Keywords: Educational innovation, OWA operator, educational	
innovation index.	

1. Introduction

According to Serdyukov (2017), education is important to fulfills the needs of society and is essential for its survival and prosperity. It should be comprehensively sustainable but must continuously evolve to meet the challenges of the fast-changing and unpredictable globalized world. Since the 1990s, a growing volume of literature has explored various aspects of educational innovations in different geographical contexts (Cai, 2017).

Mexico, where the government spends 5.3% of its Gross Domestic Product (GDP) on education (OECD, 2023), is no exception. The recent trend of incorporating educational innovation in higher education institutions in Mexico and Latin America—as a category, strategy, or institutional purpose—should motivate us not to uncritically accept proposals developed in other contexts and cultures without first examining them and attempting to generate our own versions (Blanco Guijarro & Messina Raimondi, 2000).

Therefore, this document reviews educational innovation, reflecting on its measurement based on different models and indicators. Innovation and evolution are essential for individuals, nations, and humanity to survive and progress. Innovations in education are particularly important because education plays a crucial role in creating a sustainable future (Ma & Cai, 2021).

The need for educational innovations has become more pressing. It is widely believed that the social and economic well-being of countries will increasingly depend on the quality of education for their citizens. The emergence of the so-called knowledge society, the transformation of information and media, and the increasing specialization of organizations require high-skill profiles and levels of knowledge (Cornali, 2012).

In this sense, reference is made to United Nations Educational, Scientific and Cultural Organization (UNESCO) definition of educational innovation: change, problem-solving, the active role of the student, and the importance of social interactions in teaching and learning (Moreira et al., 2020). Likewise, it is relevant to highlight the role that he international organization assigns to educational innovation as a path towards the transformation of teaching and learning contexts (Mogollón, 2016).

Educational innovation is a fundamental part of the development and progress of any society. This is why evaluating and classifying the efforts and results of state governments in this area is vital (OECD, 2016). The objective of this article is to classify the educational innovation of the state governments of Mexico through the ordered weighted average operator (OWA) and its extensions. To apply this tool, the indicators proposed by Powell & Snellman (2004), Krstikj et al., (2022), European Bank for Reconstruction and Development (EBRD) (2019), and Chen & Dahlman (2005)—such as the number of researchers, published articles, and authorized patents—will be used. These theoretical approaches are employed because they are the most widely recognized in measuring educational innovation and quality improvement in educational institutions.

This information can be used to understand the country's educational landscape, and it is relevant because it allows us to evaluate how state governments are addressing educational challenges and promoting creativity and intelligence in classrooms. Finally, this approach exposes a more flexible and adaptable way of measuring this variable through these aggregation operators.

This document begins with an introduction where the research objective is stated, followed by a theoretical framework that reviews the literature on the measurement of educational innovation globally and in Mexico. The following section presents the methodology used to measure the educational innovation of the state governments of Mexico through the ordered weighted average (OWA) operator, considering the 32 states of Mexico and the 10 indicators proposed for this research. Finally, the document concludes with a discussion and conclusions

2. Theoretical Framework

2.1. A literature review of educational innovation measurement

Innovation is perceived as a rupture or change in the assumptions and practices of actors and institutions, which are not random or deliberate but require intent and planning to improve situations that may be problematic (Macchiarola & Juárez, 2014). According to Zabalza Beraza (2004), innovating means introducing justified changes. Thus, innovating in teaching entails the application of three conditions: openness, updating, improvement, and flexibility, to drive progress in educational processes. The author also highlights two essential conditions for university innovation: practicality and feasibility (i.e., concrete results that can be implemented).

For Rubia-Avi (2022), education is one field of human action subject to such influences because innovation emerges when education transforms through technological processes, even if sometimes the way it uses these technologies is not entirely positive. In fact, the transformation of educational and innovation-driven processes through technology has also involved a procedural makeover and a change in our approach to evaluating/researching the benefits these processes bring about.

Educational innovation has been studied from various perspectives. For example, Mykhailyshyn et al. (2018) describe different approaches to interpreting educational innovations and innovations in education. They mention that educational innovations include pedagogical innovation, scientific and methodological innovation, and educational and technological innovation. Innovation in education is a broader concept than educational innovations and includes educational, scientific, technological, infrastructural, economic, social, legal, administrative, and other innovations. In this paper, they employ a qualitative methodology to review scientific approaches.

For their part, Moreira et al. (2020) analyze the conditions that promote and hinder educational innovation in universities from the perspective of teachers and students. A qualitative study was conducted to gather insights from teachers and students at two Latin American universities: Universidad Nacional de Río Cuarto (UNRC) in Argentina and Universidad del Atlántico (UA) in Colombia. Eighteen teachers (eleven from UA and seven from UNRC) and 32 students (22 from UA and 10 from UNRC) from the special education and psychopedagogy bachelor's degree programs participated in the study.

Under these conditions, the role of technology as a tool for innovation is investigated. Most testimonies link educational innovation with ideas of changing, improving, transforming, and breaking traditions and structures. Both teachers and students agree on the importance of implementing innovation in university classes to avoid traditional practices that lead to teacher monotony and student demotivation.

In this context, Pascual Medina & Navío-Gàmez (2018) describe how teachers in schools and high schools in Chile understand the concept of educational innovation. This study used an interpretive-phenomenological paradigm, favoring an inductive analysis with a holistic perspective. It was a qualitative research study in which structured interviews were applied to teachers in Chile to explore the meaning and elements that enhance or hinder educational innovation. The results suggest that teachers conceive educational innovation from a practical-reflective paradigm but feel conditioned by a system that barely surpasses a technological paradigm.

It is evident that educational innovation has managed to capture the attention of academics; however, most of the literature focuses on describing different approaches (Mykhailyshyn et al., 2018) or qualitative studies (Moreira et al., 2020; Pascual Medina & Navío-Gàmez, 2018).

Castellanos Contrera et al. (2020), in their research titled "Fuzzy Logic-Based Model for he Construction of High-Quality Conditions in the Education System," propose that expert systems (fuzzy logic) using tools like digital transformation can self-regulate through intelligent information systems. They present a model based on computational intelligence for managing intelligent information. It integrates several hybrid architectures in a multilevel system and shows results with high-quality metrics, management indicators, values, possible attrition, responses, and plans. This model can influence decision-making, student retention, the knowledge required by the environment, pedagogical innovations, inferred plans, policies, and continuous improvement objectives to strengthen the university's digital transformation. The article presents a transition between theory and software development toward the experimental part without conclusive data.

Halász (2018), in his article, presents the results of a national education sector innovation survey in Hungary. A conceptual and analytical framework for studying innovation processes in the education sector, as well as a data collection tool, were created in a research project on the emergence and spread of local/school-level innovations (the "Innova Research"). This tool collected data from nearly 5,000 educational units across all subsystems of the national education system. A composite education indicator was created, allowing for the comparison of innovation activity across various groups of educational units. Data showed a relatively high level of innovation activity in all subsystems, with significant differences between groups. Connecting the Innova database with data from the regular national pupil achievement survey also made it possible to analyze the relationship between innovation activity and performance. Factors influencing the innovation activity of educational units, such as dynamic organizational capacities, participation in development interventions, and the combination of various forms of innovation, were identified.

In contrast, Cifuentes & Herrera Velásquez (2019) proposed a scale to measure the institutional factors essential to promote educational innovation with Information and Communication Technology (ICT). The scale shows internal consistency in the sample of public school teachers in Cundinamarca (Colombia) with a high Cronbach's alpha. Their work presents four dimensions that can be decisive in understanding these institutional conditions. Technological leadership is key to managing innovation with ICT and appropriating ICT policies at the institutional and individual levels. The dimension of technological leadership holds the most significant relevance for educational innovation. The central contribution of this work is the provision of a valid and reliable scale ($\alpha = .96$) with metric properties that are useful for the community of researchers focused on ICT in education.

For the measurement or evaluation of educational innovation, some authors have used tools such as fuzzy logic (Castellanos Contrera et al., 2020), innovation research (Halász, 2018), and/or scales to measure the essential institutional factors for promoting this evaluation (Cifuentes & Herrera Velásquez, 2019). There are few, if any, studies that analyze educational innovation using the OWA tool, which allows these territories to be ordered according to the relative importance of each criterion and also allows for the assessment of the relevance of these elements.

Thus, relevant proposals are the works of Powell & Snellman (2004), Krstikj et al. (2022), EBRD (2019), and Chen & Dahlman (2005), where the authors propose various indicators as determinants of educational innovation, such as the number of researchers, published articles, authorized patents, number of Higher Education Institutions (HEIs), number of students enrolled in HEIs, number of teachers in HEIs, number of current Conacyt scholarship holders, number of computers, Internet users, and total spending on information technologies. These theoretical approaches have been widely used to define the indicators that drive educational innovation and quality improvement in educational institutions. Consequently, some indicators extracted from these methodologies are used in this study.

2.2. Educational Innovation of Mexico

In Mexico, Macías (2005) conducted a study in which he addresses educational innovation from its conceptualization based on five axes: 1) conceptual approach to educational innovation; 2) innovation models from a process perspective; 3) areas of educational innovation; 4) the state of the art on educational innovation; and 5) elements for a theory of Educational Innovation. The analysis concludes with a comprehensive conceptualization of educational innovation.

Macías (2005) summarizes that although educational innovation is present in educational policy and curricula, its implementation must ensure innovative experiences. However, these experiences have not been subject to evaluation or systematization, making it impossible to maintain a general or partial record of the innovative practices carried out in Mexico.

On the other hand, Cuenca et al., (2007), in their research on educational innovation at the National Polytechnic Institute, mention that innovation is considered a strategy to advance the achievement of institutional goals. This work presents the criteria and phases that characterize educational innovation and guide the innovation process, as well as the figures involved in it. The study also addresses those elements that allow for the formation and development of a culture of innovation, which distinguishes the institution for its innovative character.

For Hernández Romo et al., (2021) innovation is most frequently used in the business, technological, social, and educational fields. This results in the term having a polysemic character, acquiring different meanings depending on the context in which it is used. Some studies indicate that, within universities, it is difficult to reach a consensus on its meaning. Through qualitative research with focus groups consisting of teachers and interviews with UNAM officials, the authors explored the meaning of innovation and educational innovation within their academic community, applying a social constructionist approach. The results show that these meanings are diverse and influenced by the contextual aspects of the various knowledge disciplines, which shape different perspectives.

Moyano (2004) conducted research using a qualitative methodology to refer to innovation processes aimed at modifying teaching practices in primary schools. Based on studies on school change processes, he discusses the dominant approach and the treatment of these processes within the framework of current educational policies. He contrasts the features of primary schools and their teachers with the demands arising from the Mexican educational reform of the 1990s.

As the authors mention, the disarticulation of innovations from the institutional and organizational parameters that govern the functioning of schools is a key issue. Additionally, the importance of context in shaping teaching practices is highlighted. Ezpeleta asserts that the current approach prioritizes the technical treatment of these initiatives, limiting them to their internal logic, while marginalizing the political aspects involved in their implementation. This marginalization hinders the alignment of these innovations with the contexts of schools.

In this sense, as well as in the international context, few studies in Mexico related to educational innovation present relevant indicators for analyzing these concepts in universities. The studies conducted thus far have focused on its conceptualization (Macías, 2005), the culture of innovation (Cuenca et al., 2007), and qualitative studies (Moyano, 2004).

3. The ordered weighted average operator

An operator that can be used to aggregate information is the OWA (Ordered Weighted Average) operator, introduced by Yager (1988). This operator allows you to aggregate information between the maximum and the minimum, and since its introduction, many applications have been made (Beliakov et al., 2007; Yager & Kacprzyk, 2012). The definition is as follows:

Definition 1. An OWA operator of dimension n is a mapping OWA: $R^n \to R$ with an associated weight vector W of dimension n such that $\sum_{i=1}^{n} w_i = 1$ and $w_i \in [0,1]$, according to the following formula:

where b_i is the jth largest element of the collection a_i .

$$OWA(a_1, a_2, ..., a_n) = \sum_{j=1}^n w_j b_j,$$
 (1)

It can be distinguish between the descending OWA (DOWA) and the ascending OWA (AOWA) operator. This difference is related by $w_j = w_{n-j+1}^*$, where w_j is the jth weight of the DOWA operator, and w_{n-j+1}^* the jth weight of the AOWA operator.

Decisions within OWA operators can be generated under different criteria, the most important of which are the following:

1. Optimistic criterion. It assumes that the most favorable state will be presented so that the most favorable result of each alternative must be selected, and from the results obtained, the most favorable of all. In such a way that this criterion is based on a maxim that is formulated:

$$Decision = Max\{E_i\} = Max[Max\{a_i\}]$$
(2)

2. Pessimistic or Wald criterion. It maintains that the decision-maker must select the best security, so our decision must be the most favorable result among the most unfavorable for each alternative. This method is known as max min, and its formula is:

$$Decision = Max\{E_i\} = Max[Min\{a_i\}]$$
(3)

3. Hurwics criterion. It consists of weighing the best and worst cases, respectively, with an optimistic coefficient and another pessimistic one; subsequently, the values are added, and the alternative that proposes a better result is chosen. The formula for this criterion is:

$$Decision = Max\{E_i\} = Max[Max\{a_i\}]$$
(4)

where $\alpha + (1 - \alpha) = 1$.

4. Laplace's criterion. It is based on the principle of insufficient reason in such a way that the same degree of probability is associated with the different scenarios, provided that there are no indications to the contrary. The formula is:

$$Decision = Max\{E_i\} = Max[(1/n)\sum_{i=1}^n a_i]$$
(5)

5. Measurement of educational innovation of the state governments of Mexico with the OWA operator

Some steps must be followed to classify the educational innovation of the state governments of Mexico using the OWA operator: Step 1: The objective is to classify Mexican state governments based on their educational innovation. This will be the main element, which has been defined by ten indicators derived from the theoretical framework (see Table 1).

Identifier	Description
NOR	Number of researchers
PUA	Published articles
AUP	Authorized patents
NHE	Number of higher education institutions
NSR	Number of students registered in HEI
NTI	Number of teachers in HEI
NCC	Number of current CONAHCYT scholarship holders
NUC	Number of computers
INU	Internet users
TEI	Total expenditure on information technologies

Table 1. Indicators to measure educational innovation of the state governments of Mexico

Step 2: For each of the indicators proposed in Table 1, information was gathered from each of the 32 state governments of Mexico (see Table 2). The data are presented in Table 3.

Identifier	State governments
A1	Aguascalientes
A2	Baja California
A3	Baja California Sur
A4	Campeche
A5	Chiapas
A6	Chihuahua
A7	Distrito Federal
A8	Coahuila
A9	Colima
A10	Durango
A11	Estado de México
A12	Guanajuato
A13	Guerrero
A14	Hidalgo
A15	Jalisco
A16	Michoacán
A17	Morelos
A18	Nayarit
A19	Nuevo León
A20	Oaxaca
A21	Puebla
A22	Querétaro
A23	Quintana Roo
A24	San Luis Potosí
A25	Sinaloa
A26	Sonora
A27	Tabasco
A28	Tamaulipas
A29	Tlaxcala
A30	Veracruz
A31	Yucatán
A32	Zacatecas

 Table 2. State governments of Mexico

Table 3. Results of each identifier for each state government

Identifier	A1	A2	A3	A4	A5	A6	A7	A8	A9
NOR	290	1089	271	197	430	625	8993	583	227
PUA	189	710	177	128	280	408	5864	380	148
AUP	2	10	2	0	3	1	149	8	1

NHE	64	172	42	73	224	169	500	182	50
NSR	62661	149726	25342	40432	124559	148769	849320	131823	27323
NTI	5,467	12,187	2,623	2,676	7,837	11,518	72,480	11,446	2,764
NCC	494	534	534	557	557	1,140	3,602	1,140	494
NUC	702971	2071875	394307	430265	1416237	376873	1719110	1900744	5140628
INU	1047284	2907894	611578	660407	2220917	581013	2349450	2699056	6854170
TEI	393519	1159823	220731	240860	792801	210971	962347	1064025	2877692
Identifier	A10	A11	A12	A13	A14	A15	A16	A17	A18
NOR	243	1821	1104	193	526	1985	863	1132	173
PUA	158	1187	720	126	343	1294	563	738	113
AUP	4	21	11	0	8	28	3	10	0
NHE	101	554	266	180	141	308	277	160	50
NSR	59561	540228	198138	84018	114880	286039	134981	74567	51726
NTI	5,786	43,261	15,155	5279	10416	26077	11895	8467	2835
NCC	1,140	3,601	3,601	3602	1087	495	494	362	494
NUC	803668	2366707	1206826	1296294	4036653	8888173	1592382	899386	528314
INU	1214847	3736905	1865094	1759256	6139076	12199453	2798733	1389959	811800
TEI	449889	1324868	675574	725657	2259694	4975545	891406	503471	295747
Identifier	A19	A20	A21	A22	A23	A24	A25	A26	A27
NOR	1532	365	1277	882	158	768	592	806	289
PUA	999	238	833	575	103	501	386	526	188
AUP	62	1	21	12	0	4	1	8	2
NHE	247	148	348	113	63	109	142	163	87
NSR	284942	82524	312755	96940	51932	98972	161482	128808	88786
NTI	18871	7448	19115	9635	4391	6396	10651	10203	6077
NCC	1141	1087	1087	3602	557	3602	534	534	558
NUC	2805077	1408822	2575736	1117022	844397	1146457	1452070	1598867	1003192
INU	4375919	1988925	3698493	1572950	1326909	1719685	2241239	2429049	1414758
TEI	1570265	788650	1441881	625302	472688	641780	812860	895036	561581
Identifier	A28	A29	A30	A31	A32	_			
NOR	390	177	920	766	305				
PUA	254	115	600	499	199				
AUP	6	0	7	5	0				
NHE	201	61	383	136	80				
NSR	140675	37777	249379	86276	57865				
NTI	10539	3676	16565	8169	4131				
NCC	1140	1087	1087	558	1140				
NUC	1715783	621005	3074350	1039185	633242				
INU	2628433	855607	4526127	1581369	933199				
TEI	960485	347635	1721003	581730	354485	_			

Source: Prepared by the authors with information extracted from CONAHCYT (2022) and INEGI (2023).

Step 3. An evaluation of each indicator based on values between 1 and 10 was done to analyze the results better. To normalize the information, the formula that was used is $10 \times \left(\frac{goverment\ score-minimum\ value}{maximum\ value-minimum\ value}\right) + 1$, being government score is the specific value for the state, minimum\ value the lowest score and maximum value the highest score in each indicator. The results are presented in Table 4.

Identifier	A1	A2	A3	A4	A5	A6	A7	A8	A9
NOR	1.13	1.95	1.12	1.04	1.28	1.48	10.00	1.43	1.07
PUA	1.13	1.95	1.12	1.04	1.28	1.48	10.00	1.43	1.07
AUP	1.12	1.60	1.12	1.00	1.18	1.06	10.00	1.48	1.06
NHE	1.39	3.29	1.00	1.54	4.20	3.23	9.05	3.46	1.14
NSR	1.41	2.36	1.00	1.16	2.08	2.35	10.00	2.16	1.02
NTI	1.37	2.23	1.00	1.01	1.67	2.15	10.00	2.14	1.02
NCC	1.37	1.48	1.48	1.54	1.54	3.16	10.00	3.16	1.37
NUC	1.34	2.79	1.02	1.06	2.10	1.00	2.42	2.61	6.04
INU	1.36	2.80	1.02	1.06	2.27	1.00	2.37	2.64	5.86
TEI	1.34	2.79	1.02	1.06	2.10	1.00	2.42	2.61	6.04
Identifier	A10	A11	A12	A13	A14	A15	A16	A17	A18
NOR	1.09	2.69	1.96	1.04	1.37	2.86	1.72	1.99	1.02
PUA	1.09	2.69	1.96	1.04	1.37	2.86	1.72	1.99	1.02
AUP	1.24	2.27	1.66	1.00	1.48	2.69	1.18	1.60	1.00
NHE	2.04	10.00	4.94	3.43	2.74	5.68	5.13	3.07	1.14
NSR	1.37	6.62	2.89	1.64	1.98	3.85	2.20	1.54	1.29
NTI	1.41	6.24	2.61	1.34	2.00	4.02	2.19	1.75	1.03
NCC	3.16	10.00	10.00	10.00	3.01	1.37	1.37	1.00	1.37
NUC	1.45	3.10	1.88	1.97	4.87	10.00	2.29	1.55	1.16
INU	1.49	3.44	1.99	1.91	5.31	10.00	2.72	1.63	1.18
TEI	1.45	3.10	1.88	1.97	4.87	10.00	2.29	1.55	1.16
Identifier	A19	A20	A21	A22	A23	A24	A25	A26	A27
NOR	2.40	1.21	2.14	1.74	1.00	1.62	1.44	1.66	1.13
PUA	2.40	1.21	2.14	1.74	1.00	1.62	1.44	1.66	1.13
AUP	4.74	1.06	2.27	1.72	1.00	1.24	1.06	1.48	1.12
NHE	4.60	2.86	6.38	2.25	1.37	2.18	2.76	3.13	1.79
NSR	3.84	1.62	4.14	1.78	1.29	1.80	2.49	2.13	1.69
NTI	3.09	1.62	3.12	1.90	1.23	1.49	2.03	1.98	1.44
NCC	3.16	3.01	3.01	10.00	1.54	10.00	1.48	1.48	1.54
NUC	3.57	2.09	3.33	1.78	1.49	1.81	2.14	2.29	1.66
INU	3.94	2.09	3.41	1.77	1.58	1.88	2.29	2.43	1.65
TEI	3.57	2.09	3.33	1.78	1.49	1.81	2.14	2.29	1.66
Identifier	A28	A29	A30	A31	A32				
NOR	1.24	1.02	1.78	1.62	1.15				
PUA	1.24	1.02	1.78	1.62	1.15				
AUP	1.36	1.00	1.42	1.30	1.00				

Table 4. Normalization of each identifier for each state government

NHE	3.79	1.33	6.99	2.65	1.67
NSR	2.26	1.14	3.45	1.67	1.36
NTI	2.02	1.14	2.80	1.71	1.19
NCC	3.16	3.01	3.01	1.54	3.16
NUC	2.42	1.26	3.85	1.70	1.27
INU	2.59	1.21	4.06	1.77	1.27
TEI	2.42	1.26	3.85	1.70	1.27

Step 4: The next step is to determine the weights of each element. To do this, an expert was consulted with the following question: What weight would you assign to each of these criteria, considering their importance for educational innovation? Also, to a person to be included as an expert for this paper two different criterias were used: a) experience in educational innovation and b) experience in administrative positions that have involved decision-making in strategic areas regarding the design and implementation of educational programs. In this case, the person that was considered had more than 10 years in both criterions. An important note that was explained is that the weights cannot be assigned as $\frac{1}{n}$ or 10%, because that will mean that all the elements are equally important and the results obtained will be the average, so the expert must consider even the slightest difference between the relative importance of the indicators. The results are presented in Table 5.

Identifier	Weight
NOR	0.14
PUA	0.13
AUP	0.12
NHE	0.1
NSR	0.09
NTI	0.08
NCC	0.07
NUC	0.06
INU	0.05
TEI	0.16

Table 5. Weigts related to each element

Step 5: Using the information provided in Table 4 and Table 5, different aggregation operators can be applied to calculate the evaluation of educational innovation in each state, followed by the creation of the national ranking. The aggregation operators that will be used are Average (A), Weighted Average (WA), OWA_{max} operator (optimistic criterion), OWA_{min} operator (pessimistic criterion) and finally, an interval value (IV) based on Moore (1966) technique is used to unify the results obtained from the other 4 methods, this is done to incorporate in one results all the information that was obtained from different techniques and the formulation for the 4-tuples formulation is $IV = (c_1 + 2c_2 + 2c_3 + c_4)/6$ (Merigó et al., 2016; Xu & Da, 2002). The results are presented in Table 6, and the rankings in Table 7.

Table 6. Results using different aggregation operators

State	Α	WA	OWA_{max}	OWA_{min}	IV	
A1	1.30	1.28	1.33	1.26	1.29	
A2	2.32	2.30	2.52	2.13	2.31	
A3	1.09	1.08	1.13	1.05	1.09	

A4	1.15	1.13	1.21	1.10	1.15
A5	1.97	1.91	2.22	1.73	1.95
A6	1.79	1.72	2.07	1.52	1.77
A7	7.63	7.86	8.56	6.62	7.69
A8	2.31	2.20	2.54	2.09	2.28
A9	2.57	2.42	3.22	1.97	2.53
A10	1.58	1.50	1.75	1.42	1.55
A11	5.02	4.65	5.94	4.15	4.90
A12	3.18	2.91	3.84	2.59	3.10
A13	2.53	2.23	3.20	1.94	2.44
A14	2.90	2.71	3.39	2.43	2.84
A15	5.33	5.13	6.39	4.31	5.27
A16	2.28	2.23	2.59	1.99	2.27
A17	1.77	1.81	1.92	1.62	1.78
A18	1.14	1.12	1.17	1.10	1.13
A19	3.53	3.47	3.79	3.28	3.51
A20	1.89	1.79	2.10	1.68	1.86
A21	3.33	3.22	3.69	2.98	3.30
A22	2.65	2.39	3.17	2.21	2.58
A23	1.30	1.26	1.37	1.23	1.29
A24	2.55	2.28	3.11	2.06	2.47
A25	1.93	1.87	2.10	1.75	1.91
A26	2.05	2.02	2.22	1.89	2.04
A27	1.48	1.44	1.56	1.40	1.47
A28	2.25	2.12	2.51	1.99	2.21
A29	1.34	1.27	1.48	1.21	1.32
A30	3.30	3.14	3.79	2.83	3.25
A31	1.73	1.72	1.82	1.64	1.73
A32	1.45	1.38	1.60	1.31	1.43

Table 7. Ranking based on different aggregation operators

Ranking	State	А	State	WA	State	OWA _{max}	State	<i>OWA_{min}</i>	State	IV
1	A7	7.63	A7	7.86	A7	8.56	A7	6.62	A7	7.69
2	A15	5.33	A15	5.13	A15	6.39	A15	4.31	A15	5.27
3	A11	5.02	A11	4.65	A11	5.94	A11	4.15	A11	4.90
4	A19	3.53	A19	3.47	A12	3.84	A19	3.28	A19	3.51
5	A21	3.33	A21	3.22	A30	3.79	A21	2.98	A21	3.30
6	A30	3.30	A30	3.14	A19	3.79	A30	2.83	A30	3.25
7	A12	3.18	A12	2.91	A21	3.69	A12	2.59	A12	3.10
8	A14	2.90	A14	2.71	A14	3.39	A14	2.43	A14	2.84
9	A22	2.65	A9	2.42	A9	3.22	A22	2.21	A22	2.58
10	A9	2.57	A22	2.39	A13	3.20	A2	2.13	A9	2.53
11	A24	2.55	A2	2.30	A22	3.17	A8	2.09	A24	2.47

12	A13	2.53	A24	2.28	A24	3.11	A24	2.06	A13	2.44
13	A2	2.32	A13	2.23	A16	2.59	A16	1.99	A2	2.31
14	A8	2.31	A16	2.23	A8	2.54	A28	1.99	A8	2.28
15	A16	2.28	A8	2.20	A2	2.52	A9	1.97	A16	2.27
16	A28	2.25	A28	2.12	A28	2.51	A13	1.94	A28	2.21
17	A26	2.05	A26	2.02	A5	2.22	A26	1.89	A26	2.04
18	A5	1.97	A5	1.91	A26	2.22	A25	1.75	A5	1.95
19	A25	1.93	A25	1.87	A20	2.10	A5	1.73	A25	1.91
20	A20	1.89	A17	1.81	A25	2.10	A20	1.68	A20	1.86
21	A6	1.79	A20	1.79	A6	2.07	A31	1.64	A17	1.78
22	A17	1.77	A6	1.72	A17	1.92	A17	1.62	A6	1.77
23	A31	1.73	A31	1.72	A31	1.82	A6	1.52	A31	1.73
24	A10	1.58	A10	1.50	A10	1.75	A10	1.42	A10	1.55
25	A27	1.48	A27	1.44	A32	1.60	A27	1.40	A27	1.47
26	A32	1.45	A32	1.38	A27	1.56	A32	1.31	A32	1.43
27	A29	1.34	A1	1.28	A29	1.48	A1	1.26	A29	1.32
28	A23	1.30	A29	1.27	A23	1.37	A23	1.23	A1	1.29
29	A1	1.30	A23	1.26	A1	1.33	A29	1.21	A23	1.29
30	A4	1.15	A4	1.13	A4	1.21	A4	1.10	A4	1.15
31	A18	1.14	A18	1.12	A18	1.17	A18	1.10	A18	1.13
32	A3	1.09	A3	1.08	A3	1.13	A3	1.05	A3	1.09

Step 6: In this step, the analysis of the results is presented. Based on the results in Tables 6 and 7, a study will be conducted focusing on the top 5, bottom 5, and middle 5 states. This approach allows for a better understanding of how the ranking shifts across different segments. For the top 5 states, it is observed that the top 3 states maintain the same rank across all aggregation operators. However, states ranked 4 and 5 consistently appear in four out of the five operators, with the exception of the OWA_{max} .

For the case of the middle States, the ranking between 14 to 18 was considered, and the rank remained the same in W and IV, presenting a change between number 14 and 15 in the case of the WA, but when the OWA_{max} and OWA_{min} operators are used, and the ranking presents essential changes. Finally, for the bottom 5 States, numbers 32 and 31 remain the same in all the aggregation operators, and from numbers 28-30, they change based on the operator that is considered.

An important consideration is that the results can change drastically based on the weighting vector. This limitation, however, is also one of the main strengths of these methodologies. In real-life decision-making processes, the relative importance of each criterion depends on the specific context of the evaluator. In this sense, the results allow states to identify which criteria they need to focus on to improve their educational innovation, based on their unique circumstances, rather than merely taking actions aimed at improving their rank.

5. Conclusions

This article presents a classification of the educational innovation of the state governments of Mexico using the ordered weighted average (OWA) operator and its extensions, a fuzzy systems tool that allows different levels of educational innovation to be compared based on varying weighting vectors. The analysis demonstrated that, with the OWA operator, it is possible to obtain a ranking of Mexican state governments according to the importance of each criterion.

The results indicate that Distrito Federal is the federal entity with the highest levels of educational innovation, while Baja California Sur had the lowest evaluation. In this context, using this instrument presents an opportunity for policymakers, as it enables the identification of factors that need more attention, the recognition of areas with the best performance, and the allocation of resources based on areas of opportunity.

For future research, the application of more complex aggregation operators b should be explored, such as the weighted OWA (Cheng et al., 2009; Flores-Sosa et al., 2021), prioritized OWA (Espinoza-Audelo et al., 2021; Yager, 2009), simple additive weigthing (Huesca-Gastélum & León-Santiesteban, 2021), among others. Additionally, a broader analysis should be conducted using information from different educational institutions or countries worldwide.

References

Beliakov, G., Pradera, A., & Calvo, T. (2007). Aggregation functions: A guide for practitioners (Vol. 221). Springer.

Blanco Guijarro, R., & Messina Raimondi, G. (2000). Estado del arte sobre las innovaciones educativas en América Latina. Convenio Andrés Bello.

Cai, Y. (2017). From an analytical framework for understanding the innovation process in higher education to an emerging research field of innovations in higher education. *The Review of Higher Education*, 40(4), 585–616. https://doi.org/10.1353/rhe.2017.0023

Castellanos Contrera, J. U., Pareja Figueredo, C. F., & Gutiérrez Martínez, L. C. (2020). Modelo basado en lógica difusa para la construcción de condiciones de alta calidad en el sistema educativo. *CITAS*, 6(1). https://doi.org/10.15332/24224529.6360

Chen, D. H., & Dahlman, C. J. (2005). *The knowledge economy, the KAM methodology and World Bank operations* (Working Paper No. 37256). World Bank Institute.

Cheng, C.-H., Wang, J.-W., & Wu, M.-C. (2009). OWA-weighted based clustering method for classification problem. *Expert Systems with Applications*, *36*(3), 4988–4995. <u>https://doi.org/10.1016/j.eswa.2008.06.013</u>

Cifuentes, G. A., & Herrera Velásquez, D. A. (2019). Construcción y validación de una escala de medición de condiciones institucionales para promover la innovación educativa con TIC. *Education Policy Analysis Archives*, 27, 88. https://doi.org/10.14507/epaa.27.3779

CONAHCYT. (2022). Informe nacional sobre el estado general que guardan las humanidades, las ciencias, las tecnologías y la innovación en México. CONAHCYT. https://www.siicyt.gob.mx/.../inahcti-2022/file

Cornali, F. (2012). Effectiveness and efficiency of educational measures: Evaluation practices, indicators and rhetoric. *Sociology Mind*, 2(3), 255–260. <u>https://doi.org/10.4236/sm.2012.23034</u>

Cuenca, P. O., Solís, M. E. R., Guerrero, J. L. T., Rayón, A. E. L., Martínez, C. Y. S., Téllez, L. S., & Hernández, B. R. (2007). Modelo de innovación educativa: Un marco para la formación y el desarrollo de una cultura de la innovación. *RIED. Revista Iberoamericana de Educación a Distancia*, 10(1), 145–173.

EBRD. (2019). *EBRD Knowledge Economy Index*. European Bank for Reconstruction and Development. https://www.ebrd.com/news/publications/...

Espinoza-Audelo, L. F., Leon-Castro, E., Mellado-Cid, C., Merigó, J. M., & Blanco-Mesa, F. (2021). Uncertain induced prioritised aggregation operators in the analysis of the imports and exports. *Journal of Multiple-Valued Logic and Soft Computing*, *36*(6).

Flores-Sosa, M., Avilés-Ochoa, E., Merigó, J. M., & Yager, R. R. (2021). Volatility GARCH models with the ordered weighted average (OWA) operators. *Information Sciences*, 565, 46–61. https://doi.org/10.1016/j.ins.2021.02.051

Halász, G. (2018). Measuring innovation in education: The outcomes of a national education sector innovation survey. *European Journal of Education*, 53(4), 557–573. <u>https://doi.org/10.1111/ejed.12299</u>

Hernández Romo, A. K., Pompa Mansilla, M., & Sánchez-Mendiola, M. (2021). Innovación educativa en la Universidad Nacional Autónoma de México: Estudio de su significado entre sus académicos. *Revista de Innovación y Buenas Prácticas Docentes*, 10(2), 67–81. https://doi.org/10.21071/ripadoc.v10i2.13538

Huesca-Gastélum, M., & León-Santiesteban, M. (2021). Ranking the competitiveness of tourist destinations: An analysis using the OWA operator and the SAW method. *Inquietud Empresarial*, 21(2), 15–34. https://doi.org/10.19053/01211048.11413

INEGI. (2023). Anuario estadístico y geográfico por entidad federativa 2023. Instituto Nacional de Estadística y Geografía. <u>https://www.inegi.org.mx/</u>...

Krstikj, A., Sosa Godina, J., García Bañuelos, L., González Peña, O. I., Quintero Milián, H. N., Urbina Coronado, P. D., & Vanoye García, A. Y. (2022). Analysis of competency assessment of educational innovation in upper secondary school and higher education: A mapping review. *Sustainability*, *14*(13), 8089. https://doi.org/10.3390/su14138089

Ma, J., & Cai, Y. (2021). Innovations in an institutionalised higher education system: The role of embedded agency. *Higher Education*, 82(5), 897–915. https://doi.org/10.1007/s10734-021-00679-7

Macchiarola, V., & Juárez, M. P. (2014). *Experiencias de prácticas socio-comunitarias en la universidad: Recorridos, emergencias y desafíos de una innovación pedagógico-social.* UniRío Editora.

Macías, A. B. (2005). Una conceptualización comprehensiva de la innovación educativa. *Innovación Educativa*, 5(28), 19–31.

Merigó, J. M., Peris-Ortiz, M., Navarro-García, A., & Rueda-Armengot, C. (2016). Aggregation operators in economic growth analysis and entrepreneurial group decision-making. *Applied Soft Computing*, 47, 141–150. https://doi.org/10.1016/j.asoc.2016.05.031

Mogollón, L. (2016). *Innovación educativa: Herramientas de apoyo para el trabajo docente*. UNESCO. Moore, R. E. (1966). *Interval analysis* (Vol. 4). Prentice-Hall.

Moreira, C., Abuzaid, J. N., Elisondo, R. C., & Melgar, M. F. (2020). Innovaciones educativas: Perspectivas de docentes y estudiantes de la Universidad Nacional de Río Cuarto (Argentina) y la Universidad del Atlántico (Colombia). *Panorama*, *14*(26), 33–50. https://doi.org/10.15765/pnrm.v14i26.1480

Moyano, J. E. (2004). Innovaciones educativas: Reflexiones sobre los contextos en su implementación. *Revista Mexicana de Investigación Educativa*, 9(21), 403–424.

Mykhailyshyn, H., Kondur, O., & Serman, L. (2018). Innovation of education and educational innovations in conditions of modern higher education institution. *Journal of Vasyl Stefanyk Precarpathian National University*, 5(1), 9–16. https://doi.org/10.15330/jpnu.5.1.9-16

OECD. (2016). Innovating education and educating for innovation. https://www.oecd.org/...

OECD. (2023). Mexico: Diagram of education system. OECD Education GPS. http://gpseducation.oecd.org/...

Pascual Medina, J., & Navío-Gàmez, A. (2018). Concepciones sobre innovación educativa: ¿Qué significa para los docentes en Chile? *Profesorado. Revista de Currículum y Formación del Profesorado, 22*(4), 71–90. https://doi.org/10.30827/profesorado.v22i4.8395

Powell, W. W., & Snellman, K. (2004). The knowledge economy. *Annual Review of Sociology*, 30(1), 199–220. https://doi.org/10.1146/annurev.soc.29.010202.100037

Rubia-Avi, B. (2022). The research of educational innovation: Perspective and strategies. *Education Sciences*, *13*(1), 26. https://doi.org/10.3390/educsci13010026

Serdyukov, P. (2017). Innovation in education: What works, what doesn't, and what to do about it? *Journal of Research in Innovative Teaching & Learning*, *10*(1), 4–33. <u>https://doi.org/10.1108/JRIT-10-2016-0007</u>

Xu, Z. S., & Da, Q. L. (2002). The uncertain OWA operator. International Journal of Intelligent Systems, 17(6), 569–575. https://doi.org/10.1002/int.10038

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. *IEEE Transactions on Systems, Man, and Cybernetics, 18*(1), 183–190. <u>https://doi.org/10.1109/21.87068</u>

Yager, R. R. (2009). Prioritised OWA aggregation. Fuzzy Optimization and Decision Making, 8(3), 245–262. https://doi.org/10.1007/s10700-009-9063-4

Yager, R. R., & Kacprzyk, J. (2012). The ordered weighted averaging operators: Theory and applications. Springer.

Zabalza Beraza, M. A. (2004). Innovación en la enseñanza universitaria. *Contextos Educativos. Revista de Educación*, 6, 113. <u>https://doi.org/10.18172/con.531</u>