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Abstract. The increase in electricity demand, driven by economic, 

technological, and social growth, has posed significant challenges 

in terms of sustainability, costs, and dependence on external power 

grids. In Mexico, the residential sector has experienced sustained 

growth in electricity consumption, intensifying pressure on the 

grid and increasing reliance on fossil fuels. To address these 

issues, this study proposes an optimization model name as 

HOMENERGY-OPT to manage energy generation, storage, and 

consumption in residential smart grids (SGs). HOMENERGY-

OPT employs a bottom-up engineering approach that incorporates 

household consumption behavior, device usage patterns, and 

sociodemographic characteristics. Its objectives include 

minimizing operational costs, reducing dependence on external 

sources, and maximizing the use of locally generated renewable 

energy. HOMENERGY-OPT was validated through experimental 

analysis under various photovoltaic panels (PV) configurations 

and energy storage capacities. Scenarios were evaluated to analyze 

the impact of these configurations on cost reduction and system 

efficiency. Results demonstrate that integrating optimization 

strategies into distributed generation systems improves 

operational efficiency and reduces energy costs for residential 

users. This research contributes to advancements in sustainable 

energy management by optimizing renewable resource use in SGs 

and provides a practical framework to address growing energy 

demand in the residential sector. 
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NOMENCLATURE 

T Ambient temperature (°C)  ℎ𝑙𝑗
𝑑  

Energy produced by PV l in the SG at time j and 

allocated to meet household energy demand 

I Irradiance (W/m²)  ℎ𝑙𝑗
𝑎  

Energy produced by the SGs PV at time j and 
allocated to storage 

W Wind speed (m/s)  ℎ𝑙𝑗
𝑎  

Energy produced by PV in the SG at time j and 
allocated to storage 

B Battery storage capacity (Ah)  ℎ𝑗
𝑒 

Surplus energy produced by all PV in the SG at 
time j 

E System surplus energy at time j  ℎ𝑙𝑗
𝑒  

Surplus energy produced by PV l in the Smart Grid 
at time j 

h Amount of energy produced by the SGs PV  ℎ′𝑘𝑗
𝑎  

Accumulated energy, allocated from PV 
production to storage, for each battery k at time j 

j Time within the planning horizon  𝑎𝑗 
Amount of energy stored in all batteries of the SG 
at time j 

i Household device  𝑎𝑘𝑗 
Amount of energy stored in battery k of the SG at 
time j 

l Photovoltaic Panel  𝑎𝑗
𝑑 

Amount of energy stored in all batteries of the SG 
at time j and allocated to meet household energy 

demand 
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lm PV capacity (kW)  𝑎𝑘𝑗
𝑎  

Energy allocated to storage in battery k of the SG 
time j 

k Number of batteries  𝑎𝑘(𝑗−1)
𝑎  

Energy allocated to storage in battery k of the SG 

at time j-1 

𝑐𝑗 Electric energy consumption at time j  𝑎𝑘𝑗
𝑑  

Energy stored in battery k of the SG and allocated 
to meet household energy demand, at time j 

𝑐𝑖𝑗  
Electric energy consumption of device i at 

time j 
 𝑎𝑘(𝑗−1)

𝑑  
Energy stored in battery k of the SG and allocated 
to meet household energy demand, utilized at time 
j-1 

𝑟𝑗 Energy supplied by CFE (kW/h)  𝑎𝑗
𝑒 

Surplus energy from all batteries in the SG at time 
j 

𝑟′𝑗 
Cumulative energy supplied by the external 
power grid at time j in watts (kW/h) 

 𝑒𝑗 Energy price at time j 

ℎ𝑗
𝑑 

Energy produced by all Photovoltaic Panels 
in the Smart Grid and allocated to meet 
household energy demand at time j 

   

 

 

1 Introduction 
 

The increase in electricity demand, driven by the growth of economic, technological, and social activities, has generated significant 

challenges in terms of sustainability, costs, and dependence on the external power grid. In Mexico, residential energy consumption 

has shown sustained growth in recent years. According to the Ministry of Energy (Secretaría de Energía, 2021), the net 

consumption of the National Electric System (SEN) increased by 3.5% in 2021 compared to the previous year, with the residential 

sector being one of the fastest-growing. This rise in demand has intensified pressure on the power grid, raising costs for end users 

and increasing dependence on fossil fuel-based energy sources, which in turn contributes to a larger carbon footprint. 

 

To mitigate these effects and move toward more efficient energy management, the integration of renewable sources into smart 

grids has gained relevance. Among these sources, photovoltaic energy has proven to be a viable solution for decentralized 

electricity generation. However, several challenges remain in its implementation, such as the lack of optimal storage strategies, 
underutilization of generated energy, and the absence of optimization models that enable efficient energy consumption 

management in residential settings (Bragagnolo et al., 2020). 

 

The optimization of energy demand and storage becomes crucial to reducing operational costs and improving system efficiency, 

allowing households to minimize their dependence on the external power grid and maximize self-consumption of renewable 

energy. In this context, the present study proposes an optimization model called HOMENERGY-OPT (Home Energy Optimization 

Model), designed to efficiently manage the generation, storage, and consumption of energy in residential smart grids. This model 

employs a bottom-up engineering-based modeling approach, which considers household energy consumption behavior, usage 

patterns of electrical devices, and the sociodemographic characteristics of homes. Through this methodology, the goal is to 

minimize the operational costs of the residential energy system by reducing the amount of energy purchased from the external 

grid and optimizing the use of internally generated energy (Gilardón, A., & Cristóbal, A., 2019). 
 

To validate the effectiveness of HOMENERGY-OPT, an experimental analysis is conducted considering different configurations 

of energy storage and production. Scenarios are evaluated in which the number of batteries, storage capacity, number of solar 

panels, and energy production capacity of the panels vary, allowing an assessment of their impact on reducing the cost of energy 

consumed from the external energy operator, which in Mexico is the Federal Electricity Commission (CFE). According to previous 

studies, integrating optimization strategies in distributed generation has proven effective in improving operational efficiency and 

reducing energy costs in smart grids (Dufo-Lopez, R. & Bernal-Agustín, J., 2021). Thus, the proposal of this model not only 

contributes to better energy management at the residential level but also represents progress in designing strategies for the optimal 

use of renewable sources in smart electrical systems. 

 

The remainder of this document is structured as follows: Section II presents the background and state of the art in energy 
optimization in residential smart grids. Section III describes in detail the proposed optimization model, including its mathematical 

formulation, constraints, and key decision variables. Section IV outlines the methodology used for experimentation, considering 

different energy storage and production scenarios. Section V presents the obtained results, while Section VI discusses the 

implications of the findings for optimizing residential energy consumption. Finally, Section VII provides the study's conclusions 

and its potential application in future research. 
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2 Background 
 

To differentiate the approach of this study from the analyzed research, it is essential to highlight the key aspects that distinguish 
them in terms of scope, methodology, and application context. 

 

While the reviewed studies analyze energy demand management, most address the issue from a broader perspective or with 

different objectives. First, several of these studies consider the integration of multiple renewable energy sources, such as solar, 

wind, and even hydroelectric power, focusing on optimizing hybrid systems in various environments (Dufo-Lopez, Rodolfo & 

Bernal-Agustín, José L., 2021). In contrast, this study focuses on optimizing residential energy management in a smart grid with 

photovoltaic generation and battery storage, ensuring a concrete and localized application. 

 

Another distinguishing factor is the geographical scale of the studies. Most of the reviewed research is conducted in countries 

other than Mexico, and in some cases, the analysis is carried out at a macroeconomic level, considering national or regional energy 

management strategies (Ozdemir, G., 2024). Likewise, several studies are oriented toward rural and suburban environments, 
evaluating the feasibility of microgrids or distributed generation systems in communities with limited access to traditional energy 

infrastructure (Adewuyi, O. B., & Krishnamurthy, S., 2024). In contrast, this study is specifically designed for the reality of 

Mexico's electrical system, applied in an urban area such as Ciudad Madero, allowing for the capture of particular dynamics of 

residential energy consumption in this region. 

 

Furthermore, while some of the reviewed studies focus on energy demand forecasting and prediction, employing artificial 

intelligence and machine learning techniques to estimate long-term trends (Ozdemir, G., 2024), this study adopts a practical and 

applied approach based on real household consumption patterns in Cd. Madero. Unlike predictive approaches, this optimization 

model considers specific data on consumer behavior, family composition, the availability of photovoltaic and storage 

infrastructure, and the region’s climatic conditions—factors that directly influence energy generation and use in a residential 

context. 

 
Additionally, some reviewed studies propose distributed optimization techniques based on machine learning and demand response 

(Martínez, A., & Arévalo, P., 2025), while others analyze the efficiency of methods such as Black Widow optimization to enhance 

the performance of hybrid renewable energy systems (S. Divya, M., et al., 2024). In contrast, this study does not focus on advanced 

optimization algorithms or machine learning strategies but rather on the application of a deterministic energy optimization model 

aimed at maximizing efficiency and minimizing costs in a specific urban context. 

 

2.1 Residential Energy Consumption 

 

Studies have reported factors that impact residential energy consumption (Rastegar et al., 2016, Fujimoto et al., 2018, Pedrasa, 
Spooner, & MacGill, 2009, Beaudin et al., 2014). Electricity demand in the residential sector is influenced by the number and 

socioeconomic status of users, seasonality (Maqueda Zamora & Sánchez Viveros, 2011), and electricity prices (Cámara de 

Diputados, 2005). Higher income levels are associated with greater electricity consumption and demand (Maqueda Zamora & 

Sánchez Viveros, 2011). In the studies by (U.S. Department of Energy, 2009) and (Gers, 2017), it is considered that the number 

of devices in a residence impacts electricity consumption, with (Gers, 2017) concluding that understanding the implications of 

household appliances is essential to determine the savings or wear they generate. In the study by (Guacaneme et al., 2018), it was 

established that the following factors must be considered: 1) consumption habits to determine the nature of the loads, 2) voltage 

level, 3) number of appliances, and 4) energy consumed by each appliance to analyze the energy demand. In the work of (Laicāne 

et al., 2014), influencing factors in electricity consumption were classified into six categories: 1) Personal characteristics of the 

residents, including Age, Gender, Education level, Marital status, Household size and composition, 2) Socioeconomic factors of 

residents such as Household monthly income, Percentage of household expenditure on electricity consumption, Electricity price, 
Rebound effect, 3) Actions and presence of electrical appliances: Stock of electrical devices, Frequency of use, Percentage of 

energy-efficient devices, 4) Structural characteristics of the home, Type of home, Home size in m², Age of the home, Type of 

heating, and Temperature maintained during winter and summer. 5) Residents' behavior, including the effect of information, 

Knowledge/awareness/attitude toward electricity consumption. 6) Other factors such as Geographic location, zone, and Climate 

characteristics. 

 

The increase in energy demand in Mexico and the need to optimize residential consumption take place within the framework of 

national energy policies, including the Energy Transition Law (LTE), the Energy Transition and Sustainable Energy Use Fund 

(FOTEASE), and the National Commission for the Efficient Use of Energy (CONUEE). These policies aim to increase the share 
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of renewables through clean energy generation, reduce greenhouse gas emissions, and establish a regulatory framework for 

distributed generation to promote the adoption of renewable energy at the residential level. 

In this context, HOMENERGY-OPT seeks to address the inefficient management of energy demand in residential settings by 

tackling external grid dependency, the underutilization of generated solar energy, and the lack of optimal storage strategies. 

HOMENERGY-OPT allows residential users to benefit from cost reductions and increased efficiency, contributing to the 

achievement of national clean energy and sustainability goals. 

 

2.2 Factors Impacting Residential Electricity Consumption in Mexico 

 

In the work of Macías et al. (2018), it was considered that factors such as building type, total income, the area in square meters of 

air conditioning, the number of residents, temperature, and the season of the year directly impact electricity consumption in 

Mexico. The CONUEE (National Commission for the Efficient Use of Energy) (2020) established that key factors to consider 

include the level of equipment, equipment efficiency, number of occupants, usage patterns and habits of the appliances, and the 

local climate where the residence is located. According to the research by Morales Ramírez, et al (2021), factors such as family 

size, age, the presence of children, education level, economic situation, type of house, and household appliances were considered, 

highlighting their significant impact on energy consumption. 

 
In summary, while the reviewed studies provide valuable analyses of energy demand management across different scales and 

conditions, this study stands out for its localized and applied approach. It considers a specific case study in an urban area of 

Mexico, incorporating real consumption patterns and specific environmental conditions. This ensures that the proposed model is 

not only theoretically robust but also replicable and adaptable to similar realities within the country. 

 

 

3 Objective 

 
To propose and evaluate an energy optimization model applied to residential environments in smart grids, considering real 

consumption patterns, local climatic conditions, and the electrical system configuration of Ciudad Madero. The objective is to 

minimize operational costs, reduce dependence on the external power grid, and maximize the utilization of photovoltaic energy 

stored in batteries. 

 
 

4 Methodology 

 
There are two approaches to studying energy consumption: top-down and bottom-up. Top-down methods aim to understand 

consumer behavior by analyzing variations in the supply and prices of electricity. Their names refer to the hierarchical position of 

the data inputs. The top-down method does not distinguish the individual final use of energy consumption in the residential sector, 

but rather considers variables such as macroeconomic indicators (Gross Domestic Product (GDP), employment rates, and price 

indices), climate conditions, construction, and other factors. It is further classified into econometric and technological methods. 

A disadvantage of these methods is their dependence on historical energy consumption records to estimate increases and variations 

in the variables. The bottom-up method, on the other hand, considers the energy consumption of end-users, whether individual or 

in a group of households, as well as representative characteristics of the region. This approach is divided into two methods:  

statistical and engineering. The statistical method uses data on the energy billing of clients with the energy supplier, housing 

characteristics, and the behavior of the occupants in each residential unit. The engineering method computes the energy 
consumption of end-users based on their characteristics. This is the only method that can be completed without requiring historical 

energy consumption data; instead, it can be modeled using simple characteristics and takes into account the behavior of the 

occupants within the household. Therefore, the engineering bottom-up method allows for the direct calculation of energy 

consumption based on the end uses of energy by each user in one or more residences (Swan & Ugursal, 2009). 

 

The proposed HOMENERGY-OPT employs a bottom-up engineering modeling approach, which means it starts with a detailed 

analysis of energy consumption at the device and user level within the household to structure an efficient energy management 

strategy. To achieve this, real energy consumption data is considered, including usage habits of electrical devices, the hourly 

distribution of consumption, and the household’s sociodemographic characteristics. This enables an accurate characterization of 

residential energy demand. The parameters considered for HOMENERGY-OPT consist of a set of physical, operational, and 

economic factors that influence household energy management, classified into four categories: 1) Energy Consumption – 

monitored electrical devices, user usage patterns, and the total household energy load, 2) Energy Generation – number of 
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photovoltaic panels, photovoltaic production capacity, and climatic condition, 3)  Energy Storage – number of batteries and battery 

storage capacity, 4) Economic and Power Grid Factors – electricity tariff, energy acquired from the external power grid (CFE), 

and the total system operating cost. 

 

 

5 HOMENERGY-OPT Development 

 
HOMENERGY-OPT is based on a detailed analysis of residential energy consumption in a smart grid, aiming to minimize 
operational costs, reduce dependence on the external power grid, and maximize the utilization of photovoltaic energy stored in 
batteries. 

The current optimization model consists of four objectives: 1)  𝑓(𝑟) = ∑ 𝑒𝑗𝑟𝑗
𝑚
𝑗 = 1  it is related to the cost of energy, el 2) 𝑔(𝐸) =

∑ 𝐸𝑗
𝑚
𝑗 = 1 , ℎ(𝐸) it focuses on minimizing the total excess energy, el 3) ℎ(𝐸) = −∑ 𝑒′𝑗𝐸𝑗

𝑚
𝑗 = 1  it aims to maximize the excess energy, 

and 4) 𝑖(𝑟, 𝐸) = ∑ 𝑒𝑗𝑟𝑗
𝑚
𝑗 = 1 − ∑ 𝑒′𝑗𝐸𝑗

𝑚
𝑗 = 1  it seeks to minimize the cost of energy from the external service provider and the cost 

associated with excess energy. 

𝑚𝑖𝑛 F(r) = {𝑓(𝑟) = ∑ 𝑒𝑗𝑟𝑗

𝑚

𝑗 = 1

, 𝑔(𝐸) = ∑ 𝐸𝑗

𝑚

𝑗 = 1

, ℎ(𝐸) = − ∑ 𝑒′𝑗𝐸𝑗

𝑚

𝑗 = 1

, 𝑖(𝑟, 𝐸) = ∑ 𝑒𝑗𝑟𝑗

𝑚

𝑗 = 1

− ∑ 𝑒′𝑗𝐸𝑗

𝑚

𝑗 = 1

} (1) 

where,  

ℎ𝑙𝑗  =  ℎ(𝑇(𝑗), 𝐼(𝑗),𝑊(𝑗)), It is calculated based on the work of (Gilardón, A. & Cristóbal, A., 2019) using 

temperature (T), irradiance (I), and wind (W). 

 
The objective function is crucial for the model, as it guides all decisions within the model. This function aims to: 1) balance 
consumption and production, ensuring that energy production is sufficient to meet demand without incurring excessive costs; 2) 
maximize efficiency by fully utilizing available renewable energy sources and properly managing storage (batteries); and 3) 
minimize costs by reducing expenditure associated with the purchase of external energy and maximizing the use of energy generated 
internally.  

 

5.1. Breakdown of HOMENERGY-OPT 

 
Equation (2) calculates the total cost of the energy supplied by the external power grid (CFE) in each period j by multiplying the 
energy price by the amount of energy consumed. The objective is to minimize this cost. 

𝑓(𝑟) = ∑ 𝑒𝑗𝑟𝑗

𝑚

𝑗 = 1

 (2) 

Equation (3) aims to maximize the total energy surplus produced by the system in each period. An energy surplus indicates that 
more energy is generated than consumed, which is desirable to ensure the system's sustainability. 

𝑔(𝐸) = ∑ 𝐸𝑗

𝑚

𝑗 = 1

, (3) 

Equation (4) accounts for the costs or revenues associated with the unused surplus energy. If the surplus energy holds value—
whether through sale or storage as savings—it can reduce the total cost by introducing a negative income term into the objective 
function. 

ℎ(𝐸) = −∑ 𝑒′𝑗𝐸𝑗

𝑚

𝑗 = 1

 (4) 

 Equation (5) seeks to balance the total cost of consumed energy with the revenues or savings generated by the energy surplus. The 
objective is to maximize this balance, ensuring that costs are offset by the benefits derived from efficient resource management, 
thereby minimizing the expenses incurred by the external service operator (CFE). 
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𝑖(𝑟, 𝐸) = ∑ 𝑒𝑗𝑟𝑗

𝑚

𝑗 = 1

− ∑ 𝑒′𝑗𝐸𝑗

𝑚

𝑗 = 1

 (5) 

 

Once the objective function was defined, eleven constraints were developed for the HOMENERGY-OPT. These constraints were 

established as conditions that must be met to ensure that the HOMENERGY-OPT operates optimally and realistically. They are 

described as follows: 

 

Constraint 1 ensures that energy production is sufficient to meet demand. That is, the sum of the energy generated by photovoltaic 

panels, the energy stored in batteries, and the energy supplied by the external grid (CFE) must be equal to the total household 

energy consumption (Eq. 6). 

ℎ𝑗
𝑑 + 𝑎𝑗

𝑑 + 𝑟𝑗 = ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖 = 1

 (6) 

 

Constraint 2 verifies that all the energy produced by the photovoltaic panels is entirely distributed among demand, storage, and 
surplus (Eq. 7). 

ℎ𝑙𝑗
𝑑 + ℎ𝑙𝑗

𝑎 + ℎ𝑙𝑗
𝑒 = ℎ𝑙𝑗  (7) 

Constraint 3 states that, at each time period j, the energy produced by the photovoltaic panels allocated to meet demand must 

match the total energy generated by all photovoltaic panels (Eq. 8). 

ℎ𝑗
𝑑 − (∑ℎ𝑙𝑗

𝑑

𝐿

𝑙 = 1

) = 0 (8) 

Constraint 4 ensures that the energy produced by the photovoltaic panels and allocated for storage must match the total energy 

generated by all photovoltaic panels that has been designated for storage at each time period j (Eq. 9). 

ℎ𝑗
𝑎 − (∑ ℎ𝑙𝑗

𝑎

𝐿

𝑙 = 1

) = 0 (9) 

Constraint 5 establishes that the energy generated by the photovoltaic panels for storage must match the sum of the energy 

allocated to be stored in each battery k at each time period j (Eq. 10). 

ℎ𝑗
𝑎 − (∑ ℎ′𝑘𝑗

𝑎

𝐾

𝑘 = 1

) = 0 (10) 

 

Constraint 6 states that the stored energy allocated to meet household demand must be equal to the sum of all stored energy 

designated for demand coverage across all batteries k at time j (Eq. 11). 

𝑎𝑗
𝑑 − (∑ 𝑎𝑘𝑗

𝑑

𝐾

𝑘 = 1

) = 0 (11) 

 

Constraint 7 establishes that the storage capacity of each battery k must not be exceeded at any time j (Eq. 12). 

𝑎𝑘𝑗
𝑎 ≤ 𝐵 (12) 

 

Constraint 8 ensures that the energy allocated for storage is not less than the energy extracted from the batteries to meet demand. 

In other words, it guarantees that no more energy is withdrawn than has been previously stored in the batteries. This is crucial to 

avoid an energy supply deficit and to maintain the integrity of the storage system (Eq. 13). 
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𝑎𝑘𝑗
𝑎 − 𝑎𝑘𝑗

𝑑 ≥ 0 (13) 

Constraint 9 ensures that the state of charge of each battery k in period j+1 is correctly calculated based on the state of charge in 

period j, considering both stored energy and the energy extracted to meet demand (Eq. 14). 

𝑎𝑘𝑗+1
𝑎 − (𝑎𝑘𝑗

𝑎 − 𝑎𝑘𝑗
𝑑 ) −  ℎ′𝑘𝑗

𝑎 = 0 (14) 

 

Constraint 10 establishes that the amount of energy stored in the batteries at the beginning of the period must be equal to the 

known initial charge of each battery. This data is fundamental for initiating the model with a realistic and accurate system state, 

ensuring that subsequent simulations correctly reflect the initial conditions of the energy system (Eq. 15). 

𝑎𝑘0
𝑎 = 𝑎𝑘

𝑖𝑛𝑖 (15) 

Constraint 11 ensures that the total energy surplus in each period j is equal to the sum of the surplus energy produced by all solar 

panels. This guarantees that all generated energy that is not used for immediate consumption or storage is properly accounted for. 

The efficient management of surplus energy is essential for optimizing resource utilization and maximizing the economic benefits 

of the system (Eq. 16). 

𝐸𝑗 − (∑ℎ𝑙𝑗
𝑒

𝐿

𝑙 = 1

) = 0 (16) 

Together, these constraints form a cohesive system that enables the HOMENERGY-OPT to simulate realistic scenarios within a 

smart grid. By ensuring that all aspects of energy flow—from generation to consumption and storage—are considered, this 

approach facilitates efficient energy resource management. Moreover, it provides a solid foundation for implementing 

optimization practices in the energy sector. The proper implementation and adherence to these constraints will allow the proposed 
objectives to be achieved in terms of sustainability and economic efficiency within the household. 

 

 

6 Experimentation 
 

To conduct the experimentation, an experimental design was applied. This design is based on a quantitative and observational 

approach, relying on the collection of real energy consumption data from a representative household in Ciudad Madero, Mexico. 
To ensure the accuracy of the optimization model, a real-time energy monitoring methodology was implemented, recording the 

use of electrical devices, consumption patterns, and residents' energy behavior continuously for seven days, 24 hours a day, 

resulting in a planning horizon of 168 hours. During the study period, the individual usage of each appliance (usage pattern) and 

electrical device (22 devices within the household) was documented, determining their operating time and the amount of energy 

consumed in each time interval (W/h). Additionally, the number of batteries, the number of solar panels, the maximum capacity 

of each battery, and the energy production of each photovoltaic panel (W/h) were recorded to evaluate their impact on photovoltaic 

generation and energy demand. Table 1 provides detailed information on each parameter considered. 

 

Table 1. Parameters considered for the experimentation. 

List of household devices (i): 
Refrigerator, Television (TV) (2), Light bulbs (6), Air conditioner 

(AC) (4), Fan (4), Electric stove, Laptop, Modem, Blender, 

Washing machine. 

Planning horizon: 168 hours (1 week) 

Number of batteries (k): 1, 10, 20 

Number of photovoltaic panels (l): 4, 8, 16 

Maximum capacity of each battery (Ah): 1000, 3000, 5000 

Energy consumption of each device (W/h): 

Refrigerator 

TV 

Light bulbs 

AC 

Fan 

1600 

260 ea 

10 ea 

1900 ea 

320 ea 

Electric stove 

Laptop 

Modem  

Blender 

Washing 

machine 

1500 

200 

18 

600 

1500 

 

Energy production per PV (kW): 200, 330, 600 

End-user usage pattern: A family of four members (Father (F), Mother (M), Son (S), and 

Daugter (D)). 
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Figure 1 illustrates the time periods during which each user is at home or away, as well as their sleep schedule. This latter 

information supports the modeling of air conditioning usage, as users only turn on the air conditioning while sleeping. 

 

 
Figure 1. Modeling of each end user's stay within the residence. 

 

Based on the modeling of each user's presence within the household, the usage of each device by each user was modeled over the 

proposed planning horizon. This consumption pattern per device is detailed in Figure 2, which represents the 22 devices considered 

in this residential case study, including a refrigerator, televisions (2), light bulbs (6), air conditioners (4), fans (4), an electric stove, 

a laptop, a modem, a blender, and a washing machine. 

 

 
Note: The energy consumption of the refrigerator and the modem was considered as continuously plugged in, meaning they remain connected to the power 

supply 24 hours a day. 

Figure 2. Energy usage pattern of each device by each user within the household. 

 

Based on the device usage pattern and the electrical consumption of each device, the total household energy consumption within 

the considered planning horizon amounts to 980,464 kWh. Regarding the energy consumption cost, the Federal Electricity 

Commission (CFE) applies different tariff schemes (industrial and residential), with the residential tariff scheme being of interest. 

Within this scheme, specific domestic incentive tariffs are available (1, 1A, 1B, 1C, 1D, 1E, 1F) as well as high-consumption 
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domestic tariffs (DAC). For this case study, the 1C tariff for 2024 was considered, which applies to residential service in locations 

with a minimum average summer temperature of 30°C. Since March marks the beginning of summer in the studied locality, the 

corresponding December tariff was consulted. For the non-summer season, the basic consumption rate (Ba) is set at $1.059 per 

kWh for the first 75 kWh, the intermediate consumption rate (Inter) is $1.285 per kWh for the next 100 kWh, and the excess 

consumption rate (Exc.) is $3.763 per kWh for any additional consumption beyond these thresholds. 

 

It is acknowledged that the accuracy and applicability of the model would be enhanced by incorporating real data on residential 

electricity tariffs in Mexico, which are expressed in Mexican pesos (MXN). 
 

 
Figure 3. Results of the optimization model application in the proposed experimental design. 

 

 

For the experimentation, multiple simulation scenarios were established, varying key parameters of the energy system, such as: 

• Number of solar panels (l): 4, 8, and 16 units. 

• Photovoltaic generation capacity (lm): 200, 330, and 600 kW. 

• Number of batteries (k): 1, 10, and 20 units. 

• Battery storage capacity (B): 1000, 3000, and 5000 Ah. 
 

Each scenario was designed to analyze the relationship between photovoltaic generation, energy storage in batteries, and household 

electricity consumption, allowing the evaluation of how system optimization reduces dependence on the external power grid and 

minimizes operational costs. 

 

The applied experimental design enabled the validation of the proposed model's efficiency under real consumption conditions, 

considering the available infrastructure and the climatic conditions of Ciudad Madero. The use of real data obtained through 

fieldwork distinguishes this study from other theoretical models or those based on general consumption estimates. The direct 

collection of energy information from a household allowed the development of a highly accurate model, tailored to the residents' 

consumption patterns and the local solar generation conditions in Ciudad Madero. This approach enables a more realistic 

assessment of the impact of energy optimization on cost reduction and system efficiency within a smart grid. It is important to 

note that ideal conditions were considered for the photovoltaic panel production capacity value. 
 

k l B lm Difference k l B lm Difference k l B lm Difference

1 20 16 3000 600 280,538 699,926 28 10 16 1000 200 734,064 246,400 55 1 8 1000 200 857,264 123,200

2 20 16 5000 600 280,538 699,926 29 10 16 3000 200 734,064 246,400 56 1 8 3000 200 857,264 123,200

3 10 16 5000 600 329,248 651,216 30 10 16 5000 200 734,064 246,400 57 1 8 5000 200 857,264 123,200

4 10 16 3000 600 454,258 526,206 31 20 16 1000 200 734,064 246,400 58 10 8 1000 200 857,264 123,200

5 20 16 1000 600 524,258 456,206 32 20 16 3000 200 734,064 246,400 59 10 8 3000 200 857,264 123,200

6 10 16 3000 330 579,364 401,100 33 20 16 5000 200 734,064 246,400 60 10 8 5000 200 857,264 123,200

7 10 16 5000 330 579,364 401,100 34 1 16 1000 200 734,568 245,896 61 20 8 1000 200 857,264 123,200

8 20 16 1000 330 579,364 401,100 35 1 16 3000 200 734,568 245,896 62 20 8 3000 200 857,264 123,200

9 20 16 3000 330 579,364 401,100 36 1 16 5000 200 734,568 245,896 63 20 8 5000 200 857,264 123,200

10 20 16 5000 330 579,364 401,100 37 1 8 1000 330 782,644 197,820 64 1 4 1000 330 884,284 96,180

11 10 16 1000 600 594,258 386,206 38 1 8 3000 330 782,644 197,820 65 1 4 3000 330 884,284 96,180

12 10 16 1000 330 606,184 374,280 39 1 8 5000 330 782,644 197,820 66 1 4 5000 330 884,284 96,180

13 20 8 5000 600 627,664 352,800 40 10 8 1000 330 782,644 197,820 67 10 4 1000 330 884,284 96,180

14 10 8 1000 600 627,664 352,800 41 10 8 3000 330 782,644 197,820 68 10 4 3000 330 884,284 96,180

15 10 8 3000 600 627,664 352,800 42 10 8 5000 330 782,644 197,820 69 10 4 5000 330 884,284 96,180

16 10 8 5000 600 627,664 352,800 43 20 8 1000 330 782,644 197,820 70 20 4 1000 330 884,284 96,180

17 20 8 1000 600 627,664 352,800 44 20 8 3000 330 782,644 197,820 71 20 4 3000 330 884,284 96,180

18 20 8 3000 600 627,664 352,800 45 20 8 5000 330 782,644 197,820 72 20 4 5000 330 884,284 96,180

19 1 16 5000 600 629,258 351,206 46 1 4 1000 600 812,464 168,000 73 1 4 1000 200 918,864 61,600

20 1 16 3000 600 643,258 337,206 47 1 4 3000 600 812,464 168,000 74 1 4 3000 200 918,864 61,600

21 1 16 5000 330 650,312 330,152 48 1 4 5000 600 812,464 168,000 75 1 4 5000 200 918,864 61,600

22 1 16 3000 330 651,776 328,688 49 10 4 1000 600 812,464 168,000 76 10 4 1000 200 918,864 61,600

23 1 8 5000 600 652,712 327,752 50 10 4 3000 600 812,464 168,000 77 10 4 3000 200 918,864 61,600

24 1 16 1000 600 657,258 323,206 51 10 4 5000 600 812,464 168,000 78 10 4 5000 200 918,864 61,600

25 1 8 3000 600 659,828 320,636 52 20 4 1000 600 812,464 168,000 79 20 4 1000 200 918,864 61,600

26 1 16 1000 330 664,096 316,368 53 20 4 3000 600 812,464 168,000 80 20 4 3000 200 918,864 61,600

27 1 8 1000 600 672,028 308,436 54 20 4 5000 600 812,464 168,000 81 20 4 5000 200 918,864 61,600
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Figure 4. Percentage of reduction in energy supplied by the power grid operator after applying the optimization model in 

the experimental design. 
 
 

7 Results 

 
The energy consumption of users in a SG within the household during the considered period totals 980,464 kWh, which would 

result in a payment of $3,053.04 to the external energy operator (CFE). However, upon applying the optimization model with the 

proposed values in the experimental design for k = 1, 10, 20; l = 4, 8, 16; B = 1000, 3000, 5000; and lm = 200, 330, 600, a 

reduction in the user’s dependence on energy supplied by CFE (71.39%) was observed. This was coupled with the increased 

utilization of energy provided by the photovoltaic (PV) systems (maximizing benefits through the optimization model) and a 

significant reduction in the payment for electricity service to the external energy operator, dropping from $3,053.04 to $419.21, 

representing an 86.3% reduction in the electricity service payment. 

 

Figure 5 shows the relationship between electricity cost, the number of batteries, and their interaction with the variables l, B, and 

lm. The number of batteries considered (k) was 1, 10, and 20. For the case with a single battery, a decrease in energy cost was 
observed. The highest percentage reduction in this case was 43.3%, while the lowest percentage reduction in energy cost was 

7.6%. It is important to emphasize that the larger the battery storage capacity, the greater the impact on cost reduction and energy 

utilization. For instance, in combination 27 (k=1, B=5000, l=4, lm=200), a 38% reduction was achieved. In contrast, combination 

19 (k=1, B=5000, l=16, lm=600) achieved a 43.3% reduction, equivalent to a payment of $1,731.45. This reduction was due to 

both the increased PV capacity and the higher energy production of the PV systems. This indicates that as energy production 

increases, higher storage capacity and more batteries are needed to store the produced energy. This observation is further validated 

in combination 2 (k=20, B=5000, l=16, lm=600), where an 86.3% reduction was achieved, while combination 3 (k=10, B=5000, 

l=16, lm=600) resulted in an 80.3% reduction. 

 

k l B lm Reduction k l B lm Reduction k l B lm Reduction

1 20 16 3000 600 71.39% 28 10 16 1000 200 25.13% 55 1 8 1000 200 12.57%

2 20 16 5000 600 71.39% 29 10 16 3000 200 25.13% 56 1 8 3000 200 12.57%

3 10 16 5000 600 66.42% 30 10 16 5000 200 25.13% 57 1 8 5000 200 12.57%

4 10 16 3000 600 53.67% 31 20 16 1000 200 25.13% 58 10 8 1000 200 12.57%

5 20 16 1000 600 46.53% 32 20 16 3000 200 25.13% 59 10 8 3000 200 12.57%

6 10 16 3000 330 40.91% 33 20 16 5000 200 25.13% 60 10 8 5000 200 12.57%

7 10 16 5000 330 40.91% 34 1 16 1000 200 25.08% 61 20 8 1000 200 12.57%

8 20 16 1000 330 40.91% 35 1 16 3000 200 25.08% 62 20 8 3000 200 12.57%

9 20 16 3000 330 40.91% 36 1 16 5000 200 25.08% 63 20 8 5000 200 12.57%

10 20 16 5000 330 40.91% 37 1 8 1000 330 20.18% 64 1 4 1000 330 9.81%

11 10 16 1000 600 39.39% 38 1 8 3000 330 20.18% 65 1 4 3000 330 9.81%

12 10 16 1000 330 38.17% 39 1 8 5000 330 20.18% 66 1 4 5000 330 9.81%

13 20 8 5000 600 35.98% 40 10 8 1000 330 20.18% 67 10 4 1000 330 9.81%

14 10 8 1000 600 35.98% 41 10 8 3000 330 20.18% 68 10 4 3000 330 9.81%

15 10 8 3000 600 35.98% 42 10 8 5000 330 20.18% 69 10 4 5000 330 9.81%

16 10 8 5000 600 35.98% 43 20 8 1000 330 20.18% 70 20 4 1000 330 9.81%

17 20 8 1000 600 35.98% 44 20 8 3000 330 20.18% 71 20 4 3000 330 9.81%

18 20 8 3000 600 35.98% 45 20 8 5000 330 20.18% 72 20 4 5000 330 9.81%

19 1 16 5000 600 35.82% 46 1 4 1000 600 17.13% 73 1 4 1000 200 6.28%

20 1 16 3000 600 34.39% 47 1 4 3000 600 17.13% 74 1 4 3000 200 6.28%

21 1 16 5000 330 33.67% 48 1 4 5000 600 17.13% 75 1 4 5000 200 6.28%

22 1 16 3000 330 33.52% 49 10 4 1000 600 17.13% 76 10 4 1000 200 6.28%

23 1 8 5000 600 33.43% 50 10 4 3000 600 17.13% 77 10 4 3000 200 6.28%

24 1 16 1000 600 32.96% 51 10 4 5000 600 17.13% 78 10 4 5000 200 6.28%

25 1 8 3000 600 32.70% 52 20 4 1000 600 17.13% 79 20 4 1000 200 6.28%

26 1 16 1000 330 32.27% 53 20 4 3000 600 17.13% 80 20 4 3000 200 6.28%

27 1 8 1000 600 31.46% 54 20 4 5000 600 17.13% 81 20 4 5000 200 6.28%
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Figure 5. Relationship between energy cost and different combinations of variables l, B, and lm, with varying values of k. 

 

The relationship between electricity cost, the number of PVs, and their interaction with k, B, and lm is shown in Figure 6, where l 

takes values of 4, 8, and 16 PVs. The graph illustrates how, as the number of PVs increases, the energy cost decreases. For instance, 

combination 76 (k=1, B=1000, l=4, lm=200) achieved a 7.6% reduction, combination 53 (k=1, B=1000, l=8, lm=200) achieved 

a 20.7% reduction, and combination 26 (k=1, B=1000, l=16, lm=200) achieved a 39% reduction, which would correspond to 
payments of $2,821.24, $2,420.85, and $1,862.54, respectively. 

 

 
Figure 6. Relationship between energy cost and different combinations of variables k, B, and lm, with varying values of l. 

 

Although the number of PVs has an impact, it can also be observed that as the energy production capacity of the PVs (lm) increases, 

better results are obtained in cost reduction, with reductions continuing to decrease as k and B increase. This assertion is supported 
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by combination 2 (k=20, B=5000, l=16, lm=600) and combination 17 (k=20, B=5000, l=16, lm=200), where changing the value 

of lm alone resulted in a reduction of 86.3% and 43.5%, respectively, justifying that aside from the number of panels, lm plays a 

crucial role in achieving a significant impact. 
 

 
Figure 7. Relationship between energy cost and different combinations of variables k, l, and B, with varying values of lm. 

 

Figure 7 illustrates the relationship between energy cost, the energy production capacity of PVs (lm), and their interaction with k, 

l, and B. When lm is low, the next most impactful factor is l, followed by k, and finally B. This assertion can be validated with 

combinations 31, 32, and 33, where k=20, l=16, and lm=200, with B varying (1000, 3000, and 5000). In all combinations, a 43.5% 

reduction was achieved, corresponding to a payment of $1,725.45 for the energy service.. 

 

 
Figure 8. Relationship between energy cost and different combinations of variables k, l, and lm, with varying values of B. 
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When lm is high, and the maximum values of k and lm are maintained, the value of B does not have a significant impact between 

the medium value of 3000 Ah and the highest value of 5000 Ah, resulting in a reduction of 86.3%. However, when B is at the 

minimum value of 1000 Ah, the reduction is 56.2%. This leads to the conclusion that the impact on energy cost is primarily 

dependent on 1) lm, 2) B, and 3) k. 

 

Figure 8 represents the relationship between energy cost, battery capacity (B), and its interaction with k, l, and lm. The best results 

obtained during the experimentation correspond to cases where 1) lm is high, followed by l, and finally k. This can be verified 

with combinations 1, 2, and 5, which demonstrate that as the value of B increases, the percentage of cost reduction also increases, 
whereas when B is lower, the reduction percentage decreases. In the case of combinations 1 and 2, a reduction of 86.3% was 

achieved, while combination 5 resulted in a reduction of 56.2%. In monetary terms, this corresponds to payments of $419.21 and 

$1,336.33, respectively. 

 

In the experimentation presented in the article, the application of HOMENERGY-OPT is evaluated under different scenarios, 

considering each of the constraints to ensure optimal operation. The first constraint ensures that the energy produced, stored, and 

supplied by CFE is sufficient to meet the demand. Constraints 2 to 5 focus on the energy produced by PV systems, ensuring that 

the total energy is fully distributed among demand, storage, and surplus (Eq. 7), that ℎ𝑙𝑗
𝑑  matches the considered value of ℎ𝑗

𝑑 (Eq. 

8), that ℎ𝑗
𝑎 corresponds to ℎ𝑙𝑗

𝑎   (Eq. 9), and that ℎ𝑗
𝑎 corresponds to ℎ′𝑘𝑗

𝑎 . Constraints 6 to 10 focus on energy storage in k. Equation 

11 establishes that 𝑎𝑗
𝑑  must be equal to 𝑎𝑘𝑗

𝑑 , while Equation 12 states that 𝑎𝑘𝑗
𝑎   must not exceed the capacity of B. Equation 13 

ensures that no more energy is extracted than the sum of 𝑎𝑘𝑗
𝑎  and 𝑎𝑘𝑗

𝑑 , thereby preserving the integrity of the storage system. 

Equation 14 guarantees the charge state of each k, considering the energy stored in j and the energy extracted from j to meet 

demand. Equation 15 considers the initial state of each k, taking into account the known initial charge of each B. 

Finally, constraint 11 focuses on the total energy surplus from PV production. It is important to note that, in the conducted 

experimentation, no surplus value is shown. 

 

The validity of the HOMENERGY-OPT is based on the representativeness and adequacy of the data set used in the 

experimentation. To evaluate its performance, a planning horizon of 168 hours (one week) was considered, allowing for the capture 

of variations in residential energy consumption across different periods of the day and week. This interval is widely used in energy 
management studies as it reflects recurring demand patterns without introducing biases from seasonal factors. 

 

Additionally, the data set includes a representative range of electrical devices commonly found in households, such as refrigerators, 

televisions, air conditioners, lighting, and daily-use appliances. The combination of these devices allows for modeling different 

consumption scenarios and assessing the impact of optimization in terms of cost reduction and energy efficiency. Regarding the 

amount of data used, while it is possible to extend the analysis over a longer period, this study aims to demonstrate the feasibility 

and effectiveness of the model under controlled and reproducible conditions. Previous studies on energy demand optimization 

have employed similar-sized data sets to validate efficient management strategies in smart grids (Valencia López, D., (2016), 

Fernández Carrasco, P. (2023) & Jarrín Vinueza, D. S. (2017)). Furthermore, the experimental design considers different 

configurations of energy storage and generation, which allows for evaluating the flexibility and scalability of the model. 

 
Finally, it is worth noting that the HOMENERGY-OPT structure allows for its application to larger data sets without loss of 

accuracy, as its equations and constraints can be adapted to different consumption and energy production scenarios. Therefore, the 

data set considered in this study is sufficient to demonstrate the model's functionality and benefits, ensuring its applicability in 

residential environments within smart grids. 

 

The results obtained allow for analyzing the impact of HOMENERGY-OPT on reducing energy costs and decreasing reliance on 

the external grid. It is observed that the optimal combination of storage and generation significantly contributes to improving 

system efficiency, achieving a substantial reduction in the cost of consumed energy. In this way, the experimentation validates the 

applicability of the model in residential scenarios, demonstrating its ability to optimize energy management in smart grids. 

 

 

8 Conclusions 

 
The development of HOMENERGY-OPT for efficient energy management in smart grids is of great significance, as it has the 

potential to generate a substantial impact on energy efficiency, sustainability, and the profitability of these systems. Some key 

benefits include: 
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• Reduction in system operating costs, improving the economic feasibility of SGs and increasing accessibility 

for a larger number of users. 

• Decreased dependence on the external power grid and more efficient utilization of energy generated by solar 

panels and storage systems, ensuring a lower carbon footprint for the system. 

• Balanced and efficient system operation through optimization of the equilibrium between generated, stored, 

and consumed energy, maximizing the utilization of available resources. 

• Minimization of excess energy, which enhances the economic value of the generated power and creates 
opportunities for additional revenue through the sale of surplus energy. 
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