
Enhanced Walksat with Finite Learning Automata For

MAX-SAT

N. Bouhmala ∗

Vestfold University College

Norway

Abstract

Researchers in artificial intelligence usually adopt the constraint satisfaction problem and
the Satisfiability paradigms as their preferred methods when solving various real worlds deci-
sion making problems. Local search algorithms used to tackle different optimization problems
that arise in various fields aim at finding a tactical interplay between diversification and inten-
sification to overcome local optimality while the time consumption should remain acceptable.
The Walksat algorithm for the Maximum Satisfiability Problem (MAX-SAT) is considered
to be the main skeleton underlying almost all local search algorithms for MAX-SAT. This
paper introduces an enhanced variant of Walksat using Finite Learning Automata. A bench-
mark composed of industrial and random instances is used to compare the effectiveness of the
proposed algorithm against state-of-the-art algorithms.

Keywords: Walksat, Learning automata, Combinatorial optimization.

1 Introduction

The field of optimization has found numerous applications in science, engineering, economics, fi-
nance, and risk management. The domain of combinatorial optimization refers to optimization
problems where the search space (i.e the set of all feasible solutions) is discrete. Combinatorial
Optimization problems are mathematically modeled by introducing variables reflecting the quan-
tities to be determined, a set of constraints, and a cost function whose numerical values expresses
the quality of a given solution so that different solutions can be compared and the one having
the highest/lowest function value could be selected. Efficient solvers for large scales optimization
problems are eagerly sought as such problems arise frequently in diverse areas ranging from pro-
duction scheduling, routing problems, data mining and military operations to name just a few.
Large scale optimization problems are very challenging problems. Most of the recently developed
optimization algorithms lose their efficiency when the dimensionality of the problems increases.
They are NP-complete problems characterized by large sets of data, constraints and variables. In
addition, the term ’large scale’ is not closely related to the number of variables or constraints. Very
often, problems are classified ’large scale’ even if these numbers are moderate, but involve a certain
structure that makes them hard for current optimization algorithms. Most searches that come up
in large scale optimization occur over spaces that are far too large to be searched exhaustively. One
way to overcome the combinatorial explosion is to give up completeness. Stochastic local search
algorithms (SLS) are techniques which use this strategy and gained popularity in both worlds
whether it is discrete or continuous due to their conceptual simplicity and good performance. The
Walksat algorithm [30] is considered to be the main skeleton underlying almost all SLS algorithms
for MAX-SAT. Although this technique has shown excellent search capabilities when applying to
small or medium sized problems, it still encounter serious challenges when applying to large scale
problems, i.e., problems with several hundreds to thousands of variables. The reasons appear to

∗noureddine.bouhmala@hive.no

© International Journal of Combinatorial Optimization Problems and Informatics,
Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36. ISSN: 2007-1558.

be two-fold. Firstly, the complexity of a problem usually increases with the increasing number
of decision variables, constraints, or objectives (for multi-objective optimization problems). Sec-
ondly, the size of the solution space of the problem also increases exponentially with the number
of decision variables. Because of these two issues, several optimization search techniques tend to
spend most of the time exploring a restricted area of the search space preventing the search to
visit more promising areas, and thus leading to solutions of poor quality. Designing efficient opti-
mization search techniques requires a tactical interplay between diversification and intensification.
The former refers to the ability to explore many different regions of the search space, whereas
the latter refers to the ability to obtain high quality solutions within those regions. In recent
years, bio-inspired algorithms have been used by several researchers for solving various optimiza-
tion problems increasingly. The present paper aims at combining Finite Learning automata with
Walksat in order to improve its performance. The paper is organised as follows. Section 2 ex-
plains the maximum satisfiablity problem. Section 3 present a survey of approaches used to solve
MAX-SAT. Section 4 explains the Walksat algorithm. Section 5 introduces the combination of
learning automata with the Walksat algorithm. Section 6 presents the results of the experiments
while section 7 concludes the paper with future work.

2 The Maximum Satisfiability Problem

The satisfiability problem (SAT) which is known to be NP-complete [9] plays a central role problem
in many applications in the fields of VLSI Computer-Aided design, Computing Theory, Artificial
Intelligence and defence. SAT is an increasingly used paradigm that can model a wide spectrum of
combinatorial optimization problems. It has become an important field of study in both theoritical
and applied computer science. Generally, a SAT problem is defined as follows. A propositional
formula Φ =

∧m

j=1
Cj with m clauses and n Boolean variables is given. Each Boolean variable,

xi, i ∈ {1, . . . , n}, takes one of the two values, True or False . A clause , in turn, is a disjunction
of literals and a literal is a variable or its negation. Each clause Cj has the form:

Cj =





∨

k∈Ij

xk



 ∨





∨

l∈Īj

x̄l



 ,

where Ij , Īj ⊆ {1,n}, I ∩ Īj = ∅, and x̄i denotes the negation of xi. The task is to determine
whether there exists an assignment of values to the variables under which Φ evaluates to True.
Such an assignment, if it exists, is called a satisfying assignment for Φ, and Φ is called satisfiable.
Otherwise, Φ is said to be unsatisfiable. Most SAT solvers use a Conjunctive Normal Form
(CNF) representation of the formula Φ. In CNF, the formula is represented as a conjunction
of clauses, with each clause being a disjunction of literals. The maximum satisfiability problem
is the optimization variant of SAT. More formally, let wi denote the weight of clause Ci. Then
equation 1 is the objective function to be maximized, with S(Ci) is equal to 1 when Ci is true and
0 otherwise.

m
∑

k=1

wi · S(Ci), (1)

There exists two important variations of the Max-SAT problem. The weighted Max-SAT
problem is the Max-SAT problem in which each clause is assigned a positive weight. The goal
of the problem is to maximize the sum of weights of satisfied clauses. The unweighted Max-SAT
problem is the Max-SAT problem in which all the weights are equal to 1 and the goal is to maximize
the number of satisfied clauses. In this paper, the focus is restricted to formulas in which all the
weights are equal to 1 (i.e.unweighted Max-SAT).

21

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

3 Related Work

Various stochastic local search algorithms have been developed for MAX-SAT. They all start with
an initial assignment of values to variables randomly or heuristically generated. During each it-
eration, a new solution is selected from the neighborhood of the current one by performing a
move. Choosing a good neighborhood and a method for searching it is usually guided by intu-
ition, because very little theory is available as a guide. All the methods usually differ from each
other based on the criteria used to flip the chosen variable. One of the earliest local search for
solving MAX-SAT is GSAT [31]. The GSAT algorithm operates by changing a complete assign-
ment of variables into one in which the maximum possible number of clauses are satisfied by
changing the value of a single variable. Another widely used variant of GSAT is the WalkSAT
based on a two stage selection mechanism originally introduced in [30]. Several state-of-the-art
local search algorithms are enhanced versions of GSAT and Walksat algorithms. Examples include
GSAT/Tabu [22], WalkSAT/Tabu [23], Novelty+ and R-Novelty+ heuristics [15], G2WSAT [20].
Lacking the theoretical guidelines while being stochastic in nature, the deployment of several
SLS involves extensive experiments to find the optimal noise or walk probability settings. The
main difference between meta-heuristics relies in the way neighborhood structures are defined and
explored. While The aforementioned meta-heuristics, work only with a single neighborhood struc-
ture, other meta-heuristics choose to operate on a set of different neighborhood structures giving
rise to Variable neighborhood search algorithms [13] [21]. They aim at finding a tactical interplay
between diversification and intensification to overcome local optimality using a combination of a
local search with systematic changes of neighborhood. To avoid manual parameter tuning, new
methods have been designed to automatically adapt parameter settings during the search [14] [19]
and results have shown their effectiveness for a wide range of problems. As the the quality of the
solution improves when larger neighborhood is use, the work proposed in [36] uses a restricted 2
and 3-flip neighborhoods and better performance has been achieved compared to the 1-flip neigh-
borhood for structure problems. Clause weighting based SLS algorithms [4] [5] have been proposed
to solve SAT and Max-SAT problems. The key idea is associate the clauses of the given CNF
formula with weights. Although these clause weighting SLS algorithms differ in the manner clause
weights should be updated (probabilistic or deterministic) they all choose to increase the weights
of all the unsatisfied clauses as soon as a local minimum is encountered. Evolutionary algorithms
are heuristic algorithms that have been applied to MAX-SAT problems. The Genetic local search
algorithm (GASAT) [18] [16] is considered to be the best known genetic algorithm for MAX-SAT
problems. GASAT is a hybrid algorithm that combines a specific crossover and a tabu search
procedure. Experiments have shown that GASAT provides very competitive results compared
with state-of-art SAT algorithms. Boughaci et al. introduced a new selection strategy based
on both fitness and diversity to choose individuals to participate in the reproduction phase of a
genetic algorithm [2]. Experiments showed that the resulting genetic algorithm was able to find
solutions of a higher quality than the scatter evolutionary algorithm [3]. In [32], a new stochastic
local search algorithm, called Iterated Robust Tabu Search (IRoTS), was presented for MAX-SAT
that combines an Iterated Local Search and Tabu Search. The work presented in [12] introduced
Learning Automata (LA) as a mechanism for enhancing SLS based SAT solvers, thus laying the
foundation for novel LA-based SAT solvers. Finally, a new strategy based on an automatic proce-
dure for integrating selected components from various existing solvers have been devised in order
to build new efficient algorithms that draw the strengths of multiple algorithms [35] [17]. The
work conducted in [37] proposed an adaptive memory based local search algorithm that exploits
various strategies in order to guide the search to achieve a suitable trade-off between intensifica-
tion and diversification. The computational results show that it competes favorably with some
state-of-the-art MAX-SAT solvers. Finally, highly efficient solvers have emerged based on a new
diversification scheme to prevent cycling [6] [7] [8].

22

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

4 Walksat/SKC Algorithm

In this section, the Walksat/SKC algorithm originally introduced in [30] and shown in Algorithm
1 is described. A random initial assignment is computed (line 2). The next step o fthe algorithm
involves picking randomly an unsatisfied clause (line 4). If there exists a variable with break count
equals to zero (line 5), this variable is flipped, otherwise a random variable (line 8) or the variable
with minimal break count (line 10) is selected with a certain probability (noise probability)(line
7). The break count of a variable is defined as the number of clauses that would be unsatisfied by
flipping the chosen variable. It turns out that the choice of unsatisfied clauses, combined with the
randomness in the selection of variables, can enable Walksat to avoid local minima and to better
explore the search space. The flips are repeated until a pre-set value of the maximum number of
flips is reached (MAX-FLIPS) and this phase is repeated as needed up to MAX-TRIES times.

input : Problem in CNF format
output: Number of satisfied clauses
for i← 1 to MAX-TRIES do1

T ←Random-Assignment ();2

for j ← 1 to MAXFLIPS do3

Ck ←Random-Unsatisfied-Clause();4

if (∃ variable v ∈ Ck with breakcount = 0) then5

Chosen-Variable ← v;6

else if random(0, 1) ≤ pnoise then7

Chosen-Variable ←Random-Variable(Ck);8

else9

chosen-variable ←Random-Lowest-Breakcount(Ck);10

end11

end12

Algorithm 1: Walksat Algorithm

5 The Algorithm

We base our work on the principles of Learning Automata [25] [33]. Learning Automata have
been used to model biological systems [34], and have recently attracted considerable interest
because they can learn the optimal actions when operating in (or interacting with) unknown
stochastic environments. Furthermore, they combine rapid and accurate convergence with low
computational complexity. Learning Automata solutions have been proposed for several other
combinatorial optimization problems [28] [10] [11] [24] [26] [27] [29]. The work reported in [12]
was the first to combine the traditional random walk with learning automata for the satisfiability
problem. Inspired by the success of the above solution scheme, we will in the following propose
how the classical GSAT-Random-Walk algorithm can be enhanced with learning capability, using
Learning Automata.

5.1 The Automata and its Environment

Generally stated, a finite learning automaton performs a sequence of actions on an environment.
The environment can be seen as a generic unknown medium that responds to each action with some
sort of reward or penalty, perhaps stochastically. Based on the responses from the environment,
the aim of the finite learning automaton is to find the action that minimizes the expected number
of penalties received. Figure 1 illustrates the interaction between the finite learning automaton
and the environment. Because we treat the environment as unknown, we will here only consider
the definition of the finite learning automaton. The finite learning automaton can be defined in

23

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

βt
}{ α , α ,...,αr21

β , β2,...,βm1{ }

φφ{ 1,φ ,2 ..., }s

φφt+1 (← t βt)F ,

α t

φt
α t G(←) Action

Response

Automaton

Environment

Figure 1: A learning automaton interacting with an environment

TrueFalse

−N −(N−1) −1 0 N−1N−2......

Reward
Penalty

Figure 2: The state transitions and actions of the Learning SAT Automaton

terms of a quintuple [25]:
{Φ, α, β,F(·, ·),G(·, ·)}.

Φ = {φ1, φ2, . . . , φs} is the set of internal automaton states. α = {α1, α2, . . . , αr} is the set of
automaton actions. And, β = {β1, β2, . . . , βm} is the set of inputs that can be given to the automa-
ton. An output function αt = G[φt] determines the next action performed by the automaton given
the current automaton state. Finally, a transition function φt+1 = F [φt, βt] determines the new
automaton state from (1) the current automaton state and (2) the response of the environment to
the action performed by the automaton. Based on the above generic framework, the crucial issue
is to design automata that can learn the optimal action when interacting with the environment.
Several designs have been proposed in the literature, and the reader is referred to [25] [33] for an
extensive treatment. In this paper we target the SAT problem, and our goal is to design a team
of Learning Automata that seeks the solution of SAT problem instances. We build upon the work
of Tsetlin and the linear two-action automaton [34] [25]. For each literal in the SAT problem
instance that is to be solved, we construct an automaton with

• States: Φ = {−N − 1,−N, . . . ,−1, 0, . . . , N − 2, N}.

• Actions: α = {True,False}.

• Inputs: β = {reward , penalty}.

Figure 2 specifies the G and F matrices. The G matrix can be summarized as follows. If the
automaton state is positive, then action True will be chosen by the automaton. If on the other
hand the state is negative, then action False will be chosen. Note that since we initially do not
know which action is optimal, we set the initial state of the Learning SAT Automaton randomly
to either ’-1’ or ’0’.

24

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

The state transition matrix F determines how learning proceeds. As seen in the figure, pro-
viding a reward input to the automaton strengthens the currently chosen action, essentially by
making it less likely that the other action will be chosen in the future. Correspondingly, a penalty
input weakens the currently selected action by making it more likely that the other action will
be chosen later on. In other words, the automaton attempts to incorporate past responses when
deciding on a sequence of actions.

5.2 Combining Walksat & Learning Automata (LA-WSAT)

Overview: In addition to the definition of the LA, we must define the environment that the LA
interacts with. Simply put, the environment is a MAX-SAT problem instance as defined in Section
1. Each variable of the MAX-SAT problem instance is assigned a dedicated LA, resulting in a
team of LA. The task of each LA is to determine the truth value of its corresponding variable,
with the aim of satisfying all of the clauses where that variable appears. In other words, if each
automaton reaches its own goal, then the overall MAX-SAT problem at hand has also been solved.

Pseudo-code: With the above perspective in mind, we will now present the details of the
LA-WSAT that we propose. Algorithms 2-4 contain the complete pseudo-code for solving MAX-
SAT problem instances, using a team of LA. An ordinary WSAT strategy is used to penalize an
LA when it “disagrees” with WSAT, i.e., when WSAT and the LA suggest opposite truth values.
Additionally, we use an “inverse” WSAT strategy for rewarding an LA when it agrees with WSAT.
Note that as a result, the assignment of truth values to variables is indirect, governed by the states
of the LA. At the core of the LA-WSAT algorithm is a punishment/rewarding scheme that guides
the team of LA towards the optimal assignment. In the spirit of automata based learning, this
scheme is incremental,and learning is performed gradually, in small steps.

Remark 1: Like a two-action Tsetlin Automaton, our proposed LA seeks to minimize the
expected number of penalties it receives. In other words, it seeks finding the truth assignment
that minimizes the number of unsatisfied clauses among the clauses where its variable appears.

Remark 2: Note that because multiple variables, and thereby multiple LA, may be involved
in each clause, we are dealing with a game of LA [25]. That is, multiple LA interact with the same
environment, and the response of the environment depends on the actions of several LA. In fact,
because there may be conflicting goals among the LA involved in the LA-WSAT, the resulting
game is competitive. The convergence properties of general competitive games of LA have not
yet been successfully analyzed, however, results exists for certain classes of games, such as the
Prisoner’s Dilemma game [25]. In our case, the LA involved in the LA-WSAT are non-absorbing,
i.e., every state can be reached from every other state with positive probability. This means that
the probability of reaching the solution of the SAT problem instance at hand is equal to 1 when
running the game infinitely. Also note that the solution of the MAX-SAT problem corresponds to
a Nash equilibrium of the game.

Remark 3: In order to maximize speed of learning, we initialize each LA randomly to either
the state ’-1’ or ’0’. In this initial configuration, the variables will be flipped relatively quickly
because only a single state transition is necessary for a flip. Accordingly, the joint state space
of the LA is quickly explored in this configuration. However, as learning proceeds and the LA
move towards their boundary states, i.e., states ’-N’ and ’N-1’, the flipping of variables calms
down. Accordingly, the search for a solution to the MAX-SAT problem instance at hand becomes
increasingly focused.

6 Experimental Results

6.1 Test Suite & Parameter Settings

The performance of LA-WSAT is evaluated against WSAT using a set of real industrial problems
and random problems.. This set is taken from the sixth Max-SAT 2011 organized as an affiliated
event of the Fourteenth International Conference on Theory and Applications of Satisfiability

25

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80 90 100

#U
ns

at
is

fie
d

C
la

us
es

Noise (%)

Figure 3:
Noise probability Vs Number of unsatisfied clauses: dividers6-hack.dimacs.filtered: Variables =

35376,clauses = 132699.

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 10 20 30 40 50 60 70 80 90 100

#U
ns

at
is

fie
d

C
la

us
es

Noise (%)

Figure 4:
Noise probability Vs Number of unsatisfied clauses:fpu8-problem.dimacs-24.filtered: Variables =

160232 , clauses = 548848.

26

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

input : Problem in CNF format
output: Number of Unsatisfied clauses
begin1

for i← 1 to n do2

/* The initial state of each automaton is set to either ’-1’ or ’1’ */3

state[i] = random element({−1, 0});4

/* And the respective literals are assigned corresponding truth values */5

if (state[i] == -1) then6

xi = False;7

else8

xi = True ;9

end10

end11

while (Not Stop) do12

Ck ←Random-Unsatisfied-Clause ();13

if (∃ a literal ∈Ck with breakcount = 0) then14

chosen-literal ←Random-Chosen-Literal-Candidate(Ck) ;15

Reward-LA (LA,chosen-literal) ;16

end17

else if (random(0, 1) ≤ pnoise) then18

chosen-literal ←Random-Literal(Ck);19

Punish-LA (LA,chosen-literal) ;20

end21

else22

chosen-literal ←Random-Lowest-Breakcount(Ck)23

Reward-LA(LA,chosen-literal);24

end25

end26

end27

Algorithm 2: Walksat-Learning-Automata Based Algorithm

Testing (SAT-2011). Due to the randomization nature of both algorithms, each problem instance
was run 50 times with a cut–off parameter (max-time) set to 30 minutes. The tests were carried
out on a DELL machine with 800 MHz CPU and 2 GB of memory. The code was written in C++
and compiled with the GNU C compiler version 4.6. The following parameters have been fixed
experimentally and are listed below:

• The number of states N is set to 3.

• Noise probability: The performance of WSAT depends highly on the walking probability
setting which in turns depends on the class of problems to be solved. The plots in Figures
3-4 show 2 selected tests that reflect the general trend observed on almost all the industrial
instances tested. Peak performance with respect to the lowest number of unsatisfied clauses
is achieved when the walking probability was set to 10.

6.2 Results and Discussions

Figures 5-6 show the evolution of the mean of unsatisfied clauses for both algorithm as a function
of time on a logarithmic scale. Both algorithms start with almost an identical initial solution.
Already during the early stage of the search, the difference in solution quality between the two
algorithms start to become more distinctive. In the first phase which corresponds to the early part
of the search, both algorithms behave as a hill-climbing method. The mean number of unsatisfied
clauses decreases rapidly at first, and then flattens off when entering the so-called a plateau region

27

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

 1000

 10000

 100000

 1e+06

 0.1 1 10 100 1000 10000

U
ns

at
is

fie
d

C
la

us
es

Time(s)

LA-WSAT Vs WSAT

WSAT
LA-WSAT

 1000

 10000

 100000

 1e+06

 0.1 1 10 100 1000 10000

U
ns

at
is

fie
d

C
la

us
es

Time(s)

LA-WSAT Vs WSAT

WSAT
LA-WSAT

Figure 5:
Log-Log plot: (left) C2-DD-S3-f1-e2-v1-bug-fourvec-gate.dimacs.seq.filtered.cnf: |V | = 400085,
|C| = 1121810 , (right) divider-problem.dimacs-2.filtered.cnf:|V | = 228874, |C| = 750750.

 1000

 10000

 100000

 1e+06

 0.1 1 10 100 1000 10000

U
ns

at
is

fie
d

C
la

us
es

Time(s)

LA-WSAT Vs WSAT

WSAT
LA-WSAT

 100

 1000

 10000

 100000

 1e+06

 0.1 1 10 100 1000 10000

U
ns

at
is

fie
d

C
la

us
es

Time(s)

LA-WSAT Vs WSAT

WSAT
LA-WSAT

Figure 6:
Log-Log plot: (left) fpu-multivec1-problem-dimacs-14.filtered: |V | = 257168, |C|928310. (right)

sudoku-debug-dimacs: |V | = 1304121, |C| = 1554820.

28

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000 1200 1400 1600 1800

C
on

ve
rg

en
ce

 r
at

io

Time(s)

LA-WSAT Vs WSAT

Evolution of the convergence ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
on

ve
rg

en
ce

 r
at

io

Time(s)

LA-WSAT Vs WSAT

Evolution of the convergence ratio

Figure 7:
Convergence Ratio:(left) C2-DD-S3-f1-e2-v1-bug-fourvec-gate.dimacs.seq.filtered.cnf:
|V | = 400085, |C| = 1121810 , (right) divider-problem.dimacs-2.filtered.cnf:|V | = 228874,

|C| = 750750.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
on

ve
rg

en
ce

 r
at

io

Time(s)

LA-WSAT Vs WSAT

Evolution of the convergence ratio

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 200 400 600 800 1000 1200 1400 1600 1800

C
on

ve
rg

en
ce

 r
at

io

Time(s)

LA-WSAT Vs WSAT

Evolution of the convergence ratio

Figure 8:
Convergence Ratio: (left) fpu-multivec1-problem-dimacs-14.filtered: |V | = 257168, |C|928310.

(right) sudoku-debug-dimacs: |V | = 1304121, |C| = 1554820.

29

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

input : A literal and its learning automata
output: Penalize the learning automata
begin1

if (state[i] < N -1) then2

state[i] ← state[i] + 1;3

end4

/* Flip literal when automaton changes its action */ ;5

if (state[i]== 0) then6

Flip (li) ;7

end8

if (state[i] > -N) then9

state[i] ← state[i]− 1;10

end11

/* Flip literal when automaton changes its action */ ;12

if (state[i]== -1) then13

Flip (li) ;14

end15

end16

Algorithm 3: Punishment Mechanism

input : A literal and its learning automata
output: Reward the learning automata
begin1

if (state[i] ≥ 0 And state[i] < N-1) then2

state[i] ← state[i] + 1;3

end4

if (state[i] < 0 And state[i] < N-1) then5

state[i] ← state[i]− 1;6

end7

end8

Algorithm 4: Reward Mechanism

marking the start of the second phase. The plateau region spans a region in the search space
where flips typically leave the number of unsatisfied clauses unchanged, and this phenomenon
occurs earlier with WSAT leading to a possibly premature convergence. From these plots, LA-
WSAT algorithm dominates WSAT throughout the run offering a better asymptotic convergence
compared to WSAT. Figures 7-8 show the convergence speed behavior for the plots described in
Figures 5-6 expressed as the ratio between the mean of unsatisfied clauses of the two algorithms
as a function of time. A value greater than 1 demonstrates the superiority of WSAT while a value
below 1 confirms the opposite. For some instances, WSAT is initially somewhat faster as observed
in the right plot of Figure 8. LA-WSAT exhibits a better convergence speed compared to WSAT.
The asymptotic performance offered by LA-WSAT is impressive, and dramatically improves on
WSAT. The convergence rate observed with LA-WSAT continues to increase throughout the run
reaching a value of 50%. On other instances this ratio increases until it reaches a high convergence
ratio (getting as high as 93%) before it maintains it until the end of the search. Tables 1-3
compares LA-WSAT against WSAT using industrial instances. The first and second column show
the number of variables and clauses respectively. LA-WSAT is capable of delivering solutions of
excellent quality compared to WSAT. LA-WSAT dominates WSAT in 39 cases out 45 cases. The
difference in the quality ranges within 10% for 7% of the cases, 20% for 5% of the cases, and above
30% for the remaining cases, getting as high as 96%. Table 4-6 compares LA-WSAT with highly
efficient solvers such as CCLS [6] and Optimax which is a modified version of glucose SAT solver [1]

30

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

Instances |V | |C| WSAT LA-WSAT

fpu-multivec1-problem.dimacs-14.filtered 257168 928310 6125 1769
fpu-fsm1-problem.dimacs15.filtered 160200 548843 3716 422
fpu8-problem.dimacs24.filtered 160200 548843 3585 412
i2c-problem.dimacs.filtered 521672 1581471 615 161
b15-bug-fourvec-gate-0.dimacs 581064 1712690 7241 1569
c1-DD-s3-f1-e2-v1-bug-fourvec-gate-0.dimacs 391897 989885 955 41
c4-DD-s3-f1-e1-v1-bug-gate-0.dimacs 797728 2011216 3761 1911
c4-DD-s3-f1-e2-v1-bug-fourvec-gate-0.dimacs 448465 1130672 1834 640
c5-DD-s3-f1-e1-v2-bug-gate-0.dimacs 200944 540984 8 8
c6-DD-s3-f1-e1-v1-bug-gate-0.dimacs 298058 795900 3188 1827
divider-problem.dimacs11.filtered 215964 709377 9992 2675
divider-problem.dimacs2.filtered 228874 750705 10688 3073
divider-problem.dimacs3.filtered.cnf 216900 711249 6204 2117
divider-problem.dimacs5.filtered 228874 750705 11194 3271
divider-problem.dimacs8.filtered 246943 810105 7257 3363

Table 1: SAT2013 Industrial benchmarks: LA-WSAT Vs WSAT

Instances |V | |C| WSAT LA-WSAT

dividers10.dimacs.filtered 45552 162874 694 64
dividers-multivec1.dimacs.filtered 106128 397650 3015 361
i2c-problem.dimacs25 521672 1581471 2686 2498
i2c-master1.dimacs.filtered.cnf 82429 285987 317 95
mim-ctr1-dimacs.filtered 1128648 4422185 10198 1275
rsdecoder1-blackboxKESblock-problem.dimacs 707330 1106376 3757 3280
rsdecoder1-blackbox-CSEEblock-problem.dimacs32.filtered 277950 806460 3479 1868
rsdecoder4.dimacs.filtered 237783 933978 277 928
rsdecoder5.dimacs.filtered 238290 936006 280 708
rsdecoder-debug.dimacs 847501 2223029 19654 7746
rsdecoder-fsm2.dimacs.filtered 238290 936006 247 651
rsdecoder-multivec1.dimacs.filtered 394446 1626312 2143 4441
rsdecoder-multivec1-problem.dimacs38.filtered 1199012 3865513 29810 19318
rsdecoder-problem.dimacs39.filtered 1199602 3868693 28425 18005
rsdecoder-problem.dimacs41.filtered 1186710 3829036 27442 18328

Table 2: SAT2013 Industrial benchmarks: LA-WSAT Vs WSAT

31

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

Instances |V | |C| WSAT LA-WSAT

SM-AS-TOP-buggy1.dimacs.filtered 145900 694438 3791 174
SM-MAIN-MEM-buggy1.dimacs.filtered 870975 3812147 45360 8249
SM-RX-TOP.dimacs.filtered 235456 934091 3645 676
sukdoku-debug.dimacs 1304121 1554820 4971 202
wb1.dimacs.filtered 49525 140091 403 371
wb2.dimacs.filtered 49490 140056 786 773
wb-4m8s1.dimacs.filtered 463080 1759150 2543 686
wb-4m8s3.dimacs.filtered 463080 1759150 2769 911
wb-4m8s4.dimacs.filtered 463080 1759150 2628 1012
wb-commax1.dimacs-45.filtered 277950 1221020 5020 1715
wb-commax3.dimacs-45.filtered 277950 1221020 5313 416
wb-debug.dimacs 399591 621323 370 316
wb-problem-dimacs-45 309491 806440 163 421
wb-problem-dimacs-46 300846 789283 793 943
spi2.dimacs.filtered 124260 515813 919 191

Table 3: SAT2013 Industrial benchmarks: LA-WSAT Vs WSAT

ranked 1st at the 2011 SAT competition. CCLS won four categories of the incomplete algorithms
track of MaxSAT Evaluation 2013. The instances used in the benchmark belong to random and
crafted categories used at SAT2013 competition. Compared to CCLS, LA-WSAT gave similar
results in 50 cases out of 61 cases. However the time of CCLS is several order of magnitude faster
that of LA-WSAT. The remaining cases where LA-WSAT was beaten, the difference in quality
ranges from 1% and 6%. Another interesting remark to mention is that the time required by LA-
WSAT does vary significantly depending on the problem instance while the variations observed
with CCLS remain very low. The comparison between Optimax and LA-WSAT shows that that
Optimax converges very fast at the expense of delivering solutions of poor quality compared to
LA-WSAT. LA-WSAT was capable of delivering solutions of better quality than Optimax in 39
out of 45 cases. The improvement ranges from 5% and 44%. The cases where LA-WSAT and
Optimax gave similar results, Optimax was several order of magnitude faster.

7 Conclusions

In this work, a new approach based on combining learning Finite automaton with Walksat for
MAX-SAT is introduced. Thus, in order to get a comprehensive picture of the new algorithms
performance, a set of large industrial instances is used. The results indicate that learning finite
automaton can enhance the convergence behavior of the walksat algorithm. It appears clearly
from the results that LA-WSAT can find excellent solutions compared to those of WSAT at a
faster convergence rate. The results have shown that in most of the studied cases, LA-WSAT
is capable of delivering solution of similar quality compared to CCLS while the time invested is
several order of magnitude slower than CCLS. When compared to Optimax, LA-WSAT showed
a better performance as it provides solution of better quality. For the time being, further work
is mainly conducted on improving the solution quality of LA-WSAT by combining it with the
multilevel paradigm. The approach suggests looking at the solution of the problem as a multilevel
process operating in a coarse-to-fine strategy. This strategy involves recursive coarsening to create
a hierarchy of increasingly smaller and coarser versions of the original problem. The reduction
phase works by grouping the variables representing the problem into clusters. This phase is
repeated until the size of the smallest problem falls below a specified reduction threshold. A
solution for the problem at the coarsest level is generated, and then successively projected back
onto each of the intermediate levels in reverse order. The solution at each child level is improved
using LA-WSAT before moving to the parent level.

32

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

CCLS Optimax LA-WSAT
Instance Quality Time Quality Time Quality Time

MANNa-27.clq 404 0.29 486 0.10 404 1.08
MANNa-45.clq 418 0.19 518 0.13 418 1.02
MANNa-81.clq 399 0.06 441 0.12 399 1.08
MANN-a9.clq 422 1.16 584 0.10 422 12.03
brock200-1.clq 238 0.95 349 0.10 238 37.03
brock200-2.clq 141 1.11 221 0.13 141 4.01
brock200-3.clq 214 0.96 232 1.75 214 6.53
brock-200-4.clq 209 1.04 299 0.11 209 4.40
brock400-1 255 0.38 340 0.08 256 13.02
brock400-2 252 0.84 310 0.08 252 9.89
brock400-3 238 1.27 278 0.08 239 17.01
brock400-4 249 0.73 374 0.08 250 7.61
brock800-1 205 0.95 273 0.09 205 2.18
brock800-2 207 0.97 270 0.09 207 7.05
brock800-3 203 0.47 315 0.07 203 1.08
brock800-4 200 0.32 310 0.13 200 4.27
cfat200-1.clq 4 0.01 4 0.01 4 1.07
cfat200-2.clq 26 0.71 26 3.93 26 1.2
cfat200-5.clq 116 0.47 172 0.08 116 1.8
c-fat500-1.clq 2 0.01 2 0.01 2 10.04

Table 4: Comparing LA-WSAT with CCLS and Optimax

CCLS Optimax LA-WSAT
Instance Quality Time Quality Time Quality Time

hamming10-2 400 0.09 532 0.08 400 1.08
hamming10-4 319 0.42 341 0.09 320 5.05
hamming6-2 832 1.18 1100 0.13 844 30.04
hamming6-4 192 1.00 312 0.13 192 1.06
hamming8-2 441 0.12 551 0.13 441 1.09
hamming8-4 176 1.17 254 0.14 176 4.70
johnson16-2-4.clq 215 0.68 344 0.08 215 1.07
johnson32-2-4.clq 329 1.51 492 0,09 329 16.09
johnson8-2-4.clq 75 0.34 100 0.08 75 1.09
johnson8-4-4.clq 770 1.59 1069 0.09 779 90.04
keller4.clq 199 0.74 344 1.01 199 2.02
keller5.clq 250 0.49 317 1.01 250 12.87
p-hat1000-1.clq 52 0.54 52 8.59 52 1.10
p-hat1000-2.clq 142 0.79 181 0.13 142 56.04
p-hat1000-3.clq 238 1.04 362 0.09 238 8.33
p-hat300-1.clq 49 0.50 49 5.38 49 2.19
p-hat300-2.clq 135 0.80 184 0.08 135 70.06
p-hat300-3.clq 269 1.41 327 0.12 269 69.06
phat500-1.clq 75 0.50 108 0,08 75 4.02
phat500-2.clq 176 0.59 244 0.09 176 65.01

Table 5: Comparing LA-WSAT with CCLS and Optimax

33

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

CCLS Optimax LA-WSAT
Instance Quality Time Quality Time Quality Time

phat500-3.clq 284 1.29 434 0.11 285 61.01
phat700-1.clq 63 0.63 63 21.42 63 2.17
phat700-2.clq 154 1.19 224 0.10 156 74.14
phat700-3.clq 267 1.36 395 0.12 268 19.04
san1000.clq 139 0.70 146 17.30 139 7.04
san200-0.7-1.clq 237 0.55 313 0.11 237 66.01
san200-0.7-2.clq 236 0.30 288 0.10 237 1.07
san200-0.9-1.clq 313 0.85 403 0.08 315 9.04
san200-0.9-2.clq 316 1.00 440 0.12 316 60.02
san200-0.9-3.clq 320 1.19 442 0.09 320 11.02
san400-0.5-1.clq 146 1.15 220 0.11 146 2.18
san400-0.7-1.clq 236 0.81 333 0.13 236 32.02
san400-0.7-2.clq 236 0.93 295 0.13 236 7.03
san400-0.9-1.clq 304 0.94 460 0.08 304 46.01
sanr200-0.7.clq 227 0.62 280 0.09 227 4.42
sanr200-0.9.clq 300 1.02 418 0.13 300 13.01
sanr400-0.5.clq 148 0.60 176 0.13 148 1.09
sanr400-0.7.clq 223 0.60 318 0.09 223 37.35
t4pm3-6666.spn 38 1.55 40 69.11 38 1.08
t5pm3-7777.spn 78 1.46 120 0.10 78 5.51
t6pm3-8888.spn 136 3.30 222 0.09 144 93.11

Table 6: Comparing LA-WSAT with CCLS and Optimax

References

[1] G. Audemard, L. Simon, in Twenty-first International Joint Conference on Artificial Intelli-
gence (IJCAI’09), july 2009.

[2] D. Boughaci, B. Benhamou, and H. Drias. . Scatter Search and Genetic Algorithms for MAX-
SAT Problems. J.Math.Model.Algorithms, pages 101-124, 2008.

[3] D. Boughaci and H. Drias. Efficient and experimental meta-heuristics for MAX- SAT prob-
lems. In Lecture Notes in Computer Sciences, WEA 2005,3503/2005:501-512, 2005.

[4] B. Cha and K. Iwama. Performance Tests of Local Search Algorithms Using New Types of
Random CNF Formula. Proceedings of IJCAI95, pages 304-309. Morgan Kaufmann Publish-
ers, 1995

[5] J. Frank. Learning Short-term Clause Weights for GSAT. Proceedings of IJCAI97, pages
384-389, Morgan Kaufmann Publishers, 1997.

[6] S. Cai, C. Luo, K. Su. CCASat: Solver description. In: Proc. of SAT Challenge 2012: Solver
and Benchmark Descriptions. pages 1314 2012.

[7] S. Cai, K. Su. Configuration checking with aspiration in local search for SAT. In: Proc. of
AAAI-12. pages . 434440, 2012.

[8] S. Cai,, K. Su., A. Sattar. Local search with edge weighting and configuration checking heuris-
tics for minimum vertex cover. Artif. Intell. 175(9-10), pages 16721696 (2011).

[9] S.A. Cook. The complexity of theorem-proving procedures. Proceedings of the Third ACM
Symposium on Theory of Computing, pages: 151-158, 1971.

34

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

[10] W. Gale, S. Das, and C.T. Yu. Improvements to an Algorithm for Equipartitioning. IEEE
Transactions on Computers, 39 (5), pages: 706-710, IEEE, 1990.

[11] O.C. Granmo, B.J. Oommen, S.A. Myrer, and M.G. Olsen. Learning Automata-Based Solu-
tions to the Nonlinear Fractional Knapsack Problem With Applications to Optimal Resource
Allocation. IEEE Transactions on Systems, Man and Cybernetics, Vol.SMC-37(B), pages:
166-175, 2007.

[12] O.C. Granmo, N. Bouhmala. Solving the satisfiability problem using finite learning automata.
International Journal of Computer Science and Applications, 4(3) pages:15-29, 2007.

[13] P. Hansen, B. Jaumard, N. Mladenovic, and A.D. Parreira. Variable neighborhood search
for maximum weighted satisfiability problem. Technical Report G-2000-62, Les Cahiers du
GERAD, Group for Research in Decision Analysis, 2000.

[14] H. Hoos, An adaptive noise mechanism for WalkSAT, In Proceedings of AAAI-2002, 655660,
2002.

[15] H. Hoos, On the run-time behavior of stochastic local search algorithms for SAT. In Proceed-
ings of AAAI-99, 661666, 1999.

[16] H. Jin-Kao, H., Lardeux, F., and Saubion, F.(2003). Evolutionary computing for the satisfia-
bility problem. In Applications of Evolutionary Computing, volume 2611 of LNCS, pages
258-267, University of Essex, 2003, England.

[17] A.R. KhudaBukhsh, L. Xu, H.H. Hoos, K. Leyton-Brown. SATenstein: Automatically Build-
ing Local Search SAT Solvers From Components. Proceedings of the 25th Interna- tional
Joint Conference on Artificial Intelligence (IJCAI-09), 2009.

[18] F. Lardeux, F. Saubion, and H. Jin-Kao. GASAT: A Genetic Local Search Algo- rithm for
the Satisfiability Problem. Evolutionary Computation, 14(2), MIT Press, 2006.

[19] C.M. Li, W. Wei, H. Zhang, Combining adaptive noise and look-ahead in local search for
SAT, Lecture Notes in Computer Science 4501 ,2007. 121133.

[20] C.M. Li and W.Q. Huang. Diversification and determinism in local search for satisfiability.
Proceedings of the Eighth International Conference on Theory and Applications of Satisfia-
bility Testing (SAT-05), volume 3569 of Lecture Notes in Computer Science, pages 158-172,
2005.

[21] N. Mladenović, P. Hansen. Variable Neighborhood Search. Computer and Operations Re-
search, pages: 24:1097-1100, 1997.

[22] B. Mazure, L. Saïs, and E. Grégoire. Tabu search for SAT. Proceedings of the Fourteenth
National Conference on Artificial Intelligence (AAAI-97), pages 281-285, 1997.

[23] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. proceedings
of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), pages 321-326,
1997.

[24] S. Misra and B.J. Oommen. Dynamic Algorithms for the Shortest Path Routing Problem:
Learning Automata-Based Solutions. IEEE Transactions on Systems, Man and Cybernetics,
Vol.SMC-35(B), pages: 1179-1192, 2005.

[25] K.S. Narendra and M.A.L. Thathachar. Learning Automata: An Introduction. Prentice Hall,
1989.

[26] B.J. Oommen and T.D. Roberts. A Discretized Learning Automata Solutions to the Capac-
ity Assignment Problem for Prioritized Networks. IEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-32(B),pages: 821-831, 2002.

35

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

[27] B.J. Oommen and E.V. St.Croix. Graph partitioning using learning automata. IEEE Trans-
actions on Computers, 45, 2, pages:195-208, IEEE, 1996.

[28] B.J. Oommen and D.C.Y. Ma. Deterministic Learning Automata Solutions to the Equiparti-
tioning Problem. IEEE Transactions on Computers, 37,1, pages: 2-13, IEEE, 1988.

[29] B.J. Oommen and E.R. Hansen. List organizing strategies using stochastic move-to-front and
stochastic move-to-rear operations. SIAM Journal on Computing, 16, SIAM, pages:705-716,
1987.

[30] B. Selman, H.A. Kautz, and B. Cohen. Noise Strategies for Improving Local Search. Proceed-
ings of AAAI’94, pages: 337-343. MIT Press, 1994.

[31] B. Selman, H. Levesque, and D. Mitchell. A New Method for Solving Hard Satisfiability
Problems. Proceedings of AAA92, pages: 440-446, MIT Press, 1992.

[32] K. Smyth, H. Hoos, T. Stützle, Iterated robust tabu search for MAX-SAT, Lecture Notes in
Artificial Intelligence 2671, 129144, 2003.

[33] M.A.L. Thathachar and P.S. Sastry. Network of Learning Automata: Techniques for On line
Stochastic Optimization. Kluer Academic Publishers, 2004.

[34] M.L. Tsetlin. Automaton Theory and Modeling of Biological Systems. Academic Press, 1973.

[35] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown. SATzilla: Portfolio-based Algorithm Se- lection
for SAT. Journal of Artificial Intelligence Research (JAIR), 32, pp. 565-606, 2008.

[36] M. Yagiura, T. Ibaraki. Efficient 2 and 3-Flip Neighborhood Search Algorithms for the MAX
SAT: Experimental Evaluation. Journal of Heuristics, 7: 423-442, 2001.

[37] L. Zhipeng, H. Jin-Kao. Adaptive Mmory-Based Local Search for MAX-SAT. Accept to
Applied Soft Computing 2012.

36

Bouhmala / Enhanced Walksat with finite Learning Automata for MAX-SAT.
IJCOPI Vol. 5, No. 3, Sep-Dec 2014, pp. 20-36.
EDITADA. ISSN: 2007-1558.

