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Abstract. Nowadays, smart cities management has become an important topic where algorithms are 

crucial to solving their problems. Some topics related to smart cities can be modeled as combinatorial 

optimization problems. A common challenge is to find the optimal route, or routes, to attend demands of 

customers of a store. This challenge is known as the Vehicle Routing Problem (VRP). Evolutionary 

Algorithms (EAs) have demonstrated a high capacity to approximate optimal solutions in   a relatively 

small interval of time. In this article, we propose an EA to solve the Capacitated Vehicle Routing Problem 

with Time Windows (CVRPTW). Our proposal is a memetic algorithm that integrates simulated annealing 

and novel crossover operators. Although this kind of algorithm obtains higher quality solutions than 

simple EAs, they require a greater amount of time. Hence, the use of parallel computing is essential to get 

high-quality solutions in admissible times. Additionally, a novel crossover operator that enhances results 

of state-of-art schemes is proposed. The proposal is validated using Solomon’s benchmark, by contrasting 

our results with the best solutions reported in the specialized literature. A new best-known solution for a 

commonly used instance could be generated.  

Keywords: Capacitated Vehicle Routing Problem, memetic algorithm, CVRPTW, Parallel Computing, 

Solomon’s benchmark. 

 

 

1 Introduction 
 

Combinatorial problems are commonly found in industrial, economic and scientific domains [5]. When the problem, in turn, has 

a relatively small number of variables, dynamic programming or other exact techniques [2] might be an adequate approach. 

However, when the number of variables is relatively large (hundreds or thousands), these approaches are not the best alternative, 

because they need too much time or they might be non-feasible for delivering a global optimum of the problem. 

 

Another alternative is to approximate a global optimum by using heuristic and metaheuristic algorithms [7]. Although they 

might require a large computational time to attain high-quality solutions, they have the enormous advantage of being highly 

parallelizable. Additionally, the stopping criterion might be set to a specific amount of elapsed time. As expected, the quality of 

the obtained results depends on such a stopping criterion. 

 

The Vehicle Routing Problem (VRP) term [6] is a general concept which is used to define a set of problems where there are a 

number of customers that must be visited by a set of vehicles. Generally, the problem is defined as a graph where nodes are the 

customers and edges are paths between customers. There is usually a special node which is the depot of the store. In the VRP, a 

set of routes must be designed where each route starts and ends in the depot and each customer is visited one time [13]. The aim 

of the optimization problem is to find a set of routes of minimum cost that visits all customers. In Fig. 1, an example of a 

Vehicle Routing Problem and a candidate solution is showed, where there are a depot, 4 routes, and 16 customers. Several 

modifications to the classic VRP have been proposed by adding constraints to the original problem. Capacitated Vehicle 

Routing Problem (CVRP) is the VRP with constraints of capacity. Specifically, each route has a maximum capacity to carry and 

each customer has a demand. The sum of the demands of the customers of each route cannot be higher than its capacity. 

Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) [18] adds, for each customer, a time windows when this 

customer is available to be visited. The vising time of customer j is equal to the time associated to the customer i previously 
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visited in its route plus the cost of travel from customer i to customer j. If the vehicle reaches a customer previously to the initial 

time of its time windows, it must wait there. Thus, in such cases, the visiting time of the customer is considered to be the initial 

time of its time windows. 

 

In this paper, we propose a memetic algorithm to solve the CVRPTW. Specifically, it is a population-based evolutionary 

algorithm that is integrated with a local search procedure. Simulated annealing [11] is selected as a local search because it has 

attained promising results in the CVRPTW. Memetic algorithms are, usually, more computationally expensive and in 

consequence require more time than typical population-based Evolutionary Algorithms (EAs). In order to obtain high-quality 

solutions, in relatively short times, we take advantage of a distributed-memory parallelization. 

 

 

2 Vehicle Routing Problem: Mathematical Definition  
 

There are many variants of the VRP where the difference between each of them are the constraints and/or objectives in the 

optimization model. In this article, we address the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) 

introduced previously. 

 

The mathematical definition of the objectives and constraints of the CVRPTW can be modeled as follows: let G = (V, E) be a 

non-directed complete graph, 

 

 
 

Fig. 1. Vehicle Routing Problem 

 

where vertices V = {1, . . . , N} correspond to a depot and customers, and the  edges e ∈ E {(i, j) : i, j ∈ V } are paths among 

them. 

 

A candidate solution is represented by a set of K routes that start and end at the depot. Note that, some of these routes might be 

empty, so K represents the maximum number of routes. Each route k is a simple cycle, so they can be established by indicating 

whether a vehicle travels from node i to node j. Thus, these routes can be mathematically defined with a set of decision variables 
     , to set routes as follows: 

 

 
 

The CVRPTW can be stated as follows: 
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The objective function is defined in equation (1) where Cij is the cost for traveling from node i to node j (here Cij is considered as 

the distance or time required for traveling from node i to node j), K is the maximum number of vehicles that can be used, N is the 

number of customers plus the depot (the depot is tagged with number 1, and the customers are denoted as 2, . . . , N). Equation 

(2) enforces that a vehicle cannot travel from a customer to the same customer. Equation (3) restricts the value of  
      to 0 or 1; when it is set to one it means that vehicle k travel from node i to node j, otherwise it is set to 0. Equation (4) 

ensures that a customer is visited only one time. Equation (5) guarantees that sum of customer capacities visited by a vehicle 

does not exceed the capacity of the vehicle (Qk = Q for all vehicles), where Qk is the loading capacity of vehicle k (in our case, 

the same capacity Q is considered for all vehicles) and dj is the demand at customer j. Equation (6) requires that a maximum of 

K routes start at a depot. Equation (7) guarantees all routes start and finish in the depot. Equation (8) means that if vehicle k is 

traveling from customer i to customer j we cannot arrive at customer j previously to Ski + Cij, where  Skj is  the  visiting  time  of  

customer  j  by  vehicle  k  and  L  is a large scalar . Finally, Equation (9) ensures that time windows 

are fulfilled, where aj is the earliest time for customer j to allow the service and bj is the latest time for customer j to allow the 

service. 
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3 Literature Review  
 

In this section, we provide a brief review of different approaches, reported in specialized literature [7], to tackle the CVRPTW. 

 

Several trajectory-based scheme have been proposed in literature. Among them, SA has provided really promising results. In [3] 

authors propose a SA algorithm with multiple temperatures. Additionally, they present a parallel version of their algorithm using 

OpenMP and MPI for solving the Solomon’s benchmark. In the Solomon’s benchmark, instances are categorized in several 

groups. The Cxxx instances have the customers clustered in geographic regions; in the instances Rxxx the positions of 

customers are randomized; finally, the instances RCxxx are a combination between Cxxx and Rxxx. The results reported in [3] 

are good with easy instances such as the Cxxx, but they do not get so high-quality results when dealing with harder instances 

such as the Rxxx and RCxxx.   

 

A more complex memetic algorithm is used in [15] for approaching a multi- objective version of the CVRPTW to minimize the 

traveling distance and the number of routes at the same time. The authors also test their proposal in Solomon’s benchmark. 

Anyway, using a multi-objective algorithm to address a single-objective problem is complex and several inconveniences might 

arise [16]. In any case, since they help to improve the diversity, in some other cases they are quite helpful. Authors found the 

best-known solutions in the easiest instances, but the performance deteriorates in more complex cases. A hybrid evolutionary 

algorithm is proposed in [12]. The authors combine an adaptive large neighborhood search (ALNS) [1] and a population-based 

search to construct their hybrid evolutionary algorithm. Since this algorithm is not applied with the classical Solomon’s 

benchmark it is difficult to compare against this proposal. Finally, in [10] a framework that uses a kind of dynamic 

programming heuristic to solve the Traveling Salesman Problem (TSP) is introduced. Authors use this approach to approximate 

solutions to any kind of VRP.  The proposal is tested    on Solomon’s benchmark and Goel’s instances [8] that are a 

modification of Solomon’s benchmark. They only report the mean fitness obtained when taking into account the whole 

benchmark   set. 

 

Another issue with VRP is the representation of candidate solutions. In [15], authors encode each route independently. 

Specifically, they save each route in a different array or list that is the sequence of customers visited in such a route. In [4] 

authors improve the Davis encoding system, where a chromosome represents a permutation of n customers to be partitioned into 

m vehicles. The evaluation function assumes that the first m customers of a chromosome are placed into the m vehicles. The 

remaining n-m customers are examined individually. As each new customer is selected a possible sub tour is evaluated for each 

vehicle and the best sub tour is selected. Probably, the main drawback of this last encoding is that not every possible candidate 

solution of the problem have a corresponding encoding. Thus, the optimal solution might not be represented in some cases.      

As a result, the same encoding as in [15] is used in our proposal. 

 

An important operation of the memetic algorithm is the crossover operation. In [14], authors propose the Sequence-Based 

Crossover where each offspring is generated by merging two routes from two different parents. Specifically, two breakpoints are 

selected in such routes, and the last parts of the routes are attached to the first part of the routes. Additionally, authors propose 

the Route Based Crossover. This operator replaces a route in the first parent by choosing a random route from the second parent 

to generate the offspring. In [9], the proposed crossover operator combines iteratively various routes (R1) of parent solution P1 

with a subset of customers, selected from the nearest neighbor routes from parent P2. Finally, with the aim of generating a 

feasible solution, a removal procedure and an insertion heuristic inspired by [17] coupled to a random customer acceptance 

procedure is applied. Since the SBX obtains really promising results, this operators and an extension of it, has been integrated in 

our proposal. 

 

 

4 Memetic Algorithm 
 

In this paper, a novel parallel memetic algorithm to address the CVRPTW      is proposed. It is a population-based algorithm that 

uses crossover operators and local search to enhance offspring. Taking into account the performance of different state-of-art 

schemes, we decided to apply the Sequence-Based Crossover operator (SBX). In addition, we propose a novel variant of SBX 

that enhances its performance which is deeply explained in section 4.1. This novel operator is called as Single Breaking-point 

Sequence-Based Operator (SBSBX). 

 

The proposed memetic algorithm applies simulated annealing (SA) as local search. Specifically, SA is applied on each offspring 

resulting from the crossover by setting its stopping criterion to 5 seconds. SA takes into account the definition of neighborhood 

propose in [3]. Additionally, the population initialization proposed in [3] is used by the proposed memetic algorithm. 
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Specifically, the initial routes are built by using three fast strategies. In the first one, the customers are assigned to routes 

randomly until all customer are assigned. In each step, the customer is chosen randomly. In the second one, the customers are 

inserted to routes according to their identifier, i.e. customer 1 is assigned first, then customer 2 is assigned, and so on. Finally, in 

the third proposal the customers are assigned to vehicles in ascending order of time windows. Customers with the smaller end 

time of its time window. 

 

Note that in our scheme, a population of 50 individual is used. Taking into account that each local search requires a lot of 

computational resources when compared to the resources required by the remaining steps, a parallelization with MPI is used to 

parallelize the application of local search. Specifically, a master-slave scheme is used to distribute the application of the local 

search procedure. This process is detailed in Section 4.3. A general overview of our proposal is showed in algorithm 1. 

 

In algorithm 1, step 1 initializes the population as previously described. Then, until a stopping criterion is reached (step 2), 

which in our case is set as the elapsed time, the steps 3 to 10 are executed. Step 3 executes step 4 and 5 to get a new population 

of offspring. Step 4 selects two parents randomly. Step 5 applies a crossover operator to generate offsprings. Step 7 applies local 

search. Since our proposal is based on a master-slave scheme, offspring are distributed to slaves and slaves run the local search 

on their corresponding offspring. In step 5 each offspring enhanced by threads is sent back to the master process. Step 9 

 

 
 

insert the elite individual of the previous generation in the new generation with the aim of preserving the best individual along 

each generation of the memetic algorithm. Finally, step 10 chooses the new elite individual by comparing new offspring with 

the previous elite individual. 

 

 

 

4.1 Crossover Operator  

 

Sequence-Based Crossover (SBX) [14] is used as crossover operator by our proposal. The procedure of SBX operator is 

illustrated in Fig. 2. Given two parents, P1 and P2, a new offspring is generated. From each parent, one route — R1 and R2 — is 

randomly selected. Then, a random customer is chosen from each route as breakpoint of the route. As results of this, two sub-

routes R1 = (R11, R12) and R2 = (R21, R22) are created. A new route Rnew is generated by merging the first part of route R1 and 

the second part of route R2 in Rnew = (R11, R22). The new offspring is generated by replacing R1 by Rnew in P1. 

 

Solution with unrouted (see the black diamond in Fig. 2) or duplicated customers (blue square in Fig. 2) might appear. Thus, we 

apply a repairing procedure in order to always generate valid offspring, i.e. offspring where each customer is visited one time. 

Three different steps are used to repair solutions: 
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– Duplicated customer in Rnew: A duplicated customer is chosen randomly to remove it. 

– Duplicated customer in different routes: Since we want to keep Rnew, the duplicated customer that it is not in Rnew is 

removed. 

– Unrouted Customer: This customer is inserted at the feasible insertion place that minimizes the route where it is inserted. 

 

If a non-feasible offspring is generated, i.e. one that does not fulfill all the constraints, in [14] the process is repeated until a 

feasible offspring is generated. 

 

 
 

This step is avoided in our case, because we could verify that our SA usually converts any non-feasible solution into a feasible 

one in very few time. 

 

By applying some distance metrics, we could verify that the classical SBX is quite disruptive, especially when the breaking 

points selected in the candidate solutions are different. As a result, we propose a new variant, the SBSBX which selects the same 

breaking points in both parents (see Algorithm 2). In this way, a less disruptive behavior is induced. In addition, SBSBX is less 

elitist than the original SBX with respect to unrouted customers. Specifically, SBSBX places unrouted customers randomly 

instead of choosing the best position. The route selected for placing unrouted customers can be any except Rnew. 

 

In algorithm 2, step 1 copies the parent1 to offspring candidate. In step 2 a customer is selected and, in this case, its route is 

selected too. The customer selected of parent1 is searched in parent2 and its route is selected in step 3. Routenew is generated by 

merging both routes selected and the customer as single breaking-point in step 4. Finally, in step 5 the repairing phase is applied 

to the offspring generated. 

 

4.2 Local Search 

 

The local search phase applied in our proposal is a Simulated Annealing [11] based on 10 different transformations to generate 

neighbors. In each iteration of SA a transformation is chosen with the probabilities given in Table 1. Each transformation works 

as follow: 

 

– Customer Random Reallocation: A random customer is selected from a random route and is placed in an allocation of its 

original route chosen randomly. 

– Customer Best Reallocation: A random customer is selected from a random route and is placed in the best position of its 

original route. 

– Customer Random Migration: A random customer is selected from a random route. Then, this customer is placed in a 

different non-empty route in a random position. 

– Customer Best Migration: A random customer is selected from a random route. Then, this customer is placed in a 

different non-empty route in the best position 
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Fig. 2. Sequence-Based Crossover operator with repairing phase (bp=breakpoint). 

 

– Customers Random Exchange: Two random customer C1 and C2 are selected from random routes R1 and R2 respectively 

and they are exchanged. 

– Customer Best Exchange: Two random routes R1 and R2 are selected and the pair of customer C1 and C2 that provide the 

largest improvement (C1 ∈ R1, C2 ∈ R2) are exchanged. 

– Customer Exchange With coincident Time-Window: A customer is selected from a random route. Then, it is exchanged 

with a customer with a similar time-window from a random non-empty route. In order, to select the most similar time-

window, the upper bound of time-windows is taken into account. 

– Route Partition: A random customer is selected from a random route. Then, this route is broken into two parts, the first 

part is from start of the route to this customer, the second part is from customer to end of the route. The first part is 

conserved in the original route and second part is assigned in a random way to empty routes. If there are not empty routes 

this operator does not do anything; in another cases, each customer is assigned one by one to any of this set of empty routes 

in a random way 

 

Table 1. Transformation Operation Probability 
Transformation Operation Probability 

Customer Random Reallocation 15% 

Customer Best Reallocation 5% 

Customer Random Migration 15% 

Customer Best Migration 5% 

Customers Random Exchange 10% 

Customer Best Exchange 5% 

Customer Exchange With coincident Time-Window 10% 

Route Partition 15% 

New Route 15% 

Route Elimination 5% 

 

– New Route: A random customer is selected from a random route. This customer is assigned to an empty route. 

– Route Elimination: A route is randomly selected, Then, all customer from this route are assigned in the best position from 

other routes. 

 

4.3 Parallelization 

 

As it has been described, our proposal runs the local search procedure by setting its stopping criterion to 5 seconds. Since local 

search is the computationally more expensive part of our proposal, we take advantage of a distributed-memory parallelization 

based on a master-slave model in order to reduce the computation time. In other words, each slave process does the local search 

to a portion of the total population. In this way, all processes are working together in parallel to enhance the offspring. A master-

slave scheme is proposed to do this work, where the master process applies the SBSBX operator and the slave processes are 
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responsible of performing the local search. Note that, since the master does not apply local search to any offspring, there might 

be a loss of performance. However, this overhead diminishes when using a larger amount of slaves. 

 

5 Results 
 

In this section, the results of our proposal are described. Since our proposal is a stochastic algorithm, in order to evaluate the 

performance we run 30 times our algorithm for each instance. A population of 50 individuals is selected and the comparative 

between SBX and our modification of SBX is presented in section 5.2. Results of our parallelization are presented in section 5.3. 

 

5.1 Benchmark 

 

In order to evaluate the performance of our proposal, we have used the well- known Solomon’s benchmark. The reason is that 

this benchmark is the most 

 

Table 2. SBX Results with temperature = 10 
Instance BKS Mean Median std Best Worst 

C103 826.3 828.06 828.06 2.46e-07 828.06 828.06 

C108 827.3 828.94 828.94 3.59e-07 828.94 828.94 

R103 1208.7 1215.07 1215.15 0.82 1213.62 1216.72 

R108 947.55 941.23 939.61 3.17 938.20 949.14 

RC103 1258 1262.56 1262.98 0.72 1261.67 1264.59 

RC108 1114.2 1118.09 1117.83 0.61 1117.53 1119.25 

 

widely used benchmark with CVRPTW. Solomon’s benchmark has 3 different set of instances. Each kind distributes the 

customers in different ways, at it was previously described. In order to evaluate our proposal with a diverse set of instances, we 

have selected two instances of each kind. 

 

Solomon’s benchmark comprises instances with 25 customers, 50 customers, 100 customers and 200 customers. In our analyses, 

instances of 100 customers have been selected because they have larger search spaces than those with 25 and 50 customers and 

because not many results are available for the cases of 200 customers. Since we consider that proper conclusions can be drawn 

with 2 instances of each structure, C103, C108, R103, R108, RC103 and RC108 have been selected to show our results. 

 

5.2 Sequential Scheme  

 

In order to illustrate the effectiveness of the proposed memetic algorithm, we compared it with the best-known solutions. Table 

2 and Table 3 show the best- known solutions, as well as the results of our algorithm using the original SBX operator, for two 

different values of the initial temperature. Table 4 and Table 5 show similar data for the SBSBX operator. The proposal using 

the initial temperature set to 10 attains much better results than with a temperature of 100. Moreover, SBSBX obtains better 

results than SBX in both cases, but with the temperature set to 10 the improvement is less noticeable than with the temperature 

set to 100. This means that SBSBX increases the robustness of the scheme, i.e. it’s reduce the sensitivity to its correct 

parameterization. 

 

Fig. 3 shows the evolution of the fitness attained by our proposal using two different temperatures. The temperature of 10 

provided much better results. The reason is that this temperature induces a much more exploitative approach which is required 

to properly intensify in each region located by the memetic algorithm. The temperature of 100 provided worse results. The 

reason is that this temperature induces a much more explorative behavior but at the cost of reducing the intensification 

capabilities of the scheme. Analyses of diversity show that when using such a high temperature, the proposal does not converge, 

which is the reason of its inferior behavior. 
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Fig. 3. Evolution of Fitness. 

 

 

 

5.3 Parallel Scheme 

 

The parallel variant of our proposal was tested with 3, 11, 26 and 51 processes. Note that one of them is the master, whereas the 

remaining ones are the slaves. In order to test its performance, the stopping criterion was established by taking into account the 

number of generations that are performed by the sequential scheme in 24 hours. Then, the time required to finish with the 

different number of slaves is calculated. Fig. 4 shows the ideal and observed speedup. Results show that our parallel version 

almost reaches the ideal speedup. Moreover, its performance does not decrease when more threads are used. The obtained 

speedup is practically the ideal speedup minus one. The reason is that in our proposal, the master does not perform any work 

during the local search phase. The speedup might probably be improved by adapting the master-slave model, so that the master 

works during the local search phase. In any case, this is left for future work. 

 

Table 3. SBX Results with temperature = 100 
Instance BKS Mean Median std Best Worst 

C103 826.3 874.25 875.80 16.44 847.30 903.00 

C108 827.3 830.98 829.92 2.33 828.94 837.18 

R103 1208.7 1386.11 1387.10 8.76 1366.30 1399.97 

R108 947.55 1047.29 1047.09 7.13 1025.85 1058.93 

RC103 1258 1370.73 1371.42 14.23 1332.19 1400.64 

RC108 1114.2 1242.57 1243.84 11.09 1205.49 1262.86 

 

Table 4. SBSBX Results with temperature = 10 
Instance BKS Mean Median std Best Worst 

C103 826.3 828.06 828.06 4.02e-07 828.06 845.04 

C108 827.3 828.94 828.94 8.95e-07 828.94 828.94 

R103 1208.7 1213.84 1213.73 0.51 1213.62 1216.05 

R108 947.55 940.22 939.06 2.63 938.20 947.03 

RC103 1258 1261.97 1262.02 0.26 1261.67 1262.98 

RC108 1114.2 1117.62 1117.52 0.36 1117.53 1119.25 
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6 Conclusions 

 
The VRP is a very important NP-hard optimization problem that arises in the management of smart cities. Several variants of 

EAs have shown great promise in dealing with the VRP. However, when dealing with relatively large instances, they are not 

usually capable of obtaining optimal solutions. Thus, more efforts are required to improve their performance. This paper 

proposes a novel memetic algorithm to deal with a variant of the VRP, which is called the CVRPTW. Specifically, our proposal 

is a memetic algorithm that integrates a variant of SA with the recently proposed SBX crossover operator. In addition, a novel 

crossover operator (SBSBX) is proposed by extending the original SBX. This operator reduces the disruptive behavior that SBX 

shows in some particular cases. Since our sequential proposal requires large computational resources to attain high-quality 

results, a parallel variant based on the master-slave paradigm is also proposed. 

Our experimental validation with a well-known set of benchmarks shows a really promising behavior. In several cases, results 

that are quite close to the best-known solutions are obtained. In addition, in the R108 instance, a new best-known solution could 

be attained, which is a remarkable achievement, especially when taking into account that this set of instances have been tackled 

with a large number of different techniques. The new SBSBX operator has been able to reduce the sensitivity of the memetic 

algorithm to its correct parameterization. Moreover, the parallelization shows an adequate performance, obtaining a speedup that 

is close to the optimal one, even when considering up to 51 slaves. 

 

Table 5. SBSBX Results with temperature = 100 
Instance BKS Mean Median std Best Worst 

C103 826.3 845.23 843.82 10.02 829.28 871.40 

C108 827.3 829.26 828.94 0.85 828.94 832.80 

R103 1208.7 1331.37 1332.13 14.67 1299.55 1361.81 

R108 947.55 1026.26 1026.58 8.01 1001.00 1042.01 

RC103 1258 1352.25 1351.70 11.51 1334.17 1372.20 

RC108 1114.2 1209.91 1210.25 11.12 1185.29 1234.61 

 

 

 
Fig. 4. Speedup. 

 

Several lines of future work might be explored. First, in order to improve the parallelization, the model might be extended by 

including the master in the local-search phase. Second, more complex paradigms such as the island- based or cellular models 

might be used. Finally, in order to improve further the performance of the sequential approach, models that explicitly consider 

the diversity might be taken into account. 
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