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Abstract. Nowadays, clusters containing multiple GPU nodes are widely used to execute high-

performance computing applications. Diverse disciplines use these clusters to improve the performance of 

several services that consume high computational resources. The challenge of executing high-performance 

computing applications becomes harder when the applications are executed concurrently and each one of 

them may demand multiple GPU nodes for different periods of time. To tackle this challenge, we propose 

a multi-agent architecture for scheduling multiple services   in a heterogeneous GPU cluster. We provide 

simulation results of our agent-based system utilizing three commonly used scheduling heuristics for 

several configuration settings.  
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1 Introduction 
 

GPU clusters are attracting attention from the parallel and the scientific computing community due to their computing power 

that enables the efficient execution of high-performance computing applications. One of the main challenges for these 

applications is to design efficient implementations capable of fully taking advantage of GPU clusters. In order to tackle this 

challenge, the designed implementations require an efficient scheduling protocol that equitably distributes the workload among 

all GPU nodes in a cluster. 

 

There exists several scheduling protocols for distributing the workload in GPU clusters [23, 21]. In grid environments, multi-

agent scheduling protocols using distributed architectures have been proposed [4, 3] to efficiently utilize computing resources. 

However, to our knowledge, there has not been agent-based scheduling protocol managing clusters containing multiple GPU 

nodes. 

 

In this paper, we propose an agent-based scheduling protocol for scheduling services in a GPU cluster. By using the agent 

paradigm, agents (as autonomous entities) can interact with each other in order to decide the most feasible allocation according 

to the profile of the services and the nodes in the GPU cluster. In addition, based on [11, 9], we implement three commonly used 

scheduling heuristics whose performance evaluation was conducted using simulation. 

 

The structure of the paper is as follows. In Section 2, we describe related work on tasks scheduling in GPU clusters; in Section 

3, we present the agent-based scheduling protocol for scheduling services in a GPU cluster and describes some scheduling 

heuristics; in Section 4, we present the discussion of the simulation results; and finally in Section 5, we give some concluding 

remarks. 
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2 Task scheduling in a GPU cluster 
 

Nowadays, clusters containing multiple GPU nodes are widely used to execute high-performance computing applications. The 

computational power of GPU nodes exceeds the computational power of CPU nodes and this power increases every year. Hence 

the use of GPU clusters is now popular in the scientific com- munity. 

 

Diverse disciplines use these clusters to improve the performance of several services that consume high computational 

resources. For instance, Fan, Qiu, Kaufman, and Yoakum-Stover [5] have implemented a parallel architecture based on the 

lattice Boltzmann model to simulate the dispersion of airborne contaminants. Thibault and Senocak [24] have implemented a 

multi-GPU 3D Naiver- Stokes solver using the CUDA programming model. Micikevicius [16] has pro- posed a multi-GPU 

implementation of the discretization of the wave equation. Schive et al. [19] described a GPU cluster with 16 nodes to conduct 

N-body simulations. More recently, Obrecht, Kuznik, Tourancheau, and Roux [17] presented an implementation of the lattice 

Boltzmann solver for GPU clusters. 

 

One of the main challenges in mananing a GPU cluster is the distribution of tasks among the different nodes of the cluster. The 

problem of finding an optimal feasible solution to allocate T tasks into P processors is NP-hard [2]. 

 

Nevertheless, there exists some research efforts that consider the problem of distributing tasks among all the nodes in a cluster. 

Song and Dongarra [23] proposed to use a multi-level distribution method to allocate data to different heterogeneous nodes 

(either CPU or GPU nodes). The method receives as input a matrix, which is divided into tiles of hybrid size. Then, they use a 

direct acyclic graph to represent the tasks and their relationships. Their distribution protocol distinguishes between small and 

large tasks. Small tasks are assigned to CPU nodes and large tasks are assigned to GPU nodes. Their multi-level distribution 

method is supported by the execution of a runtime system in each node. The runtime system solves data dependencies 

dynamically. Experimentally, Song and Dongarra explored the performance of their distribution protocol using Cholesky and 

QR factorizations. 

 

Shirahata, Sato, and Matsuoka [21] designed a hybrid scheduling mechanism to distribute tasks onto CPU and GPU cores. 

Particularly, they have focused on executing MapReduce tasks in GPU clusters. MapReduce is a programming model for big 

data processing in clusters. Their system receives a MapReduce task that is assigned to a job tracker. In addition, the system 

contains a set of task trackers, which monitor the behaviour of each task and create a profile for each of the received task. Using 

these profiles, the job tracker decides which map task to run on which node (either CPU or GPU). They demonstrated 

experimentally, that their mechanism outperforms the Hadoop scheduling algorithm when running in a 64-node GPU cluster. 

 

Lang  and  Rünger  [14]  propose  to  distribute  the  workload  (resulting  from executing a parallel conjugate gradient method) 

between both CPU and GPU. Ravi et al. [18] considered two strategies for the distribution of work among the nodes of a GPU 

cluster. The first one handles tasks that can be executed   in a single node (either a CPU or GPU node). The second one handles 

tasks that require any number of GPU and/or CPU nodes to be executed. In the first scheme, the challenge of the scheduler is to 

decide on which resource the task should be assigned. In order to assign the task to a resource, the scheduler takes into account 

the relative multi-core and GPU speedups as well as the expected execution times. In the second scheme, the scheduler groups 

the submitted tasks based on the resources requested (e.g., number of GPUs or CPUs), then it sorts the requested tasks in each 

group and assigns the resources according to the order of the submitted tasks. Recently, Wen, Wang, and O’Boyle [25] 

developed a scheduling mechanism that, based on the structure of the OpenCL code, determines at runtime the expected 

execution time of tasks either on CPU or GPU nodes. They consider the speedup prediction and the size of the input data to 

define the scheduling of tasks. 

 

With respect to multi-agent based scheduling mechanisms. Shen, Wang, and Hao [20] have defined the state of the art of agent-

based planning and scheduling mechanisms in manufacturing systems. They have described the advantages of using agent-based 

approaches for tackling the scheduling problem in the manufacturing domain. One of these advantages is that agents’ 

negotiation capabilities help to maximize the efficiency of the scheduling. Take into account this advantage, we propose an 

agent-based scheduling protocol for scheduling high- performance computing applications in GPU clusters. 

 

In this regard, there is a myriad of agent-based scheduling approaches in the context of distributed and parallel processing. For 

instance, Chavez, Moukas, and Maes [4] propose a multi-agent scheduling mechanism for CPU allocation. A central agent 

broadcasts requests to distributed agents, and based on the bids of these agents, the central agent allocates the task to the best 
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option.   Cao et al. [3] implemented a three-layered agent-based resource management in grid computing. In [6], Ghosh, Basu, 

and Das propose a multi-agent system for scheduling tasks supported by game theory. The agent architecture consists of a job 

allocator and node agents. The job allocator and the node agents play a non-cooperative game with incomplete information. In 

the context of Cloud computing, Jung and Sim [12] present an agent-based resource allocation protocol. To allocate resources, 

they take into account both the geographical location of the data center and the current workload.  

 

In this work, we are particularly interested in tasks that can be resolved using a single GPU node in a short period of time. This 

case is interesting when (i) multiple tasks require the use of the cluster at the same time, and (ii) the time in solving the problem 

is crucial. We propose an agent-based architecture to schedule these concurrent jobs across the nodes of a GPU cluster. Now, we 

describe the multi-agent architecture for scheduling high-performance computing applications in GPU clusters. 

 

 

3 Problem  formulation 
 

In this work, we consider tasks that can be executed in a single node; specifically to tasks that can be solved quickly in a GPU 

cluster, but its execution time takes several minutes in a single CPU. We refer to such tasks as small tasks. Given a small task, it 

can be classified as low demand, medium demand or high demand. Later in the description of the multi-agent architecture we 

describe in detail this classification. This approach is interesting when we receive several requests for small tasks in a short 

period. The time response for this requests is crucial, and it is not quick enough when we only consider a CPU. For instance, 

algorithms that use numerical computations for solving linear systems to restore images [15] in real time. Our multi-agent 

architecture considers the problem of scheduling small tasks among the nodes in the GPU cluster. We consider three services 

that can be requested by a user. We assume that we have a sequential and a parallel implementation of each one of the three 

services implemented in each of the workstations of the cluster. 

 

– Matrix-vector Multiplication Let A be a matrix of size n x n and a vector b of size n x 1. A sequential implementation of 

this problem requires approximately O(n2) flops (floating point operations) for large n [7, 13]. We consider a parallel 

implementation using n threads, each one assigned to a GPU core, that performs O(n) flops in each thread. Since the threads 

are concurrent, we outperform the computing of this problem to a computational time proportional O(n). 

– Histogram of a digital image. Computing the histogram of a digital image is useful to enhance such image [8]. Computing 

the histogram of an 8-bit digital gray-scale image I of size n x n using the vector of counters h of size 1 x 256 that represents 

the discrete function of the histogram, requires O(n2) flops. We implement in parallel using n2 concurrent threads of 

execution, reducing the execution time to O(1), unfortunately, sharing the vector h requires a process of synchronization 

between the threads that can consume significant time. 

– Matrix-Matrix Multiplication Let D and B matrices of size n x n. The computing of DB = A requires approximately 2n3 

flops for large n and its sequential complexity is O(n3). With parallelization with n (n2) threads to perform the matrix-matrix 

computation reduce the complexity to O(n2) (O(n)). We implement both cases in our multi-agent architecture. 

 

The GPU cluster contains workstations with heterogeneous architecture. In this paper, we consider three kinds of workstations. 

– A CPU-workstation contains a CPU with eight cores. This workstation is best suitable for low demand tasks. 

– A Quadro-GPU workstation contains a GPU with 256 cores. This workstation is best suitable for medium demand tasks. 

– A Tesla-GPU workstation contains a GPU with 2096 cores. This workstation is best suitable for high demand tasks. 

 

Let W1, W2, … , Wm be a set of n heterogeneous connected workstations, each one with different CPU or GPU capabilities, and let  
T1, T2,…, Tn be a set of n small tasks, that can be allocated to one of the workstations Wi. Each task Ti has an starting time 

startTi, an estimated sequential execution time executionTi, and a deadline to execution deadline Ti. If a task Ti is not allocated 

before the deadlineTi units of time after startTi, the task Ti is aborted. Note that a workstation Wi is unavailable if it is serving a 

task Tj; otherwise, the workstation is idle. The problem consists in assign the maximum number of requests to the workstations, 

minimizing the waiting time of each one of such requests. 
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3.1. Multi-agent architecture  

 

To allocate efficiently the set of small tasks in the GPU cluster, we propose a multi-agent architecture that provides simple 

scheduling strategies. In our architecture, we focus on small tasks. Figure 1 illustrates our agent architecture Multiagent-GPU. 

 

The multi-agent architecture Multiagent-GPU consists of three type of agents: Job agents, Node agents, and Server agents. 

 

Job agent is assigned to a specific small task represented by a job Ti in the system. The job agent communicates with the server 

agent requesting the allocation of task Ti. The job agent defines a profile of the task Ti. The profile considers the sequential 

execution time, the deadline and the time of arrival of the Ti. The job agent classifies the task into one of three possible 

categories. The small task Ti is low demand if a CPU-workstation can satisfy its deadline. The small task Ti is medium demand 

if requires at least a Quadro-GPU workstation to satisfy its deadline. The small task Ti is high demand if it requires at least a 

Tesla-GPU workstation to satisfy its deadline. Note that it is possible that  

 

 
 

Fig. 1. Multi-agent architecture. 

 

the same task takes different classifications according to the parameters of the small task. For instance, a matrix-matrix 

multiplication can be classified as low demand if the dimension of matrices is 10 × 10, as medium demand, if the dimension of 

matrices is 100 × 100, and as high demand if the dimension of matrices is 1000 × 1000. 

 

Server agent represents to the server in the architecture Multiagent-GPU. The server agent receives the request of a service Ti 

through a job agent. Then, the server agent coordinates with the node agents to determine the best suitable allocation  of  Ti   

according  to  a  particular  scheduling  policy  to  distribute  the request  of  the  job  agent  representing  the  task  Ti  to  an  

available  workstation. Finally, the server agent coordinates with the job agent to supervise the job Ti during its timeline in the 

system. The server agent contains a set of scheduling policies to determine the allocation. Later in this section we describe in 

detail these scheduling policies. 

 

Node agent represents a workstation node Wi and computes the availability of Wj to the system requirements. The node agent 

informs to the server agent about its availability. Without loss of generality, we assume that each j serves at most to one service 

at the same time. Note that the cluster is heterogeneous, i.e., there exists different architectures, some of them more powerful 

than others. The node agent gathers information about the features of its associated work- station. The node agent estimates the 

time of execution of the requested task Ti according to the profile of such task. When the server agent requests for a service, the 

node agent returns the status of the represented workstation (available or unavailable). In case that the workstation Wi is 

unavailable, the node agent returns the estimated waiting time to the job agent.  

 



Trejo-Sánchez et al. / A multi-agent architecture for scheduling of high performance services in a GPU 

cluster. IJCOPI Vol. 9, No. 1, Jan-April 2018, pp. 12-22. EDITADA. ISSN: 2007-1558. 

 

 

 

16 

 

 

Now, we describe in detail the protocol of interaction of the agents for the architecture Multiagent-GPU. 

 

 

 

 

 

3.2. Interaction of agents  

 

The Figure 2 shows the interaction protocol for the architecture Multi-GPU- Agent 

 

 

Fig. 2. Multi-agent communication. 

 

When a user requests for a small task Ti service, the user indicates a deadline to get that service. A job agent is assigned to 

represent Ti. Since there is a set of valid requests, the job agent determines if Ti is a valid small task. If so, the job agent delivers 

its request to the server agent.  

 

The server agent receives the request from the job agent. Then the server agent broadcast the request to the set of node agents to 

determine which the most suitable workstation to accomplish the request is. The server agent considers a set of online 

scheduling heuristics to deliver the request to a subset of node agents. After receiving the response of the subset of node agents, 

the server agents  allocates  the  task  Ti  to  the  best  suitable  workstation  according  to  their responses. In case there no 

workstation can serve the request, the task Ti is aborted.  

 

When the node agent, representing the workstation Wj receives a request from the server agent, it first responses with the 

availability of Wj. If Wj is busy with a previous service, the node agent responds to the server agent with waiting time for the 

requesting job. In case Wj is available, the waiting time is zero. Afterward, the server agent allocates the small task T i to the 

selected workstation Wj. 

 

As mentioned earlier, the server agent performs a set of scheduling policies to the decision making of the small task allocation 

among the workstations. Now we describe such scheduling policies of our Multiagent-GPU architecture. 
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3.3. Scheduling policies  

 

We implement a total of three scheduling policies to determine the destination of the small tasks requested by users. We 

consider the following heuristics based in [11, 9].  

 

In the round-robin heuristic. This heuristic consists in allocating the small tasks cyclically as they are arriving at the system. In 

this heuristic the workstation W1 receives the small task, workstation W2 receives small task T2,…, workstation Wm receives task 

Tm, workstation Wm+1 receives task Tm+1, and so forth. In a perfect round robin, if there exist n small task and m workstations, 

each workstation perform n/m tasks. 

 

The Pseudocode 1 presents the round robin heuristic for the Multi-GPU-Agent. In Line 10 of Pseudocode 1 the function 

Execution_Time(Ti) is computed by the node agent assigned in the workstation Wj, and computes the time that Wj requires to 

perform the small task Ti considering the information of Ti and the resources available in Wj. 

In  the best-fit heuristic when  a  small  task  Ti arrives,  it  is  assigned  to  such workstation  Wj  that offers the best option when 

receiving the requesting task. To determine the workstation Wj  we use the contract net [22] protocol to the decision making. The 

server agent broadcast the request to node agents. The node agents respond with their bids, and with the responses, the server 

agent decides to allocate the task to the workstation with the best fit. 
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Now in Pseudocode 2 and Pseudocode 3 we presents the best-fit heuristic for the server agent and the node agents respectively. 

 

In the First come first serve heuristic the workstations are ordered according to its availability in a list. When a new task Ti 

arrives, that task is allocated to the workstation Wj in the front of the list. Once the task Ti is allocated to the workstation Wj,  

such  workstation  is  removed  from  the  list  until  finishing  the processing of Ti. Afterward, Wj is added at the end of the list. 

This heuristic allows that the faster workstations be more available than the slower ones. 
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Now, in Pseudocode 4 we present the pseudocode of the first come first serve heuristic. Note that in contrast with the round 

robin heuristic, on the first come first serve heuristic, the workstations enqueue to the queue of workstations according to their 

performance, and not as a cyclic loop. In the next section, we perform simulations to determine performance analysis of the 

scheduling policies. 

 

 

4 Discussion and results 

 
Assume that there exist 20 workstations with heterogeneous capabilities. Six CPU-workstations, eight Quadro-workstations and 

six TESLA-workstations. We perform the simulation of different service requests with different parameters: Matrix-vector 

multiplication, the histogram of a digital image, and Matrix- Matrix multiplication. 

 

We assume that the speed-up of the Matrix-vector multiplication is approximate S/p, where S ϵ O(n2) is the sequential execution 

time, n is the size of the vector, and p represents the number of cores used during the computing of such service. In the case of 

the histogram of a digital image the speed up is S/p + s where S ϵ O(n2) is the sequential execution time, the image I is of size n 

x n, and p is  the number of cores used, and s is the synchronization factor to implement the histogram of a digital image. The 

speed-up of matrix-matrix multiplication of n×n is s/p, where S ϵ O(N3) is the sequential time and p is the number of processors. 

 

We compare the throughput of the three policies by performing ten simulations. Each simulation considers two hours of service 

requests. We measure the average waiting time per service (Figure 3), the average execution time per service (Figure 4), and the 

number of accepted tasks for each one of the ten simulations (Figure 5). The blue plot represents the round robin heuristic, the 

red plot represents the best-fit heuristic, and the yellow plot represents the first come first serve heuristic. 
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As illustrated with Figure 3, Figure 4 and Figure 5, the best performing is obtained with the best fit heuristic, whereas both, the 

round robin heuristic and the first come first serve heuristic perform similarly. Unfortunately, we noted that the number of tasks 

assigned is unbalanced with the best fit heuristic, since the scheduler assigns the most of the tasks to the most powerful 

workstations, whereas the remaining workstations are idle the most of the simulation time. 

 

 

5 Concluding remarks and future work 
 

We present a multi-agent architecture for task scheduling in a GPU cluster. Three kinds of agents are involved in the scheduling 

policy. The server agent receives the request from the tasks; these tasks are represented by a job agent, and the workstation are 

represented by node agents. We perform three scheduling  

 

 
 

Fig. 3. Average waiting time during ten simulations of two hours each one. 

 

 

 

 
Fig. 4. Average execution time during ten simulations of two hours each one. 
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Fig. 5. Number of accepted tasks during ten simulations of two hours each one. 

 

policies. The best performance is obtained with the best fit heuristic, but unfortunately, the amount of work assigned to each 

workstation is unbalanced. To our knowledge, our work is one of the first agent-based approaches for scheduling in a GPU 

cluster. 

 

As future work, we will implement more sophisticated scheduling strategies that involve game theory in the negotiation between 

agents. Additionally, we will also consider large task as input request services. Such strategies will dis- tribute the tasks in such 

a way that the allocation is balanced among all the workstations. 
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