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Abstract. In the world, distributed platforms such as clusters, grids, and clouds spend around 1.5%-2.0% 

of the total energy consumption and this demand is growing extremely fast. For reducing energy 

consumption one of the methods is providing scheduling policies in order to allocate tasks on specific 

resources that impact over the processing times and energy consumption. In this paper, we propose a 

scheduling system to execute efficiently task-based applications on distributed computing platforms in 

order to minimize the energy consumption, execution time or both, also we present a dynamic online 

polynomial-time algorithm that combines a set of heuristic rules and a resource allocation technique in 

order to get good solutions on an affordable time scale. A prototype implementation of the scheduler has 

been tested with matrix multiplication DAG generated at random as well as on real task-based COMPSs 

applications, concluding that our method is suitable for run-time scheduling.  

 

1 Introduction 

 
Recent studies [4] [7] have estimated that around 1.5-2.0% of the total energy consumption is consumed by data centers such 

as clusters, grids and cloud, and this energy demand is growing extremely fast due to the popularization of Internet services 

and distributed computing platforms. Regarding the efficiency of data centers, studies have concluded that, in average, around 

55% of the energy consumed in a data center is consumed by the computing system and the rest is consumed by the support 

system such as cooling, uninterrupted power supply, etc. For that reason, green cloud computing is essential for ensuring that 

the future growth of cloud computing is sustainable [2]. 

 

There are several ways to reduce the energy consumed by an application when executed on a distributed platform: It includes 

the usage of low-power processor architectures or dynamic voltage frequency scaling (DVFS) [6], redesign of algorithms 

using energy-efficient patterns in compilers [10] or changing the scheduling policies for task-based applications on the 

available resources [1]. 

 

Traditionally, scheduling techniques have tried to minimize the total execution time of an application (makespan - Cmax) [8] 

without worrying about the energy consumed. However, there is a trade-off between energy consumed and the execution 

time, and sometimes increasing the performance for a faster execution implies a higher energy consumption. 

The aim of our work is to offer resource providers and end-users more options for executing task-based applications in an 

energy conscious manner, giving the possibility of reducing energy consumption without a significant increase in total 

execution time or reducing the total execution time without a significant increase in energy consumption. The proposed 

scheduler has been designed to be applied to the COMP Superscalar (COMPSs) framework [9, 5]. It provides an 

infrastructure-agnostic task-based programming model, which facilitates the development of parallel applications in 

distributed computing platforms. Developers can program their applications in a sequential fashion and without caring about 
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the details of the underlying infrastructure. They just need to identify the tasks, which are the methods of the applications, to 

be executed in the distributed platform. At run-time, COMPSs detects data dependencies between tasks creating a DAG. 

Once the DAG is created, the COMPSs runtime will use the energy-aware scheduler for allocating and executing the tasks on 

the available computing resources in order to minimize energy or makespan. 

 

The scheduler has been tested with different kinds of DAGs generated at random as well as on real COMPSs applications. 

We have evaluated which combination of our proposed algorithm called multi-heuristic resource allocation (MHRA) provides 

a better solution and energy savings and the execution time in each case, and the effect on the cloud elasticity. Moreover, we 

have also evaluated the introduced overhead by measuring the time for getting the scheduling solutions for a different number 

of tasks, kinds of DAG, and resources, concluding that it is suitable for run-time scheduling. 

 

 

2 Related work 

 
Traditional task scheduling algorithms for distributed platforms such as clusters, grids, and clouds, focus in minimizing the 

execution time [3, 11] without considering energy consumption. Regarding specific work on energy-aware scheduling two 

main trends can be found in the literature: 1) pure scheduling software and 2) combined scheduling hardware/software. For 

combined scheduling, a commonly used technique is taking profit of the Dynamic Voltage Frequency Scaling (DVFS) feature 

which enables processors to reduce the energy consumption. By using DVFS, processors can run at different voltage, 

impacting on the frequency and energy consumption. 

 

 

3 COMP Superscalar overview 
 

COMP Superscalar (COMPSs) shown in Figure 1, is a framework that provides a programming model for the development of 

task-based applications for distributed environments and a runtime to efficiently execute them on a wide range of 

computational infrastructures such as clusters, grids and clouds. The aim of COMPSs is to provide an easy way to develop 

parallel applications, while keeping the programmers unaware of the execution environment and parallelization details. The 

programmers do not require prior knowledge about the underlying infrastructure, they are only required to create a sequential 

application and specify which methods of the application code will be executed remotely. This selection is done by providing 

an annotated interface where these methods are declared with some metadata about the directionality of their parameters. 

 

 
Fig. 1. COMPSs runtime architecture. 
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4 Problem formulation 

 
COMPSs translates a sequential program S into a directed acyclic graph (DAG) by evaluating data and task dependencies 

between parts of code in real time. The generated DAG, represented by G = (T, D) , contains a set of vertexes T, which 

represents the task invocations, and a set of edges D, which represents dependencies between task invocations. For two tasks 

 an edge of the form  denotes a relation task dependency between tasks i, j, where the task j should be executed 

after task i is completed. In this sense i is called parent and j is called child. While a child j may have many parents i, j is only 

ready when all parents i have been completed. On the other hand, a Cloud platform can be described as a set of nodes N = 

{n1, n2, ..., nm}, where node m is represented by nm. Each node nm is responsible for managing a set of virtual machines (VM) 

Vm = {vm1, vm2, ..., vmk} ,where VM k of node m is represented by vmk. Each VM vmk has a set of processing cores Cmki  = {cmk1, 

cmk2, ..., cmki}, where each core i of VM vmk  is represented by cmki.  

Finally, the scheduling problem consists on looking for a task scheduling S, which represents the execution order of each task 

j on the set of available resources.  So,  the  scheduling  for  cmki   (represented  by  Smki)  is  given  by  the expression 1, which 

represents the order that n task is executed on the i -th core  of  the  k -th  VM  of  m-th  node  ( ),  and  the  

complete  scheduling solution S can be represented by  expression 2, as the set of schedulings for all  the resources of the  

Cloud. 

 

 
(1) 

 
(2) 

 

(2) 

 

Therefore, the proposed scheduling problem can be modeled as an optimization problem which looks for a solution S that 

minimizes the bi-objective cost function, as represented in Equation 3. 

 

 

(3) 

 

 

5 Power profiling 
 

A power profile of the host used in the cloud is required to estimate the overall energy flow. The process of profiling consist 

of extracting the mean power values for the possible events of an application. In this section, we explain the methodology 

used to extract this power profile energy, and the values obtained for our testbed which is composed by AMD and INTEL 

architectures. 

 

a. Power profiling procedure 

 
Fig. 2. Profiling for getting power consumption by all elements 
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The overall procedure to get the power profile is depicted in Figure 2. The energy provided to the cloud is manager by Power 

Distribution Units (PDU) which are capable of providing the power provided to the different nodes of the Cloud. The 

information provided by the PDUs is aggregated by a monitoring system (Ganglia and hsflow in our case) which already 

provides the resource consumption (network, memory, CPU) per Node and VM. With this system we can run a set of 

benchmarks which stress the different parts of the system. When the benchmark process has finalized, the power usage 

information is extracted from Ganglia logs, and it is analyzed to make the power profiles. This power profile is automated by 

a set of scripts and performed in a setup phase. 

 

The power profile obtained for both types of nodes is summarized in Table 1. Finally, due to the fact that both types of 

servers are located in the same data center the PUE will be the same. 

Table 1. Estimated mean power consumption for the different elements of a cloud platform. 

Element Description AMD Mean Power Element 

Pcmki Core consumption   9.73W 11.02W 

Psetupvmk   Setup VM  9.49W 18.24W 

Pdownvmk    Down VM 9.49W 18.24W 

Pidlenm Idle state 175.67W 115.30W 

Pnetnm Data transfer 30.04W-42.03 MB/s 27.56W-42.03 MB/s 

PUE PUE 1.2 1.2 

 

 

6 Multi-heuristic resource allocation 

 
Multi-heuristic resource allocation algorithm (MHRA), which generates scheduling solutions of good quality in near real-

time. It is essentially a fast local search algorithm for partial solutions. MHRA builds the solution step by step, taking one 

task at a time and determining which is the next best location on the infrastructure. Figure 3 shows an overview of the MHRA 

policy. The MHRA receives as input a DAG that contains the set of tasks to be carried out on the   cloud. 

The algorithm automatically analyses the DAG and obtains a subset of tasks free of dependencies that can be executed in 

parallel. Then, for each subset,  the algorithm prioritize the tasks them based on different heuristics rules and applies a the 

resource allocation process which seeks the best resource for each task that minimizes the bi-objective cost function 

according to the importance factors specified by the user. This cycle between the resource allocation and the objective 

function evaluation is repeated for each subset of the DAG and heuristic rule. Finally, the scheduler selects the scheduling 

sequence generated with the heuristic rule which minimizes this cost function. 

 

 
Fig. 3. COMPSs scheduler 
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a. Task resource allocation 
 

After getting an initial set of sequences by applying the rules described above, we proceed to determine which is the best 

resource for each task. To achieve this, the resource allocation process is applied as shown in Figure 4. It inspects the 

available resources and selects the best position by evaluating the objective function. The metrics used to evaluate the 

objective function is on based in energy consumption metrics showed in table 1. 

 
Fig. 4. Initial ranking and resource allocation 

 

 

7 Experimental evaluation. 
 

This section presents the experiments carried out to evaluate the proposed energy-aware scheduler. The first part of the 

section describes the configuration used for the evaluation including the machine used to run the scheduling and the cloud 

infrastructure, the benchmark applications and the heuristic used by the scheduler. The second part presents the results of 

running the energy- aware scheduling for the different benchmarks, showing the effect of the different factors and heuristics 

in the consumed energy, makespan, the use of resources and the cloud elasticity. The section is finalized with a set of 

experiments to evaluate the performance of the scheduling algorithm evaluating how the time to get the scheduling solution 

grows with the number of tasks and resources. 

 

 

a. Experiments. 

 
To carry out the experiments, we have implemented a prototype of the proposed energy-aware scheduler and we have 

installed it in a DELL Notebook with Intel i7-2760QM CPU 2.40 GHz with 8 cores and 8GB of memory. We have 

implemented several benchmarking applications with the COMPSs programming model and we have extracted the DAG 

generated by the runtime which is the input for the scheduler evaluation. We have simulated the scheduling solutions 

proposed by the energy-aware scheduler for running the applications in an private cloud infrastructure at the Barcelona 

Supercomputing Center (BSC). 
 

Cloud infrastructure. The private cloud hosted by the BSC consist of two types of computing nodes, AMD and Intel, which 

are summarized in Table 2.  Each node AMD contains 8 cores, a physical memory of 32GB and a storage capacity of 800GB, 

while each Intel node contains 12 cores, a physical memory of 32GB and a storage capacity of 800GB. For both nodes is 

considered a VM representative integrated of four cores, 4GB of memory and 200MB. 

 

For the first experiments where we evaluate the effect of the different factors, we have reserved four nodes (2 AMD, 2 Intel) 

of this private cloud, resulting in a maximum of 10 VMs and a total of 40 cores. For the performance experiments, we have 

considered 64 nodes (32 AMD, 32 Intel), resulting in a maximum of 160 VMs and a total of 640 cores. 
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Table 2. Simulation cloud infrastructure. 

Element AMD node Intel node 

Nodes  

Physical, Memory, Storage 

2-32  

8, 32GB, 800GB 

2-32 

12, 32GB, 800GB 

VMs 

Cores, Memory, Storage 

2 

4, 4GB, 200MB    

3 

4, 4GB, 200MB    

Setup, Down 175 Sec, 03  Sec   85 Sec,02 Sec 

 

Benchmark Applications We have implemented matrix multiplication bench-marking applications with the COMPSs 

programming model, this DAG is composed of n tasks in parallel with a chain of dependencies. We have executed them in 

the cluster and the runtime has detected the data dependencies and generated for each application a DAG of tasks. 

For each DAG, we have generated three different sizes (small, medium and large) with different number of tasks. Moreover, 

each task has different duration, consumes a set of different resources, and has a different amount of data dependencies 

 

Scheduler configuration. To generate the scheduling solutions the importance factor has to be selected, to indicate the 

importance of the energy versus performance and viceversa, and the heuristic rules to rank the priority of a task. The 

importance factor (α) can take any value between [0,1]. For the evaluation experiments, we have selected different 

importance factors from 0 to 1 with intervals of 0.1. Regarding the heuristic rules, four heuristics: LPT, SPT, LNS ans LSTF 

have been selected to classify the initial order of how the scheduler is going to allocate the tasks. 

 

 

b. Impact of the importance factor in the energy/makespan trade-off 

 
The first topic we have studied in the experimentation is the trade-off between energy and time established by the variation of 

the importance factor. An example of this trade-off is depicted in Figure 5. In that figure, we can see the estimated makespan 

and energy consumption for the solutions provided by the scheduler for a matrix multiplication (MT) DAG of 800 tasks with 

different importance factor and applying two different heuristic rules LSTF and LPT. For   a factor 1.0 of energy, which 

corresponds to a factor 0.0 in makespan, we are obtaining the minimum values of energy consumption and the maximum 

values of the makespan for both heuristics. Subsequently, when the energy importance tends to 0.0, and the makespan factor 

tends to 1.0, we observe that for both the heuristic rules, the energy consumption is growing to the maximum values and the 

makespan is decreasing to the minimum values of the makespan. 

 

 
Fig. 5. Trade-off between energy and makespan. 

 

Table 3 shows the energy consumption and makespan for all combinations of importance factors α and the four heuristic 

rules for a run of MT DAG. Despite the behavior of the importance factor is similar for all of the heuristics, the values are 

different and depending on the DAG and resource configuration and heuristic could provide us a better solution. Moreover, 

we can note that   the improvement in the makespan or the energy saving is associated with the heuristic used and the 

importance factor. So, a final user or a infrastructure provider could set the importance factor to 1 or 0 depending if it only 
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wants   to consider performance or energy (degrading considerably the other term) or select one of the intermediate values, 

where he can achieve energy saving within an acceptable makespan degradation. 

 

Table 3. Energy consumption - Makespan per importance factor (α) and heuristic  rule. 

 

α 

SPT LPT LNS LSTF 

Wh Cmax Wh Cmax Wh Cmax Wh Cmax 

1.0 3,140.3 37,834.4 3,113.6 37,138.0 3,128.5 37,527.4 3,125.9 37,458.8 

0.9 3,140.3 37,834.4 3,120.6 31,744.2 3,128.5 37,527.4 3,125.9 37,458.8 

0.8 3,140.3 37,834.4 3,140.5 26,598.5 3,181.7 24,208.1 3,177.7 36,675.3 

0.7 3,195.7 32,390.9 3,122.6 19,039.0 3,133.5 23,325.6 3,165.0 37,440.2 

0.6 3,153.1 35,640.5 3,289.7 17,666.9 3,132.8 19,013.9 3,163.0 19,215.1 

0.5 3,183.3 19,607.3 3,616.1 13,990.5 3,578.9 14,469.8 3,338.6 17,842.1 

0.4 3,375.4 18,399.9 3,683.6 13,633.8 3,755.8 13,067.8 3,764.6 13,319.0 

0.3 3,282.1 18,753.7 3,869.9 11,629.1 3,837.1 11,659.3 3,954.4 12,198.3 

0.2 3,827.4 13,701.0 3,837.4 11,482.8 3,811.0 11,651.2 3,917.0 12,124.5 

0.1 3,985.7 12,349.4 3,834.1 11,458.0 3,848.8 11,569.1 3,895.8 12,101.6 

0.0 4,024.8 12,521.1 3,833.6 11,425.6 3,838.8 11,453.3 3,958.7 12,076.5 

 

To illustrate it, Table 4 shows the energy savings and the makespan degradation for the different importance factor-heuristic 

combination. If we decide to save the maximum amount of energy in range 0.7 ≤  α ≤  1.0, the scheduler  can provide energy 

savings between -21% up to -22%, but paying a makespan increases between +145% up to +228%. If we decide by an 

average factor in range 0.3 ≤ α ≤ 0.7, the energy savings average is between -7% up to -21%   with a smaller makespan 

increment (+18%). Finally, if we decide to not save energy in range 0.0 ≤  α  ≤ 0.3, we could also get a small energy savings 

average is between -2% up to -7% by the selection of the correct rule, with a negligible makespan increment. 

 

 

8 Conclusion and future work 

 
In this paper, we have presented an energy-aware scheduling system for task-based applications. The scheduler aims at 

minimizing a normalized bi-objective function which combines the energy consumption and the makespan (total execution 

time). Those metrics are combined by an importance factor which enables users and service providers to indicate which is 

more important for their purposes: save energy or performance. 

 

Table 4. Energy savings - Makespan degradation relationship per importance factor (α) and heuristic rule 

 

α 

SPT LPT LNS LSTF AVG 

Wh% Cmax Wh% Cmax Wh% Cmax Wh% Cmax Wh% Cmax 

1.0 -21.9 +231.1 -22.6 +225.0 -22.2 +228.4 -22.3 +227.8 -22.3 +228.1 

0.9 -21.9 +231.1 -22.4 177.8 -22.2 +228.4 -22.3 +227.8 -22.2 +216.3 

0.7 -20.6 +183.5 -22.4 +66.6 -22.1 +104.1 -21.3 +227.6 -21.6 +145.4 

0.5 -20.9 +71.6 -10.1 +22.4 -11.0 +26.6 -17.0 +56.1 -14.8 +44.2 

0.3 -18.4 +64.1 -3.8 +1.7 -4.6 +2.0 -1.7 +6.7 -7.1 +18.6 

0.1 -0.9 +8.0 -4.7 +0.2 -4.3 +1.2 -3.2 +5.9 -3.3 +3.8 

0.0 -0.00 +9.5 -4.7 +0.0 -4.6 +0.2 -1.6 +5.7 -2.7 +3.8 

 

The scheduler has been designed to be part of the COMP Superscalar (COMPSs) runtime scheduler. Due to this constraint, 

we have proposed a Multi-heuristic Resource Allocation (MHRA) algorithm to get the best scheduling solution in 

polynomial time. Applications in COMPSs are represented as Directed-Acyclic-Graph (DAG) of tasks dependencies which 

will be the input of the MHRA algorithm. For the different tasks graph are ranked by a set of heuristic rules (such as SPT, 

LPT, LNS and LSTF) which decides the order in which the resource allocation algorithm is going to schedule them by 

selecting the resource which minimize the cost function. 
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We have implemented a prototype of this scheduler and we have evaluated MT DAGs. We have seen how the scheduler 

behaves depending on the selected importance factor and its relationship with the makespan and energy consumption. The 

outcomes of the algorithm show that a considerable energy amount can be saved, depending on the size of the instance. For 

Medium instance in the case of an energy importance configuration, it allows to save around of 22%. 

Future work associated with the integration of the energetic model proposed with COMPSs, also the addition of formulation 

to calculate the monetary cost associated with the use of VMs and delivery times, with the aim of increasing the rates of 

return and profits for service providers. 
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