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Abstract. This study investigates the application of deep 

learning algorithms, specifically SSD and YOLOv7, for 

pipeline damage detection using remote sensing technology. 

The research evaluates the performance of both algorithms in 

terms of precision, recall, mean average precision (mAP), and 

F1 score, using a dataset collected through UAV-based 

imagery. SSD demonstrated superior precision but slightly 

lower recall, while YOLOv7 excelled in recall and overall 

detection ability, making it more suitable for comprehensive 

inspections where missing defects is critical. The findings 

emphasize the importance of context-specific algorithm 

selection, with SSD being ideal for real-time monitoring 

systems and YOLOv7 for applications requiring high recall. 

Furthermore, the study explores potential improvements to 

SSD, including transfer learning, data augmentation, and 

advanced feature extraction techniques, to enhance recall and 

overall performance. The results offer valuable insights for 

optimizing pipeline damage detection in varying operational 

environments. These findings have significant applications in 

oil and gas transportation, water distribution networks, and 

industrial pipeline monitoring, where early damage detection is 

crucial for preventing leaks and structural failures. 
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1  Introductıon 

 

Pipelines, widely used in industrial applications, are essential components of modern urban infrastructure. 

They ensure the safe and efficient transportation of oil, gas, chemicals, and other fluid resources [1]. 

However, pipelines face significant challenges to their structural integrity, including mechanical stress, 
corrosion, temperature fluctuations, and various environmental factors [2]. One of the most common and 

critical issues is the formation of cracks on their internal and external surfaces [3]. If not detected promptly, 

these cracks can lead to leaks, causing environmental pollution, operational disruptions, and substantial 

economic losses [4]. Leaks not only result in product loss and increased maintenance costs but also reduce 

system efficiency. Therefore, early and accurate detection of pipeline damage is crucial for maintaining 

safety and optimizing maintenance strategies in large-scale pipeline networks [5]. 

 

Traditional pipeline monitoring methods, such as visual inspection, ultrasonic testing, magnetic particle 

testing, and radiographic inspection, are widely used [6]. However, these approaches are often costly, time-

intensive, and potentially hazardous to human safety [7]. In contrast, remote sensing has emerged as a 

powerful alternative for monitoring large-scale infrastructures. By leveraging advanced sensors, it enables 
data collection from a distance, offering a safer and more efficient solution [8]. The integration of remote 

sensing technologies with unmanned aerial vehicles (UAVs) has revolutionized pipeline inspection [9]. 

UAVs equipped with high-resolution cameras, infrared sensors, and LIDAR systems provide fast, cost-

effective, and flexible surveillance options [10]. These aerial platforms can access hard-to-reach areas, 

minimize human involvement in hazardous environments, and deliver accurate data for damage detection 
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and analysis [11]. However, challenges remain, such as harsh weather conditions, variable lighting, and the 

complex geometries of pipelines, which can affect data quality. 

 

Recent advancements in computer vision have driven the demand for automated detection and tracking 

solutions in industrial systems [12]. In this context, machine learning-based approaches, particularly object 

detection algorithms, have become powerful alternatives to traditional methods [13]. Convolutional Neural 

Networks (CNN)-based models, trained on large datasets, have significantly improved object detection 

performance, offering robust alternatives to conventional techniques [14]. Among these, the Single Shot 
Multibox Detector (SSD) is a widely recognized algorithm for real-time object detection [15]. SSD achieves 

an impressive balance between accuracy and speed by performing object localization and classification 

within a single network structure, detecting objects at varying scales, and processing high-quality images 

quickly [16]. Similarly, the You Only Look Once (YOLO) algorithm series approaches object detection as 

a regression problem, delivering high speed and efficiency [17]. Like SSD, YOLO has become an 

indispensable solution for real-time applications. 

 

Recent advancements in UAV technology and deep learning-based object detection have significantly 

enhanced automated inspection capabilities in industrial applications [18, 19]. UAVs have evolved from 

simple remote-controlled aerial devices to highly autonomous platforms equipped with advanced sensors, 

real-time processing capabilities, and AI-driven analytics [20, 21]. The use of UAVs in structural monitoring 
has expanded across various domains, including power line inspections, structural monitoring, and city 

management, due to their ability to quickly gather high-resolution imagery with minimal operational costs 

[22-25]. In the field of object detection, CNN-based models such as SSD and YOLO have revolutionized 

real-time damage identification. SSD's multi-resolution feature maps enable it to detect objects of varying 

sizes with high accuracy, making it particularly effective for applications requiring a balance between speed 

and precision [26]. On the other hand, YOLO’s single-pass detection architecture allows it to process images 

significantly faster, making it ideal for real-time applications where rapid decision-making is critical [27, 

28]. While both algorithms have been widely adopted for tasks such as autonomous driving and surveillance, 

their implementation in UAV-assisted pipeline monitoring remains an area of ongoing research. This study 

builds upon these technological advancements to evaluate and optimize their performance in real-world 

damage detection scenarios, addressing the challenges posed by diverse environmental conditions and 
pipeline geometries. 

 

This study focuses exclusively on external pipeline damage detection using UAV-based deep learning 

models, as internal inspection requires alternative techniques such as ultrasonic or magnetic testing. The 

study aims to compare the performance of SSD and YOLOv7 algorithms in terms of accuracy, speed, and 

ease of implementation, proposing a solution suitable for maintenance processes in industrial environments. 

Furthermore, the behaviors of both algorithms are analyzed under varying conditions, such as different 

pipeline types, environmental factors, and damage sizes. The findings of this study provide insights into the 

advantages of each algorithm, not only for pipeline monitoring but also for broader industrial applications. 

 

 

2 Experimental Procedures 
 

Single-stage object detection algorithms, primarily categorized as You Only Look Once (YOLO) and Single 

Shot Multibox Detector (SSD), provide fast and efficient solutions for object detection tasks [29]. SSD, 

while faster than two-stage approaches such as Faster R-CNN, generally offers higher detection accuracy 

compared to YOLO [30]. A key advantage of SSD lies in its ability to detect both large and small objects 

using feature maps at different resolutions. Lower-resolution feature maps from the network’s deeper layers 

are optimized for detecting large objects, while higher-resolution feature maps from earlier layers target 

smaller objects [31]. However, SSD may exhibit lower performance in detecting small objects compared to 
methods like Faster R-CNN. The popularity of SSD in real-time applications stems from its fast computation 

and low latency. By leveraging anchor boxes and a multi-layer detection mechanism, SSD effectively adapts 

to objects of various sizes, making it versatile for applications ranging from autonomous vehicles to security 

systems and industrial automation [32]. While SSD prioritizes a balance between speed and accuracy, 

YOLO focuses on achieving higher speed at the cost of slightly reduced accuracy. SSD’s ability to strike a 
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balance between these factors makes it one of the most suitable algorithms for object detection in diverse 

scenarios. 

 

2.1 SSD Network Architecture 

 
The SSD model introduces an innovative approach to object detection, built upon three main components: 

the backbone network, original bounding box generation, and convolution-based prediction layers. This 

architecture positions SSD as a leading algorithm in terms of both speed and accuracy. The backbone 

network consists of a base network and additional feature extraction layers. The process begins by feeding 

the input image into a deep neural network, which extracts fundamental features and prepares them for 

object detection. Next, feature maps at multiple scales are generated to design default bounding boxes. These 

default boxes play a critical role in object classification and location estimation [33]. For each position on 

the feature maps, the algorithm predicts the coordinates of the bounding box and the associated object class. 

The final stage employs the Non-Maximum Suppression (NMS) algorithm. When multiple bounding boxes 
are predicted for the same object, NMS filters out boxes with low confidence scores, retaining only the most 

reliable prediction. This process eliminates redundancies and enhances detection accuracy, making SSD a 

robust choice for object detection in computer vision applications. 

 

As illustrated in Figure 1, the SSD network architecture comprises three main components: the backbone 

network, original bounding box generation, and convolution-based prediction layers. The base network is 

typically a pre-trained convolutional neural network that facilitates high-level feature extraction from 

images. A widely used backbone in SSD is VGG-16 (Visual Geometry Group), a deep learning model 

known for its effective convolutional and max-pooling layers. Each layer of VGG-16 extracts different 

features from the input image. However, the fully connected layers of VGG-16 are unsuitable for SSD’s 

requirements, so they are replaced with additional convolutional layers. These added layers generate feature 

maps at various resolutions, enabling the detection of objects of different sizes. For example, high-resolution 
feature maps are optimized for detecting small objects, while low-resolution feature maps target larger ones. 

SSD calculates object classifications and corresponding bounding boxes at each position by adding 

dedicated prediction layers to each feature map. This flexible design enables SSD to detect objects of various 

sizes with both high speed and accuracy, making it a powerful and versatile model in the field of object 

detection. 

 

 
Figure 1. SSD network architecture. 

 

2.2 VGG-16 
 

VGG-16 is a Convolutional Neural Network (CNN) with 16 learnable weight layers. Figure 2 illustrates the 

VGG-16 network structure, which consists of 13 convolutional layers and 3 fully connected layers. The 

model progressively increases filter depth, allowing for hierarchical feature extraction, which enhances 

detection accuracy. [34–36]. Since pooling layers do not require learnable parameters, they are excluded 

from the weight count. The model accepts input tensors of size 224x224x3 and performs small-scale but 

highly efficient feature extraction using 3x3 convolutional filters across all convolutional layers. Max-
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pooling operations are carried out using 2x2 filters with a fixed stride. The architecture progressively 

increases the number of filters in the convolutional layers, starting with 64 and scaling up to 128, 256, and 

512, respectively. Following the convolutional layers are three fully connected layers consisting of 4096, 

4096, and 1000 units, respectively [37, 38]. The output layer utilizes a softmax activation function to 

calculate the probability of the input image belonging to various classes, enabling effective classification. 

One of the main reasons VGG-16 is favored in this study is its simple yet robust architecture, which allows 

for easy adaptation to different datasets using methods such as transfer learning. The consistent design of 

its 3x3 filters enables detailed feature extraction for each class, making it particularly effective during 
training. This compact yet powerful structure has made VGG-16 a popular choice for a wide range of 

computer vision tasks. 

 

2.3 Loss Function 
 

The SSD model is a highly effective deep learning approach that optimizes both classification accuracy and 

location estimation precision for object detection tasks. Its loss function combines two components, 

classification loss and location loss, to enhance object detection performance and minimize errors [39]. The 

combined loss function is defined as in Equation 1: 
 

 𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁
 (𝐿𝑐𝑙𝑠(𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)) (1) 

 

where N represents the number of positive predefined boxes, and α is a weighting coefficient that adjusts 

the relative importance of location loss. 

 

The classification loss measures how accurately the model assigns predefined boxes to their correct classes. 

These predefined boxes are categorized as either containing objects (Pos) or representing the background 

(Neg). The classification loss is calculated as shown in Equation 2: 

 

 𝐿𝑐𝑙𝑠(𝑥, 𝑐) = −∑𝑖∈𝑃𝑜𝑠𝑥𝑖𝑗 log(𝑐𝑖) − ∑𝑖∈𝑁𝑒𝑔log (𝑐0) (2) 

 

where xᵢⱼ is an indicator variable that specifies whether a default box belongs to the jᵗʰ class. cᵢ represents 

the predicted class probabilities for each box, and c₀ is the probability of a box being classified as 

background. 

 

The location loss evaluates how well the predicted bounding boxes overlap with the ground truth boxes. 

The difference between the predicted box (lᵢ) and the ground truth box (gᵢ) is typically calculated using the 

smoothL1 function as shown in Equation 3: 

 

 𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) = ∑𝑖∈𝑃𝑜𝑠𝑥𝑖𝑗𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖 − 𝑔𝑖) (3) 

 

where lᵢ is the predicted location of the predefined box, and gᵢ is the ground truth location of the object. The 

smoothL1 function is designed to balance the impact of small and large errors, reducing the influence of 

outliers while ensuring precise learning of small errors. It is defined as indicated in Equation 4: 

 

 𝑠𝑚𝑜𝑜𝑜𝑡ℎ𝐿1(𝑧) = {
0.5𝑧2, if  |z| < 1

|z| − 0.5, otherwise
 (4) 

 
This structure helps limit the effect of large errors on the model while ensuring that smaller errors are 

handled with precision. 

 

In the SSD model, the number of negative examples often exceeds the number of positive examples, which 

can lead to imbalanced learning during classification. To address this, the Hard Negative Mining technique 

is applied [40]. This technique selects negative examples with the highest classification loss and balances 

their number relative to positive examples by maintaining a fixed ratio. By focusing on the most challenging 

negative examples, Hard Negative Mining improves classification accuracy and mitigates imbalance. 
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Figure 2. VGG-16’s network structure. 

 

2.4 Hardware Components and Operational Stages 
 

The UAV used in this study is a quadcopter equipped with various MEMS sensors and artificial intelligence 

integration. It is capable of autonomous flight, executing its designated mission, and returning to its initial 
position, with a total flight time of 40 minutes. The drone captures images using an integrated camera sensor, 

which are processed by an onboard Raspberry Pi 5 computer before being transmitted to the ground station 

as video data. Additionally, a ground-based pilot remains in control to manually operate the UAV in case 

of unexpected scenarios, such as adverse weather conditions. Figure 3 illustrates a simulation of the 

workflow diagram. Diversity in the dataset plays a critical role in enhancing detection accuracy during 

algorithm training. A total of 2170 images were used for training and evaluation. These images were sourced 

from UAV-based aerial footage and publicly available datasets to ensure diversity in pipeline types, damage 

scenarios, and environmental conditions. Moreover, 70% of the dataset was collected from web-based 

sources, while 30% was derived from video footage. The dataset encompasses images of pipelines from 

various geographical regions and includes different pipe types. Efforts were made to capture variability in 

dimensions (e.g., thickness or thinness), color, angles, and altitudes. Furthermore, the inclusion of images 
captured under different climatic conditions enriched the dataset and improved the algorithm’s robustness. 
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Figure 3. Workflow diagram. 

 

The drone's flight path was preprogrammed using GPS and mapping software. Before takeoff, essential pre-

flight checks were conducted, including battery level verification and GPS/IMU sensor calibration. Once 

airborne, the drone followed its predefined path along the pipeline, capturing images via its camera sensor. 

These images were processed onboard by the Raspberry Pi, where SSD and YOLOv7 algorithms identified 

potential pipeline damage. The detected damage areas were recorded in labeled data format. The 

information, along with the associated images, was compressed and transmitted to the ground station via 

the drone’s WiFi module. The ground station software analyzed this data in real time, marking damaged 

pipeline areas. A detailed report, including specific information about each detected issue, was generated 
and shared with the user. To enhance algorithm performance, the model was periodically retrained with new 

field data. Before each flight, sensor calibration was repeated to maintain accuracy. The ground station, 

powered by an RTX 4070 GPU, significantly accelerated retraining and optimization processes, enabling 

efficient data analysis and faster model refinement. 

 

 

3 Results 
 
Examples of pipeline damage detection using SSD and YOLOv7 algorithms are shown in Figure 4. The 

performance of these algorithms, integrated with remote sensing technology, was evaluated using precision, 

recall, mean average precision (mAP), and F1 score. To ensure consistency and reliability, all experiments 

were conducted five times, and the reported results represent the average values obtained across these 

iterations. This approach minimizes the impact of any single anomalous result and provides a more robust 

evaluation of the models' performance. Figure 5 presents a comparative analysis of SSD and YOLOv7 

performance metrics, demonstrating their strengths and trade-offs in pipeline damage detection. The SSD 

algorithm achieved a precision value of 0.719, indicating a relatively low false positive rate and reliable 
identification of damaged pipeline areas. However, its recall value of 0.656 highlights a slightly diminished 

ability to detect all instances of damage within the dataset. The mAP was calculated at 0.678, reflecting the 

overall effectiveness of SSD in accurately detecting and classifying pipeline damage. The F1 score, which 

balances precision and recall, was 0.686, suggesting a good trade-off between identifying actual damages 

and minimizing false alarms. On the other hand, the YOLOv7 algorithm achieved a precision value of 0.703, 

which, while slightly lower than SSD, still demonstrated strong accuracy in damage identification. Its recall 

value of 0.677 was slightly higher than SSD, indicating a better ability to detect more instances of pipeline 

damage. YOLOv7’s mAP reached 0.685, representing a modest improvement in overall detection 

performance. The algorithm also achieved a higher F1 score of 0.690, indicating better overall consistency 

in balancing precision and recall. 
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Figure 4. Some visual examples of detections made with SSD. 

 

A detailed examination of the metrics reveals that while SSD offers a slight advantage in precision, YOLOv7 

outperforms SSD in recall and F1 score, making it better suited for applications where detecting all instances 

of damage is critical. Additionally, YOLOv7’s higher mAP value demonstrates its superior ability to 
accurately locate damage while maintaining robust classification performance. The SSD algorithm stands 

out for its speed and simplicity, driven by its single-shot architecture, which enables real-time damage 

detection. This makes it a valuable option for scenarios requiring quick decision-making. However, the 

trade-off between speed and accuracy is evident in its recall value, which may limit its use in environments 

where even small, undetected damages could lead to serious consequences, such as pipeline failures or 

environmental hazards. The YOLOv7 algorithm, while slightly slower in practice, benefits from a more 

sophisticated network design that enhances recall and ensures more consistent performance. This makes 

YOLOv7 a more reliable choice for applications requiring high recall, such as detecting subtle or rare 

pipeline damages. However, SSD’s slightly higher precision value highlights its effectiveness in reducing 

false alarms, which is crucial for minimizing unnecessary operational downtime caused by false positives. 

 
Moreover, to quantify the speed difference between SSD and YOLOv7, inference time measurements were 

performed. SSD achieved an average inference time of 18.5 ms per image, while YOLOv7 required 22.3 

ms per image. These results reaffirm SSD’s suitability for real-time monitoring applications where speed is 

a critical factor. These results suggest that the choice between SSD and YOLOv7 depends on the specific 

requirements of the application. For scenarios prioritizing speed and minimizing false positives, SSD offers 

a suitable solution. Conversely, for applications where maximizing detection and recall is essential, 

YOLOv7 provides a more reliable alternative. Both algorithms demonstrate strong potential for real-world 

pipeline damage detection, with their strengths catering to different operational needs. Ultimately, YOLOv7 

outperforms SSD in recall and overall detection reliability, making it the preferred choice for applications 
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where minimizing missed detections is critical. The model’s superior F1-score and mAP demonstrate its 

effectiveness in detecting a broad range of pipeline damages under varying conditions. 

 

 
Figure 5. Comparison of detection performances of SSD and YOLOv7 algorithms. 

 

 

4 Discussion and Conclusion 
 

The findings of this research emphasize the critical importance of selecting algorithms based on the specific 

operational context. The SSD algorithm excels in precision and computational efficiency, making it ideal 

for real-time monitoring systems where speed and low latency are paramount. This makes SSD particularly 

valuable in scenarios requiring rapid decision-making, such as monitoring pipelines in high-risk 

environments or during emergencies. However, its lower recall suggests potential limitations in detecting 

subtle or rare defects, which could lead to missed damages in critical applications. On the other hand, 

YOLOv7 demonstrates superior recall and balanced overall performance metrics, making it a more suitable 

choice for comprehensive inspections where the risk of missing a defect is unacceptable. Its higher F1 score 

and mAP underline its capability to maintain consistency in detecting and classifying a broad range of 
damages, even in complex or diverse environmental conditions. While YOLOv7’s slightly lower speed may 

not match SSD for real-time applications, its advanced network architecture offers a more reliable solution 

for detailed pipeline assessments. 

 

Future research could explore hybrid approaches that combine the strengths of SSD and YOLOv7 to 

optimize both precision and recall. A hybrid framework might leverage SSD’s rapid detection capabilities 

for initial screening while utilizing YOLOv7 for detailed analysis of areas flagged as potentially damaged. 

Such an approach could provide a balance between speed and thoroughness, ensuring both efficiency and 

reliability in pipeline monitoring systems. Further improvements to the SSD framework could focus on 

addressing its recall limitations through several techniques, including transfer learning, which leverages pre-

trained models on similar datasets to enhance detection capabilities in diverse environments; data 

augmentation, which expands the variety of training datasets by simulating different pipeline materials, 
damage types, lighting conditions, and weather scenarios to improve robustness; and advanced feature 

extraction, which incorporates modern neural network designs, such as attention mechanisms or 

transformer-based modules, to enhance SSD’s ability to detect small and subtle defects. Expanding the 

dataset used in this research to include more diverse pipeline conditions, such as different materials, damage 

types, geographical regions, and environmental factors, could provide a more comprehensive evaluation of 

both algorithms. Additionally, conducting field trials in real-world conditions would help validate the 

algorithms’ performance beyond controlled experimental settings. 

 

The integration of SSD and YOLOv7 into UAV-based systems underscores their significance for real-time 

pipeline monitoring. Beyond this application, these technologies hold great potential for broader use in 

industrial infrastructure inspections, bridge safety evaluations, and environmental monitoring—domains 
where balancing detection accuracy and processing speed is critical. As automated damage detection 

becomes increasingly vital in infrastructure management, continuous advancements in deep learning 

algorithms are essential. Future developments in object detection, alongside tailored domain-specific 

improvements, could substantially lower maintenance costs, mitigate the risk of catastrophic failures, and 
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enhance the overall safety and reliability of critical infrastructure. By aligning algorithm selection with 

specific operational requirements and exploring hybrid solutions, this research paves the way for more 

efficient and robust automated inspection systems. Additionally, the findings emphasize the importance of 

choosing the right detection model based on application needs. Future studies could investigate hybrid 

approaches that leverage SSD’s computational efficiency with YOLOv7’s superior recall, further refining 

pipeline monitoring solutions for practical deployment. 

 

 
Data Availability 

 

The dataset used in this study is available upon request from the corresponding author. Due to licensing 

agreements, direct public access is restricted. 
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