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Abstract. Space exploration rovers, one of the most 
important tools in today's exploration studies, are designed 
to obtain scientific data by examining the surfaces of 
different planets and to seek answers to questions of great 

importance to humanity. In this study, a controller with 
nonlinear governing equations and path planning are 
carried out on advanced avionic systems for difficult 
conditions in order to autonomously select the shortest path 
at a desired trajectory and speed for a differentially driven 
space exploration rover. While the rover leaves its traces 
on the difficult surfaces of different planets, it undertakes 
many important tasks from the analysis of geological 
formations to the potential traces of life. Differential drive 

allows these rovers to move flawlessly even on rough 
surfaces without making sharp turns. It is observed that the 
RRT algorithm can be used in the implementation of path 
planning, unlike other path planning algorithms, to reach 
the target in a shorter time. This opens the door to new 
scientific understandings by carrying space exploration to 
previously inaccessible areas.  
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1 Nomenclature 
 

xb : Body Frame Longitudinal Coordinate Axis 

yb : Body Frame Lateral Coordinate Axis 

xe : Earth Frame x Axis 

ye : Earth Frame y Axis 

w : Body Width from Body Frame 

c1  : Contact Point of Right Tire with the Ground 

c2  : Contact Point of Left Tire with the Ground 

h1 : Center of Right Tire 

h1 : Center of Left Tire 

V⃗⃗ c1
 : Right Tire Contact Point Velocity with the Ground 

V⃗⃗ c2
 : Left Tire Contact Point Velocity with the Ground 

V⃗⃗ h1
 : Velocity of Center of Right Tire 

V⃗⃗ h2
 : Velocity of Center of Left Tire 

V⃗⃗ b1
 : Velocity of Center of Body for Right Wheel  

V⃗⃗ b2
 : Velocity of Center of Body for Left Wheel  

V⃗⃗ r : Velocity of the Center of the Body Frame 

ω⃗⃗  : Angular Velocity 

ω⃗⃗ b1
 : Angular Velocity Center of Body for Right Wheel 

ω⃗⃗ b2
 : Angular Velocity Center of Body for Left Wheel 

ω⃗⃗ r : Angular Velocity of the Center of the Body Frame 

r h1
  : Radius of Right Wheel Center w.r.t Center of Mass 

xd  : Desire Longitudinal Coordinate Axis 

yd  : Desire Lateral Coordinate Axis 

ẋd = Vx  : Desire x Derivative of Axis with Respect to Time 

ẏd = Vy  : Desire y Derivative of Axis with Respect to Time 

r  : Radius of the Two Wheels or the Two Tires 

T⃗⃗   : Torque Vector 

RZ,θ : Rotation Matrix at z-axis with θ Angle 

q  : Control Signal (Generalized coordinate Vector) 

q⃗ ̇  : Contraints Forces or Moments 

q̈  : Control Acceleration  
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q̈d : Feed Forward (Acceleration of the Joint Desired) 

qd : Desire Control Signal 

qe  : Control Signal Error 

M  : Acceleration (Matrix) 

B  : Any Centripetal veya Coriolis Accelarations 

CTλ  : Term due to the Constraints of the Rover  

C  : Faffian Restriction Term (Matrix) 

C(q, q̇)q̇ : Friction Term 

λ  : Lagrangian Multiplier 

τ  : Input to the System (Input Torque) 

τ1 : Torque Applied to Right Wheel 

τ2 : Torque Applied to Left Wheel 

mb : Mass of Rover Body 

mw : Mass of Rover Wheel 

mt : Mass of Total Rover 

2w∗ : Optimum Wheel-to-Wheel Distance 

t  : Thickness of Tire 

Vd  : Speed of the Rover along the Path 

yd = xd
2  : Desired Trajectory 

aq  : Desire Acceleration (Outer Loop) 

u  : Inner Loop (Control Signal) 

Kp  : PID Control Proportional Control 

Kı  : PID Control Integral Control 

Kd  : PID Control Derivative Control 

ωi  : Natural Frequency 

θ̇  : Angle Change Rate  

θ̇d : Desire Angle Change Rate 

ϕ̇1  : Rate of Change or Angular Velocity of Right Tire  

ϕ̇2  : Rate of Change or Angular Velocity of Left Tire 

ϕ̇d,1  : Angular Velocity of Right Tire 

ϕ̇d,2  : Angular Velocity of Left Tire 

Ib  : Moment of Inertia Matrix of Body 

Iw  : Moment of Inertia Matrix of Wheels 

It  : Moment of Inertia Matrix of Total Rover 

X  : End-Effector Pose using the Minimal Orientation 

X̃  : Error 

Ja : Analytical Jacobian 

d   : End Effector Position  

α  : End Effector Orientation  

X⃗⃗ ̇  : End Effector 

 

 

2 Introduction 
 

Human curiosity and scientific discovery desire directed to the depths of space exploration missions cause the rapid development 
and evolution of space exploration technologies [1,2]. Rovers are remotely operated vehicles designed for space exploration and 

scientific research [3]. These unique technologies offer many exciting opportunities to unravel the mysteries of space and to delve 

into the depths of planets. The main purpose of rovers is to enable the exploration of distant planets that are challenging and 

dangerous for humans, to collect scientific data and to search for traces of extraterrestrial life with new findings [4]. The areas of 

use of rovers are quite wide [5]. First of all, they are mounted on spacecraft sent to examine the surfaces of Mars and other planets. 

They are used to map the surfaces of these planets, examine geological features, collect samples and potentially search for signs 

of life [6-8]. In addition, rovers can examine the surfaces of the Moon, Mars and other celestial bodies in order to discover 

extraterrestrial resources [9]. These resources are important for supporting the sustainability of future space missions. The features 

of rovers are carefully designed to facilitate their work on distant planets. These vehicles, usually equipped with wheels, allow 

them to move easily on the surface [10]. In addition, they make long-term missions possible due to their energy sources such as 

solar panels or radioisotope thermoelectric generators. Equipped with scientific research equipment such as forward-looking 

cameras, spectrometers and probes, rovers have the capacity to solve the mysteries of planets and celestial bodies [11-13]. In this 
context, rovers represent an important part of space exploration and offer great potential for future scientific research [14]. Thanks 

to these tools, the mysteries of distant planets and celestial bodies can be solved [15]. In addition, traces of extraterrestrial life can 

be investigated and humanity can have the opportunity to look deeper into the universe. 

 

An important component for the successful operation of these vehicles is an effective controller design. The controller includes a 

set of algorithms, software, and hardware components required to regulate the rover's movements, communication, and missions. 

First, the controller ensures that the rover moves safely on the surface of the planet or other space environments. The ability to 

adapt to the variable conditions on the surfaces of planets such as Mars emphasizes the importance of controller design [16]. It 

also helps the rover to avoid collisions and overcome harmful obstacles by sensing its environment. The controller also helps the 

rover to effectively perform its scientific tasks. When precise measurements are required during scientific research, the controller 

ensures that the vehicle remains in a fixed position or approaches a specific target with precision. This enables the successful 
implementation of sampling, analysis, and other scientific studies. The successful implementation of the controller design affects 

the success of scientific discoveries and space exploration. 

 

The latest stop on this exciting journey is a magnificent combination of differential drive mobile robots and space exploration 

rovers. Rovers are autonomous systems where wheels are creatively steered, aiming to unravel the mysteries behind geological 

folds [17]. One of the important milestones of this evolution is that differential drive space exploration rovers are becoming an 
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important component of interplanetary research in order to effectively study the surfaces of distant planets and make scientific 

discoveries [18]. Space exploration rovers are defined as autonomous robotic vehicles designed to effectively study the surfaces 

of distant and harsh planets [19]. Differential drive rovers, which are usually wheeled, use different drive systems while traveling 

on planetary surfaces [20]. At this point, the differential drive system operates using a basic principle that allows rovers to move 

in a balanced manner on rough surfaces without making sharp turns. The differential drive system allows the wheels on both sides 

of the rover to be controlled independently. By adjusting the speed of both wheels differently, the rover can be directed in the 

desired direction. In this way, the rover can move forward in a balanced manner on rough and sloping surfaces [21]. The 

differential drive system also provides energy efficiency and is an ideal option for rovers that offer mechanical simplicity and long 
life and durability. In this context, the differential drive system enables rovers to move forward in a balanced manner on complex 

surfaces, increasing their capacity to expand the exploration area and reach previously inaccessible areas. In addition to differential 

driving, intelligent path planning strategies are also important for the successful operation of space exploration rovers [22-24]. In 

this sense, path planning provides a process used to determine how the rover will reach a given destination in the most efficient 

and safe way [25, 26]. A path plan is created by considering the spacecraft's location, target, obstacles and road conditions [27-

29]. This involves a combination of algorithm-based and data-driven approaches [30]. Techniques such as local mapping, image 

processing and sensor data analysis help the rover understand its environment and enable it to choose a safe path [31, 32]. 

 

As a result, space exploration rovers can be defined as vehicles with great potential to explore the surfaces of different planets and 

collect scientific data [33, 34]. Differential drive systems help these rovers to move effectively even in difficult conditions, while 

intelligent path planning strategies are also an important solution to ensure safe and efficient exploration. In the future, further 
development and improvement of these technologies will enable space exploration to be in-depth and comprehensive. In the next 

section of this study, since there is no previous study in the literature directly addressing the avionics system for differential drive 

rovers and the controller and path planning required for this, the path planning algorithms implemented on rovers will be reviewed 

and the benefits of the study will be discussed. In the fourth section, the avionics system hardware parts of the rover will be 

discussed in detail. In the fifth section, the mathematical equations that will provide differential drive will be detailed and the 

controller will be designed via MATLAB Simulink. Then, the results and benefits of the system will be discussed. In the sixth 

section, the details of the RRT algorithm used for path planning are given and the rover, whose mathematical equations are 

implemented, is provided to perform autonomous path traversal. In the seventh section, the conclusion section regarding the study 

is given and the process implemented regarding the study is discussed and the study will be completed. 

 

 

3    Related Work 
 

In [35], an improved A* algorithm is presented for optimizing the exploration of space rovers. The aim is to develop an A* 

algorithm that takes into account the rover environmental factors (such as surface slope and roughness) and the mobility of the 

rover. In particular, this algorithm has the potential to plan shorter paths and achieve higher success rates compared to the original 

A* algorithm, as obtained from numerical simulations performed on the MATLAB platform. In [36], an important step is 

represented in the dynamic modeling and path planning of a wheeled lunar rover that can jump. This rover can move on flat 
surfaces using its wheels, while it is equipped with a unique ability to overcome obstacles in complex and obstacle-filled areas 

thanks to its inertial wheel. First, the researchers examined the kinematic and dynamic modeling of the rover in detail, documented 

the lunar surface at the time of the jump with a camera, and after converting this data into a grid map, the starting point of each 

step was determined using the Q-Learning method. In [37], we focus on the development of traversability analysis and path 

planning algorithms for extreme-terrain rappelling rovers to address the challenging terrains of planets. Although the rappelling 

rovers used in this study can safely traverse steep surfaces, navigating such terrains is complex. This study presents new 

traversability analyses and path planning algorithms for rovers to safely navigate such challenging terrains. It also addresses the 

unique stability and accessibility challenges of rappelling systems.  

 

In [38], we present a new method based on Bi-RRT (Bidirectional Rapidly Exploring Random Tree) algorithm, APF (Artificial 

Potential Field) algorithm, and DOM (Digital Orthophoto Map) to address the path planning problem of rovers on the lunar 

surface. This study first constructs an occupancy grid map using DOM, then designs an obstacle-based repulsive potential field 
and a target-based attractive potential field using this map. Then, it uses a new potential area guidance, growth method and target 

biased sampling method with an improved Bi-RRT algorithm. [39] makes a significant contribution by addressing the path 

planning problems of lunar rovers. Generally, lunar rover path planning algorithms have problems such as slow convergence rate 

and falling to local optimal solution. This study proposes a comprehensive genetic algorithm based on virtual three-dimensional 

modeling to solve these problems. The terrain comprehensive cost function is used to determine the fitness function in adjusting 

the genetic factors. [40] considers the autonomous path planning technology of Mars Rover on the surface of Mars under the 

limited computing resources. This research aims to make the map model more suitable by combining the visibility-graph method 
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and grid method and optimizing the grid partitioning method of the combined method. Basically, it provides a direction search 

method that can use the computational resources efficiently. In addition, the visibility-graph map direction search method shows 

that it has less complexity in terms of computational time and can achieve better results by performing a synchronous search in 

the path planning process. In [41], autonomous path planning and dynamic obstacle avoidance operations in dynamic 

environments with preliminary map information were combined using RRT* and dynamic window approach. During the 

implementation of this method, simulation and physical verification were carried out on the ROS development platform and the 

Jackal unmanned vehicle platform. 

 
Up to this point, the studies have included rover applications of different path planning algorithms. The following studies include 

path planning applications with the help of different sensor systems. In this context, in [42], a CG-Space-based dynamic path 

planning and obstacle avoidance algorithm is presented for a 10 DOF wheeled rover moving on 3D rough terrain. The study 

proposes a dynamically reconfigurable tree structure using a customized RRT* algorithm based on CG-Space. In this way, the 

rover can replan its path in real time and reach its destination when it encounters fixed and randomly moving obstacles. As an 

example of a different sensor usage, in [43], it includes simultaneous location detection and map creation processes using sensors 

such as Lidar. The map of the lunar surface is defined as a two-dimensional grid and this grid map is processed using long-short-

term memory (LSTM). Then, the rover is trained using multi-shot learning with a deep Q-network (duel DQN) for automatic path 

planning. The results obtained in this study show that this method is effective and adaptable for rover vehicles. 

 

This article also investigates how experiences and achievements from previous space exploration missions are used in the design 
and implementation of differential drive space exploration rovers. It also examines how new generation sensors, image processing 

algorithms and artificial intelligence techniques contribute to the development of this field. This study stands out as an important 

step towards expanding the boundaries of space exploration technologies and gaining deeper insights for humanity. The fact that 

differential drive space exploration rovers provide access to previously unreached areas and that intelligent path planning strategies 

increase efficiency emerge as an exciting potential study in determining the future directions of space exploration. 

 

 

4    Avionics System 
 

In this section, the design details of the differential drive space exploration rover used for space exploration purposes by 

communicating in the S-Band (frequencies between 2 GHz and 4 GHz), HF (Ultra High Frequency) and VHF (Very High 

Frequency) frequency bands are given. The brain of the designed avionics system is provided by a computer on the robot. The 

control information sent to the robot by the ground operator is processed by the control software developed by us using the java 

programming language and running on this mini computer, and this processed information is arranged appropriately and sent to 

the serial communication interface card. At the same time, the information coming from the serial communication card and the 

image and sound information received from the camera and microphone are sent to the ground operator via this computer. In this 

study, EmETXe-i92U0 is used as a computer system specially designed for rovers that will take part in space exploration and 

other extraterrestrial missions. This compact size CPU module offers high performance and reliability even in limited space 
conditions. Type 6 architecture includes two high-performance connectors to provide powerful and stable data communication. 

The soldered 11th Generation Intel Core i7-1185G7E processor comes with integrated Intel Graphics chipset and offers 

extraordinary processing power. EmETXe-i92U0 also has a wide operating temperature range, can operate reliably from -40 to 

85 degrees Celsius. This system can meet the communication requirements with Intel I219LM PCIe GbE PHY and iAMT support. 

It also has Dual Channels 24-bit LVDS, Analog RGB and 3 DDI ports to support four independent displays. Configurable with 

AMI UEFI BIOS, this system is an excellent choice for demanding industrial control and data communication applications. 

EmETXe-i92U0 offers the best computing solution for rovers that will take part in extraterrestrial missions with its low power 

consumption, robust structure and high processing capacity. 

 

In addition, different communication methods are used to ensure communication throughout the mission. The first of these is the 

HackRF One, a Software Defined Radio (SDR) device that can operate between 1 MHz and 6 GHz. This extraordinary device 

offers a perfect tool for testing, developing and exploring modern and future radio technologies. The HackRF One stands out with 
its functionality and flexibility. Its half-duplex transceiver feature can both receive and transmit radio signals. The 20 million 

sample rate per second provides high-precision data collection and processing. Its compatibility with GNU Radio, SDR# and other 

software increases the flexibility and usability of this device. The software-configurable RX and TX gain and baseband filter of 

the HackRF One allow users to customize the device to suit various applications. In addition, the software-controlled antenna port 

power provides greater flexibility and sensitivity. In addition to its excellent performance, the HackRF One is easy to use with its 

high-speed USB 2.0 connection and USB power capability. However, for long range VHF communications the LimeSDR Mini 

2.0 offers a great solution. This next generation software defined radio maintains the well-known features of the previous 
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LimeSDR Mini, but has been enhanced with a new FPGA. The LimeSDR Mini 2.0 has the same form factor, the same LMS7002 

RF transceiver, but houses a more powerful Lattice ECP5 FPGA. The ECP5 FPGA provides the ground operator with on-board 

processing capability. The LimeSDR Mini 2.0 can operate at frequencies from 10 MHz to 3.5 GHz, and is also equipped with full 

duplex receive and transmit capability. 

 

The space exploration vehicle is equipped with 3 separate camera systems to provide observation and reconnaissance purposes. 

The first of these; See3CAM_CU135 is a 13 MP fixed-focus main camera that provides high-resolution 4K video shooting and 

advanced image processing capabilities. This USB is based on a 1/3.2" AR1335 CMOS image sensor with 1.1μm pixel BSI 
technology. This 4K card camera incorporates a high-performance Image Signal Processor chip (ISP) specifically optimized for 

video streaming and image processing applications. The ISP and sensor settings are carefully tuned to produce superb video 

quality in both uncompressed UYVY and Compressed MJPEG formats. The camera can also achieve high frame rates of up to 

816 fps in Region of Interest (ROI) resolutions, adapting to a variety of application scenarios. In addition to the main camera, the 

second camera, See3CAM_CU27, is a Full HD USB 3.1 Gen 1 camera based on the Sony® STARVIS™ IMX462 sensor, capable 

of capturing high-quality images in the near-infrared region. The IR sensitivity of the IMX462 sensor makes this camera an 

outstanding tool for low-light conditions, enabling high-quality and clear images to be captured. The camera is able to optimize 

color accuracy by including a high-performance (ISP) that performs important functions such as auto exposure and auto white 

balance. It offers high frame rates such as FHD @ 100 fps, making it easier to capture fast-moving objects. It provides video 

output in uncompressed UYVY and compressed MJPEG formats. In addition, Tara - USB 3.0 Stereo Camera with MT9V024 

sensor is used to meet the depth perception and stereoscopic imaging requirements. The camera system uses Velodyne HDL-32E 
LIDAR with 32 LIDAR channels and a 360° horizontal field of view aligned from +10.67° to -30.67° for security enhancement 

and terrestrial mapping purposes. The HDL-32E generates point clouds of up to 695,000 points per second with a range of up to 

100 meters and typical accuracy of ±2 cm. All these systems are carried on the rover by Pololu High-Power Motor HP 25D 12V 

power supply, which can control both rear wheels independently, and cylindrical brushed DC geared motors are used. This motor 

provides powerful use in high-performance tasks with 8.4 Nm torque and 400 RPM (revolutions per minute). Jrk G2 21v3 USB 

Motor Controller is used to meet both precise control and feedback requirements during operation of the motors and to control 

them via computer interface. LiFePO4 Solar Power Lithium Storage Battery is used for the operation of the systems. 

 

 

5    Control System 
 

5.1    Equations of Motion (EoM) for Differential Drive Space Exploration Rover (DDSER) 
 

This section discusses the kinetics of a differential drive space exploration rover. The kinematics of differential drive rovers are 

called differential drive because their primary mode of motion is the difference in the speed of the two tires. In other words, if 

both wheels turn in the same direction and speed, the rover moves straight ahead. If they turn in the same speed but in reverse, the 
rover moves straight back. Also, if one side turns faster than the other but both are in the same direction, the rover turns in that 

direction. For example, if the right wheel of the rover turns faster, it is observed that the rover starts to turn counterclockwise 

when viewed from above. Similarly, if the left wheel of the rover turns faster, it is observed that it starts to turn clockwise. 

 

As shown in Fig. 1, the right tire and the left tire ϕ defined by ϕ1 (right) and ϕ2 (left) have two degrees of freedom, while the 

body has three degrees of freedom, x, y and θ. Therefore, the five-variable generalized coordinate q = [xb, yb, θ, ϕ1, ϕ2] is used 

for the pose of this DDSER. Here, θ is expressed as the angle of the body or the angle of the xb axis of the body frame relative to 

the xe of the earth frame. In addition, xb, yb are expressed as the location of the center of the wheels, not the center of the robot. 

In addition, when two wheels are connected using an axis that is the length of the wheels, the body width defined as 2w is obtained. 

In this context, the centroid of the DDSER can be in front of or behind the body, and in this study, it is defined as d unit away 

from the center of mass center of the wheels and zero with the body axis. Therefore, the center of mass rover is expressed as 

perfectly symmetrical with respect to the center of the wheel. 

 

It should be noted that, despite having five generalized coordinates, each variable is not independent and there are constraints 

between them. In the context of these constraints, it is assumed that the wheels do not slip, that is, they do not move horizontally 

or vertically, their speeds are zero and they are completely stationary, with c1 (right) and c2 (left) being the initial contact points. 

In addition, the center of each tire is defined as h1 (right) and h2 (left). From this, no no-slip condition imposes some constraints 
between these degrees of freedom. The first thing to note here is the speed of the center of each tire, expressed by Eq. 1. 
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V⃗⃗ h1
= [

ẋ + wθ̇cosθ
ẏ + wθ̇sinθ

0

] ,        V⃗⃗ c1
= V⃗⃗ h1

+ ω⃗⃗ w1
× R⃗⃗ h1

c1 = [
ẋ + wθ̇cosθ + ρϕ̇1cosθ

ẏ + wθ̇sinθ + ρϕ̇1sinθ
0

] (1.a) 

V⃗⃗ h2
= [

ẋ + wθ̇cosθ
ẏ + wθ̇sinθ

0

] ,        V⃗⃗ c2
= V⃗⃗ h2

+ ω⃗⃗ w2
× R⃗⃗ h2

c2 = [
ẋ − wθ̇cosθ − ρϕ̇2cosθ

ẏ − wθ̇sinθ − ρϕ̇2sinθ
0

] (2.b) 

 

Where  V⃗⃗ h1
 is the speed of the center of the right tire,  V⃗⃗ h2

 is the speed of the center of the left tire,  V⃗⃗ c1
 is the speed of the contact 

of the right tire,  V⃗⃗ c2
 is the speed of the contact of the left tire,  ω⃗⃗ w1

 is the angular velocity of the right side of the vehicle,  ω⃗⃗ w2
 is 

the angular velocity of the left side of the vehicle,  R⃗⃗ h1
 is the radius of the right wheel from the center h1 and R⃗⃗ h2

 is the radius of 

the left wheel from the center h2. 

 

 
Fig. 1. 2D path planning for roadmaps with different obstacles. 

 

The speed expressions defined here are defined with respect to the earth frame. DDSER rotates with an angular velocity ω, which 

is the time derivative of θ. In this context, the configuration of the obtained DDSER is shown using the 5 generalized coordinates 

and their time-dependent changes shown in Eq. 2. 

 

q⃗ = [x y θ     ϕ1 ϕ2]
T (2.a) 

q⃗̇ = [ẋ ẏ θ̇     ϕ̇1 ϕ̇2]
T (2.b) 

 

As mentioned before, the fact that the contact points are completely stationary clearly shows that the constraints expressed in the 

four rows of the matrices in the equations should be equal to zero. The no-slip condition for the contact points is provided by 4 

nonholonomic constraints, 1 of which is redundant, as shown in Eq. 3. Here, it is assumed that the DDSER moves on a flat surface 

(no climbing up or down). Therefore, the potential energy is zero and the Lagrangian can be considered equal to the kinetic energy 

of the system. 
 

ẋ + wθ̇cosθ + ρϕ̇1cosθ = 0 (3.a) 

ẏ + wθ̇sinθ + ρϕ̇1sinθ = 0 (3.b) 

ẋ − wθ̇cosθ − ρϕ̇2cosθ = 0 (3.c) 

ẏ − wθ̇sinθ − ρϕ̇2sinθ = 0 (3.d) 
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Here, since x, y, θ, ϕ1 and ϕ2 cannot be easily integrated with respect to time, four non-holonomic constraints are formed. The 

reason why 1 of the 4 constraints is unnecessary here is that one of these contact points cannot move in both x and y directions 

and the other cannot move only in the x direction, and it cannot move in the y direction. In other words, the forward speed of the 

wheel results in the speed being zero and the lateral speed being zero. Here, the expression that the entire DDSER cannot move 

laterally to the right is expressed as a non-holonomic constraint. Since point c does not move in the Earth frame, both axes of the 
body frame must be zero. Here, three non-holonomic constraints are used instead of four, since one can be obtained from the other 

by starting from the fact that  ẏr is zero for DDSER. If the constraints are included in the cost function and written as “faffian 

constraints”, it is not difficult to minimize the integral of the action. As always in the Lagrangian, the difference between the 

kinetic and potential energies is needed. Then, when the Faffian constraints are written in the C(q) q̇ = 0 format, the friction under 

the tires emerges. Therefore, some algebraic operations are needed when writing equation Eq. 3 in the C(q) q̇ = 0 format. In order 

to do this, the  θ̇ terms are eliminated by adding Eq. 3.a with Eq. 3.c and Eq. 3.b with Eq. 3.4, as shown in Eq. 4. 

 

ẋ =
ρ

2
cosθ(ϕ̇2 − ϕ̇1) (4.a) 

ẏ =
ρ

2
sinθ(ϕ̇2 − ϕ̇1) (4.b) 

 

Here  ϕ̇2 − ϕ̇1 represent the input signals that control the rotation speed of the tires of DDSER. In this way, the speed of  ẋ,  ẏ 

and  θ̇ movements of DDSER can be controlled. Similarly, if Eq. 3.a and Eq. A3.c are subtracted from each other as shown in Eq. 

5, θ̇ can be obtained. 

 

θ̇ =
ρ

2w
(ϕ̇2 − ϕ̇1) (5) 

 
However, it should be noted that the result obtained by subtracting Eq. 2.b and Eq. 3.d is the same as Eq. 5, so there is no need to 

rewrite it. Based on this, Eq. 4 and Eq. 5 are brought together and written in the matrix form shown in Eq. 6. 

 

[
ẋ
ẏ

θ̇

] =
ρ

2
[

(ϕ̇2 − ϕ̇1)cosθ

(ϕ̇2 − ϕ̇1)sinθ

(ϕ̇2 − ϕ̇1)/w

] (6) 

 

This equation clearly shows that C(q) must be expressed in matrix form. Therefore, the "simple linear algebra" shown in Eq. 7 is 

obtained. 

 

C(q)q̇ = 0         where         C(q) =

[
 
 
 
 

 

1 0 0
ρ

2
cosθ −

ρ

2
cosθ

0 1 0
ρ

2
sinθ −

ρ

2
sinθ

0 0 1
ρ

2w

ρ

2w

 

]
 
 
 
 

 (7) 

 

Where is the format of my faffian constraints and the C(q) matrix needed in the previous grant equation. In this context, as stated 

before, in order to facilitate the transition to the lagrangian, which is defined as the difference between the kinetic energy and the 
potential energy, it is assumed that the DDSER moves in a flat orbit. In this case, the potential energy goes to zero in the equation 

shown in Eq. 8 and the lagrangian is equal to the kinetic energy. In the case where the orbit is not flat, an extra term is added for 

the potential energy. 

 

d

dt
[
∂ℒ(q⃗ , q⃗̇ )

∂q⃗̇ 
] −

∂ℒ(q⃗ , q⃗̇ )

∂q⃗̇ 
− C(q)Tλ⃗ = T⃗⃗  (8) 

 

The kinetic energy consists of three components, the body and the two wheels. As shown in Eq. 9, the two wheels both translate 

and rotate to provide the kinetic energy of the body. 
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K. E.=
mb

2
‖V⃗⃗ b‖

2
+ ω⃗⃗ b

TIbω⃗⃗ b =
mb

2
[ẋ2 + ẏ2 + d2θ̇2 + 2dθ̇(ẏcosθ − ẋsinθ)] +

Ib
2

θ̇2  

 
(9) 

Where 
mb

2
‖V⃗⃗ b‖

2
 is the translation term, ω⃗⃗ b

TIbω⃗⃗ b is the rotation term. In addition, mb is the rover's mass, V⃗⃗ b is the body center 

velocity, Ib is the moment of inertia matrix. The expression for 
Ib

2
θ̇2 depends on the geometry and shape of the rover's body. The 

components of the body's velocity are shown in Eq. 10. 

 

V⃗⃗ b1
= V⃗⃗ r + ω⃗⃗ r × r h1

= [
ẋ
ẏ
0

] + [
0
0
θ̇

] × [
dcosθ
dsinθ

0
] = [

ẋ − dθ̇sinθ
ẏ + dθ̇cosθ

0

]    ,     ω⃗⃗ b = [0 0 θ̇]T (10) 

 

Where  V⃗⃗ r is the speed placed on the body reference frame,  ω⃗⃗ r is the angular speed placed on the body reference frame,  r h1
 is 

the radius of right wheel center w.r.t center of mass, ẋ − dθ̇sinθ x-velocity components of centroid and ẏ + dθ̇cosθ y-velocity 

components of centroid The center of mass of the main vehicle body is located at a distance "d" along the x-axis of the body fixed 

reference frame. The speed expression in Eq. 10 is written in explicit form in Eq. 9, and the right side of the equation gives the 
kinetic energy of the body. Depending on the speeds of the centers needed for the wheels calculated in Eq. 1, the right wheel speed 

in Eq. 11.a is ω⃗⃗ b1
rotating around its own axis with ϕ̇1, but the body is also rotating with θ̇. Then, the inertia matrix is shown in 

Eq. 11.b. 

 

ω⃗⃗ b1
= ϕ̇1 [

sinθ
cosθ
0

] + θ̇ [
0
0
1
] = [

ϕ̇1sinθ

ϕ̇1cosθ
0

] (11.a) 

Iw
b = [

Ixx
b 0 0

0 Iyy
b 0

0 0 Izz
b

] =

[
 
 
 
 
 
mw

12
(3ρ2 + t2) 0 0

0
mw

2
ρ2 0

0 0
mw

12
(3ρ2 + t2)]

 
 
 
 
 

 (11.b) 

 

Here, each wheel is assumed to be a disk of thickness t and radius ρ. This allows us to calculate the moment of inertia matrix for 

each wheel. All of these come from a disk shape. Therefore, each will be considered a disk model for simplification. The resulting 

inertia tensor is transformed as shown in Eq. 12. 
 

Iw = RZ,θIw
b RZ,θ

T [
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

] [

Ixx
b 0 0

0 Iyy
b 0

0 0 Izz
b

] [
cosθ sinθ 0
−sinθ cosθ 0

0 0 1
] (12) 

 

Where RZ,θ represents the rotation matrix of the body with respect to the earth frame and Iw
b  represents the moment of inertia of 

the wheels. The reason for this is that the parameters of the kinetic energy are tried to be expressed on the same axis by applying 

the rotation matrix to the moment of inertia defined in the body frame and defining it in the earth frame. From here, the kinetic 

energy is obtained for two wheels as Eq. 13.a right and Eq. 13.b left. 

 

K. E. =
mw

2
‖V⃗⃗ b1

‖
2
+

1

2
ω⃗⃗ b1

T Ibω⃗⃗ b1
=

mw

2
[ẋ2 + ẏ2 + W2θ̇2 + 2Wθ̇(ẋcosθ + ẏsinθ)] +

Izz
b

2
θ̇2 +

Iyy
b

2
ϕ̇1

2 (13.a) 

K. E. =
mw

2
‖V⃗⃗ b2

‖
2
+

1

2
ω⃗⃗ b1

T Ibω⃗⃗ b1
=

mw

2
[ẋ2 + ẏ2 + W2θ̇2 − 2Wθ̇(ẋcosθ + ẏsinθ)] +

Izz
b

2
θ̇2 +

Iyy
b

2
ϕ̇1

2 (13.b) 

 

When the kinetic energy obtained for the wheels is added to the kinetic energy of the body, the three components that produce 

kinetic energy are brought together. To achieve this, Eq. 13 is written in Eq. 9 and the total kinetic energy is obtained from Eq. 

14. 
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K. E.total = K. E.body+ K.E.right w.+ K. E.left w. 

K. E.total = ∂ℒ(q⃗ , q⃗ ̇) =
1

2
(mb + 2mw)(ẋ2 + ẏ2) +

1

2
(mbd

2 + Ib + 2mwW2 + 2Izz
b )θ̇2 

+mbdθ̇(ẏcosθ − ẋsinθ) +
Iyy
2

2
(ϕ̇1

2 + ϕ̇2
2) 

(14) 

 

This is a simplified version of the total kinetic energy. Here mb + 2mw is the total mass of the rover, 
1

2
(mb + 2mw)(ẋ2 + ẏ2) is 

the kinetic energy translation of the body, mbd
2 + Ib + 2mwW2 + 2Izz

b  is the total z-axis rotational inertial kinetic energy rotation 

of the chassis and 
Iyy
2

2
(ϕ̇1

2 + ϕ̇2
2) is the kinetic energy rotation of the tires about y-axis. Also mbdθ̇(ẏcosθ − ẋsinθ) is the 

difference between the center of gravity and the center of gravity of the wheels, with d being zero. Therefore, the distance d 
indicates that the rover's centroid is at the center of the wheels. In addition, since the potential energy is zero, the same result is 

obtained as the Lagrange equation. Then, by combining the constraints, the Euler-Lagrange equation is applied with Lagrange 

multipliers to find the equations of motion, shown in Eq. 15. 

 

d

dt
[
∂ℒ

∂q⃗ ̇
] −

∂ℒ(q⃗ , q⃗ ̇)

∂q⃗ 
− CT(q⃗ )λ⃗ = T⃗⃗ = [0 0 0 τ1 τ2] (15) 

 

Where τ1 represents the torque applied to the right wheel, τ2 represents the torque applied to the left wheel. In addition, since 

there is no external force or moment applied to the motion of the system and contributing to the motion of x, y or  θ̇, the basic 

external forces or moments that will affect the motion in this system consist only of τ1 and τ2. However, since the motion occurs 

on a horizontal plane, there is no contribution from gravity, normal force and static friction. Therefore, the only generalized forces 

or torques that directly affect the motion of  ϕ̇1 and  ϕ̇2 are τ1 and τ2. Therefore, although it is not difficult to find the generalized 

moments of force, as shown in Eq. 16, as many  λ⃗  vectors as there are restrictions are needed. 

 

d

dt

[
 
 
 
 
 mtẋ − mbdθ̇sinθ

mtẏ + mbdθ̇cosθ

Itθ̇ + mbd(ẏcosθ − ẋsinθ)

Iyy
b ϕ̇1

Iyy
b ϕ̇2 ]

 
 
 
 
 

+ mbdθ̇

[
 
 
 
 

0
0

ẏsinθ + ẋcosθ
0
0 ]

 
 
 
 

−

[
 
 
 
 
 
 
cosθ sinθ 0
−sinθ cosθ 0

0 0 1
ρ

2
0

ρ

2w

−
ρ

2
0

ρ

2w]
 
 
 
 
 
 

[
λ1

λ2

λ3

] =

[
 
 
 
 
0
0
0
τ1

τ2]
 
 
 
 

 (16) 

 

Where mt represents the total mass of the wheels and the body, It represents the total moment of inertia matrix. In addition, three 

parameters are needed for the three constraints, λ1, λ2 and λ3. Only by finding the partial constraints according to Lagrangian, the 

final form of the equation previously expressed as C(q) q̇ is shown in Eq. 17. 

 

M(q⃗ )q⃗ ̈ + B(q⃗ , q⃗ ̇) − CT(q⃗ )λ⃗ = T⃗⃗  (17.a) 

M(q⃗ ) =

[
 
 
 
 
 

mt 0 −mbdsinθ 0 0
0 mt mbdcosθ 0 0

−mbdsinθ mbdcosθ It 0 0

0 0 0 Iyy
b 0

0 0 0 0 Iyy
b

]
 
 
 
 
 

 ;  B(q⃗ , q⃗ ̇) = −mbdθ̇2

[
 
 
 
 
cosθ
sinθ
0
0
0 ]

 
 
 
 

  ;   

C(q⃗ ) =

[
 
 
 
 cosθ sinθ 0

ρ

2
−

ρ

2
−sinθ cosθ 0 0 0

0 0 1
ρ

2w

ρ

2w]
 
 
 
 

 

(17.b) 

 

Where B(q⃗ , q⃗ ̇) is used for the centripetal and Coriolis terms, C( q⃗ ) is used for the constraints and  T⃗⃗  is used as the torque. Thus, 

the equations of motion are obtained where the inputs are T⃗⃗  and the outputs are q⃗ ̈. In the forward dynamics problem or inverse 

dynamics, the torque amount is calculated by knowing  q⃗  versus time. Another point to note is that the number of unknowns is 
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actually eight, namely  ẍ, ÿ, θ̈, ϕ ̈ 1, ϕ̈2, λ1, λ2 and λ3. However, the equation M(q⃗ )q⃗ ̈ gives only five equations of these constraints. 

In this context, the other three equations needed come from the constraint equations explained in Eq. 6. However, when we look 

at these constraint equations, we see that in order to find the Lagrangian multipliers, a time derivative must be taken from the 

constraint equations as shown in Eq. 18. 
 

d

dt
[C(q⃗ )q⃗ ̇] = 0           →            C(q⃗ )q⃗ ̈ + Ċ(q⃗ )q⃗ ̇ = 0 (18.a) 

(q⃗ )q⃗ ̈ + B(q⃗ , q⃗ ̇) − CT(q⃗ )λ⃗ = T⃗⃗            →            q⃗ ̈ = M−1(q⃗ )[T⃗⃗ − B(q⃗ , q⃗ ̇) + CT(q⃗ )λ⃗ ] (18.b) 

 

In this way, by finding the other unknowns with this new form, an equation that can give all eight unknowns is formed. If Eq. 18.a 

and Eq. 18.b are written together and the λ⃗  expression is drawn, the Langrange multiplier becomes Eq. 19. 

 

λ⃗ = −[C(q⃗ )M−1(q⃗ )CT(q⃗ )]−1 [C(q⃗ )M−1(q⃗ ) (T⃗⃗ − B(q⃗ , q⃗ ̇)) + Ċ(q⃗ )q⃗ ̇] (19) 

 

Here, the equation λ⃗  obtained by eliminating the expression  q⃗ ̈ gives the restraining forces or torques. An important point is that 

solving forward or reverse dynamics problems by integrating the equations into each other can only be done numerically and 

makes it difficult to see the effects of dynamic parameters on system performance. Therefore, the zero-distance d (the center of 

gravity of the chassis is on the axis of the wheels) constitutes a simplifying assumption as shown in Eq. 20. 

 

d = 0           →            B(q⃗ , q⃗ ̇) = 0          and          M(q⃗ ) = diag(mt,mt, It, Iyy
2 , Iyy

2 ) (20) 

 

Although this is an assumption, it is still impossible to obtain equations that can be easily analyzed. Therefore, the solution is 

reached by resorting to numerical solutions as shown in Eq. 21, taking into account the beginning of the rover motion occurring 

from the stationary state (θ = 0, ẋ = ẏ = 0). 

 

ẍ ≅ −(
1

ρ
)(

1

mw + mt

) (τ1τ2) (21.a) 

ẏ = 0 (21.b) 

θ̈ ≅ −(
w

ρ
) (

τ1 + τ2

mww2 + It
) (21.c) 

 

Here the lateral motion constraint (non-holonomic) remains valid. Since the torques are in opposite directions, the negative 

difference in the equations actually means the total torque applied. Therefore, the more torque applied to each or both tires, the 

faster the system goes and the greater forward acceleration it achieves. If the system is made lighter or the radius of the wheels is 

made smaller, more acceleration occurs. Similarly, the torques must be greater to achieve faster turns or faster angular 

accelerations. The moments of inertia or the reduction of the mass of the blocks provide rotation with a greater angular 

acceleration. As a result, in order to maximize the forward acceleration of the DDSER, the mass of the chassis and wheels must 

be reduced. However, by increasing the gear reduction ratio, the torques must be maximized and the radius of the wheels must be 

reduced. In addition, in order to maximize the angular acceleration of the DDSER, the mass and inertia of the body and wheels 
must be reduced. Similarly, by increasing the gear reduction ratio, torques must be maximized, wheel radii must be reduced and 

width must be optimized. With this information, the optimum wheelbase distance is achieved as shown in Eq. 22. 

 

2w∗ = 2√
Ib + 2Iyy

b

3mw

  (22) 

 

Where 2w∗ represents the optimum wheel to wheel distance. Since it is an inevitable fact that increasing the gear reduction ratio 

and decreasing the radius of the wheels will lead to a decrease in the maximum linear and angular speeds that can be obtained 
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with DDSER, a trade-off must be made between speed and acceleration regarding these 2 parameters. In general, this section 

explains how to obtain the equations of motion while designing the different parameters of DDSER. 

 

5.2    Multivariable Central Rover Control: Feedback Linearization Approach 
 
This section deals with the implementation of Inverse Dynamics Control (Feedback Linearization) in Joint Space. In other words, 

the aim of this section is to consider a system where each joint can move independently of the others and the effects of the others 

create a small disturbance, and instead of any limiting assumption, the general case is considered. This allows DDSER to move 

very fast or very slowly or to have any kind of movement. Here, a system emerges where the movement of each joint depends on 

the other joints, all of them affect each other and the couplings are not small. The aim of this is to provide a control input u(t) that 

cancels the nonlinear terms due to gravity, Coriolis and centripetal terms and to ensure that it follows any random qu(t) input. 

These terms can be estimated with a high degree of accuracy (if these parameters cannot be estimated correctly, Adaptive Control 

and/or Robust Control Algorithms must be used) and to make the resulting system linear, which can be decoupled and easily 

controlled by means of a PD compensator. In this context, firstly the equation of motion of a space exploration rover is shown in 

Eq. 23. 

 

M(q)q̈ + C(q, q̇)q̇ + g(q) = u  (23) 

 

Here, C(q, q̇) is assumed to be due to centripetal and corialis accelerations, and friction terms are neglected, including C(q, q̇) and 

q̇. However, if there are friction terms, they can be added to the friction terms. In addition, u represents the control signal in the 

equation. In this method, the nonlinearity of the system is canceled by using feedback linearization with two control layers, inner 

and outer loop. Then the outer layer is simply obtained with a PD compensator as a forward term, and the feedback is linear. Here, 

differently, this term calculated for the inner loop is not based on the desired values, but only on the desired and some feedbacks. 

Therefore, a feedback linearization really occurs here. Then, if the friction and gravity terms were not present, my equation would 

not exactly resemble a second-order linear differential equation, but it would not be continuously linear. The reason for this is that 

the matrix M(q) is a variable, not a constant. Another point that needs to be addressed is that if the friction and gravity terms are 

eliminated, a second-order system is formed as aq = q̈ (M(q)q̈ = aq). If the terms in aq are linear, a linear second-order system 

is obtained from a nonlinear second-order system, which allows easy use of controllers such as the PD controller or PD+feed 

forward used in the linear system. For this reason, the u signal is selected as the feed forward controller. In this way, all nonlinear 

terms are canceled and feedback linearization or linearization of the system is realized through this feedback term. From this point 

on, during the estimation of C(q, q̇) and g(q), the controller needs encoders by using q and q̈. However, in order to determine 

C(q, q̇) and g(q), commentators need to give position and velocity feedback. Assuming that C(q, q̇) and g(q) are well known and 

that these two terms cancel each other out and also that the matrix m is invertible, and aq = q̈ is obtained, the “Inner Loop Control 

Law” shown in Eq. 24 cancels it out. 

 

M(q)q̈ + C(q, q̇)q̇ + g(q) = u  (24) 

 

The goal of the outer loop is to define aq in such a way that the error shown in Eq. 26 can be equal to zero. Therefore, if aq can 

be chosen, the zero steady state error or asymptotically approaches zero. With the provision of these conditions, the “Outer Loop 

Control Law” shown in Eq. 25 becomes operational. In order to ensure the operational state, it is necessary to determine what  aq 

will be. 

 

aq = Kde(t) + Kdė(t) + q̈d(t) (25) 

e(t) = qd − q (26) 

 

Here q̈d(t) is the acceleration of the joint desired, i.e. feed forward term, e(t) is the error term, qd is the desire control signal, q 

control signal is the proportional term coming from the Kp PD controller and Kd is the derivative term coming from the Kp PD 

controller. From here, if aq = q̈d and ë(t) = q̈d − q̈, ë(t) can be expressed as in Eq. 27. 
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ë(t) = Kde(t) + Kpe(t) = 0 (27) 

 

Since it is known that e(t) = e0e
−ωt, it is placed as Kd = 2ω and Kp = ω2 based on the characteristic equation. However, this 

situation is valid for a single degree of freedom. Since the system has many degrees of freedom in DDSER, although it appears as 

Kd = 2ω  and Kp = ω2, the equation takes the form shown in Eq. 28. Therefore, if Kd and Kp are chosen in a way that determines 

the speed at which ω converges to zero, the error converges to zero as quickly as it depends on the speed of ω, thus ensuring the 

acceleration of the system. However, choosing ω very, very large here does not mean that it will be beneficial to obtain large gains 

and large gains in the real world. 

 

Kp = diaq{ω1
2, . . . . . . ωn

2  } (28.a) 

Kd = diaq{2ω1, . . . . . .2ωn } (28.b) 

 

e(t) provides the tracking error to converge to zero in a critically damped manner. As shown in Fig. 2, the outer loop controller 

takes qd and then produces  q̈d within itself. In addition, when it takes q and qd, it subtracts here and produces the thing that 

creates the error and can produce Kpe(t) and Kde(t) when it has the error. The PD controller is in the double derivative of the 

feedforward term with the outer loop controller. Then, if aq is passed to the inner loop and the inner loop M(q) takes aq and adds 

the Coriolis centripetal and gravity terms to it, the control signal is produced. The multivariable central motion algorithm using 

feedback linearization is a very powerful method because it eliminates many of the limiting assumptions. The system can be 

controlled by adding the damping term and dry friction terms to the other terms in terms of u(t). This method is shown to work 

when the estimates of the robot parameters are correct and the calculations of the control loops can be done quickly. In addition, 

by changing only the outer loop as shown in Eq. 29, starting from Eq. 23, the robot can be controlled to achieve tracking in the 

task area. 

 

Kp = diaq{ω1
2, . . . . . . ωn

2  } (28.a) 

Kd = diaq{2ω1, . . . . . .2ωn } (28.b) 

 

 
Fig. 2. Loop control schematic. 

 

The multivariable central motion algorithm using feedback linearization is a very powerful method because it eliminates many of 

the limiting assumptions. The system can be controlled by adding the damping term and dry friction terms to the other terms in 

terms of u(t). This method is shown to work when the estimates of the robot parameters are correct and the calculations of the 

control loops can be done quickly. In addition, by changing only the outer loop as shown in Eq. 29, starting from Eq. 23, the robot 

can be controlled to achieve tracking in the task area. 

 

Ẋ = Ja(q)q̇ (29.a) 

Ẍ = Ja(q)q̈ + J̇a(q)q̇ (29.b) 

 

Where X is the end-effector pose using the minimum orientation representation and J is the analytic Jacobian. If Xd is known, qd 

can be obtained from inverse kinematics. For the additional calculation of inverse kinematics, the time derivative of the Jacobian 

is calculated as shown in Eq. 30. 
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X = [d
α
]            →            X⃗⃗ ̇ = [

Vr

ωr
] = Jaq⃗ ̇ 

 
(30) 

Here d is the end effector position, α is the end effector orientation (not the rotation matrix),  X⃗⃗ ̇ is the end effector velocity, Vr is 

the velocity of the body, ωr is the angular acceleration of the body and Ja is the analytic jacobian that represents the minimum 

representation of the rotation. In this case, the time derivative of the analytic jacobian is needed to relate the equations in the joint 

space to the task space. Therefore, when the inner loop control law expressed by Eq. 24 is combined with the time derivative of 

the analytic jacobian, q̈ is obtained from the relationship shown in Eq. 30. 

 

q⃗ ̈ = a⃗ q = Ja
−1 (X⃗⃗ ̈ − J̇aq⃗ ̇) (31) 

 

Where the term J̇aq⃗ ̇ is not desired for a simple PD control. In this context, aq is obtained as shown in Eq. 32. 

 

aq = J−1{Ẍd + Kp(Xd − X) + Kd(Ẋd − Ẋ) − J̇q̇} (32.a) 

X̃ = Xd − X (32.b) 

 

Where X̃ represents the error. From here, aq takes the form in Eq. 33. 

 

Ẍ̃ + KdẊ̃ + KpX̃ = 0 (33) 

 

The terms here are obtained from the feedback of the task area. Here q is obtained from the encoder sensor, while q for the motor 

is obtained from the tachometer sensor. In order to obtain feedback for angular positions and speeds, the end effector position in 

the task area must be adjusted by the sensor used or the end effector speeds in the work area. In addition, range-sensor is used 

during X measurement and computer vision is used during  Ẋ acquisition. As a result, the difficulties of the real world can be 

facilitated by converting the model into a task area. 

 

5.3    Trajectory Path Traversal 

 
The equation of motion for the differential drive space exploration rover, as shown in Eq. 34, is expressed as follows. 

 

Mq̈ + B + CTλ = τ (34) 

 

In the governing equation of this space rover, M acceleration, B any centripetal or coriolis accelerations CTλ term due to the 

constraints of the rover and τ input to the system. The constraint differential drive here is due to the fact that the space rover cannot 

move sideways. Therefore, when this yr is aligned with the yr direction on the body axis,  ẏr is equal to zero. As a result of the 

non-holonomic constraint, the robot is prevented from moving sideways or sideways, and only forward and left or right movements 

can be made along the circle. Another important point to note here is that the CTλ constraint term in order to correct the friction 

direction is expressed as the negative of the expression in the equation of motion and provides the correction of the direction of 

motion with a positive sign. In the presence of constraints, the CTλ lagrangian term in the equation of motion is expressed in Eq. 

3 with the λ lagrangian multiplier and the C terms coming from the faffian constraint. These are the forces of the constraint. This 

traction force represents the friction under the tire. The C matrix, written as Faffian constraints, is the matrix that describes all the 

non-slip conditions for the slipping conditions that arise from the fact that the tires must not slip on both the right and left sides. 

Then, if we start from the equation of motion, we can find λ as a result of combining the equations of motion with the constraint 

equations as in Eq. 35. 

 

λ = −[CM−1CT]−1[CM−1(τ − B) + Ċq̇] (35) 
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With this λ equation, the friction force and tracking force under each tire can be found. In addition, λ is a function of the input 

torque, τ. The excessive torque that the tire is exposed to while driving is clearly revealed by the amount of friction that occurs 

under the tires when the gas pedal is pressed too hard or too lightly, due to the difference in torque on the replaced tires. As 

expressed in this equation, λ is a function of the inputs, rather than being independent of the inputs. As shown in Fig. 3, while the 

space exploration rover maintains a constant speed of Vd (speed of the robot along the path), it is required to use a control law for 

the wheel torques, τ, while following a desired trajectory determined as yd = xd
2 as an application from different types of 

trajectories. First of all, in order to simplify the function yd = xd
2, if a parabola starting from the origin or close to the origin is 

desired to be followed, a torque is applied to the DC motors that turn the wheels to the right or left. In addition, by only rotating 

the torques, it is ensured that the desired trajectory is followed and the desired speed Vd is kept constant. Therefore, instead of 
going at a variable speed along the path, the space exploration rover is aimed to pass the path at the desired constant speed. Since 

there is nonlinearity in B, M and C, it is clearly shown that the governing equations are not linear. Here, the most logical solution 

to provide motion control is the “Multivariate Central Rover Control through Feedback Linearization” discussed in the previous 

section. The purpose of this non-linear control feedback linearization is to get rid of non-linear terms with the provided torque. In 

this way, all joints are controlled simultaneously and basically, they are provided to follow the desired input signals. In order to 

provide this, asymptotic zero-going error is made by using a PD or PID controller. At the basis of this, there are two control layers: 

an inner loop that creates the torque based on PID or PD control and an outer loop that produces the desire acceleration, aq. 

 

 
Fig. 3. Loop control schematic. 

 

As shown in Eq. 35 and Eq. 36, due to the presence of nonlinear terms (C(q. q̇)q̇ + g(q)) in the inner loop, u, and outer loop, aq, 

when the torque,τ, corresponding to u, is substituted into Eq. 35, on the right-hand side of Eq. 34, the nonlinear terms (C(q. q̇)q̇ +
g(q)) simplify to only M(q)q̈ = M(q)aq. Therefore, the invertibility of the M term gives the equation q̈ = aq. Then, the aq term 

is selected based on the PD control and fit forward so that the error converges asymptotically to zero. This clearly demonstrates 

the purpose of the control law used. Unlike in the previous section, the left-hand side is expressed as a function of the right-hand 

side and independent of everything else. However, it is seen that the CT term explained in this section depends on the τ expression 

on the right side. In order to use the results obtained here in the control strategy, Eq. 34 and Eq. 35 must be combined and Eq. 36, 

which is the governing equation that does not include the τ term on the left side, must be established. 
 

Mq̈ + B − CT[CM−1CT]−1Ċq̇ + CT[CM−1CT]−1CM−1B = {CT[CM−1CT]−1CM−1 + I}τ (36) 

 

There is only τ on the right side, only this is the appropriate motion equation for i to apply the controller. When the movements 

from this equation are returned to feedback linearization for inner-outer loop control application, it is necessary to get rid of all 

the terms added while making the selection for τ. From here, in order to go down to the Mq̈ expression on the left side of Eq. 36, 

the remaining terms on the left side must be included in the control loop control law. In addition, the inverses of the terms 

multiplied by τ on the right side must be taken. In this way, when multiplied by τ, they can cancel each other with their inverses. 

In that case, Eq. 37 expresses “Inner Loop Control”. 

 

τ = {CT[CM−1CT]−1CM−1 + I}−1[Maq + B − CT[CM−1CT]−1Ċq̇ + CT[CM−1CT]−1CM−1B] (37) 
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If Eq. 37 is put into Eq. 36, the multiplier in curly brackets in Eq. 37 cancels each other with Eq. 36. From here, the entire left side 

of Eq. 36 is equal to the terms in the second closed bracket in Eq. 37 and cancels each other. The only result to be obtained from 

here is M(q) q̈ = M(q)aq. In addition, if the inverse of the term M(q) exists and both sides can be multiplied by the inverse of 

M(q), it is simplified to the expression  q̈ = aq and converted into a linear system. If the system of the space exploration rover 

expressed with the equations is not linear, the nonlinear system is converted into a linear system by selecting the control and 

canceling the nonlinear terms, and feedback linearization is performed when it needs to receive feedback from the q and  q̇ terms 

to create matrices and derivative expressions. The equation can be created using the feedbacks from the q and  q̇ terms. With this, 

the control signal can be created and all nonlinear terms can be eliminated. It should be known that this elimination can only be 

achieved if the system model is almost perfect. The B matrix, C matrix, and M matrix must be known exactly. In cases where these 

are not known, an adaptive control or a strong control must be used or a system definition must be made to define these expressions 

first. Finally, a feedback linearization idea is implemented. When the information from the M, B and C matrices is considered 

almost perfect or at least very close, the maximum cancellation  q̈ = aq can be obtained. After this, the control part occurs where 

the outer control loop comes into play. In order for the error in the queue to go to zero, the aim of the outer control law is for the 

error q (qe) to go to zero as the limit goes to infinity in time, as shown in Eq. 38. 

 

qe = qd − q, lim
t→∞

qe → 0 (38) 

 

In the case where the errors asymptotically converge to zero, the combination of PD control and feedforward is selected for aq. 

Therefore, the expression aq, as shown in Eq. 39, contains a combination of a PD control and a feedforward component, taking 

into account the dynamics of the qe error. 

 

aq = q̈d + Kpqe + Kdq̇e (39) 

 

Where q̈d represents the feed reward term that does not depend on the feedback from the system. This term does not depend on 

q, q̇ or q ̈ . This predefined q̈d signal can be obtained in advance and its second derivative can be transmitted to the system. In 

other words, this is called the feed forward term. In addition, the P (Proportional) controller in the PD term is again expressed as 

Kpq̇e and the D (Derivative) controller term is expressed as Kdq̇e. Here  q̇e represents the error and  q̇e represents the derivative 

of the error. When Eq. 38 and Eq. 39 are combined in Eq. 40, the second order homogeneous differential equation is obtained. 

 

q̈e + Kdq̇e + Kpqe = 0 (40) 

 

If the values of Kd and Kp are chosen appropriately, it becomes certain that lim
t→∞

qe → 0 is obtained. Here, the appropriate choice 

for Kp and Kd is a group ωi squared (Kp = {ωi
2}) for Kp, while the same group ω_i but doubled instead of squared (Kd = {2ωi}) 

for KdK_d. This ensures that the qe solution shown in Eq. 41 will be obtained. Since all of the ωi terms expressed here are positive, 

it shows that all these negative exponential values go to zero as time passes and the magnitude of ωi controls the convergence 

rate, bringing larger gains. 

 

qe = Ae−ωit + Bte−ωit (41) 

 
However, this causes convergence to occur faster. Based on Eq. 39, if the system shows a steady state error, it is converted to PID 

control by bringing it to the form of Eq. 42 with the help of the I (Integral) controller. 

 

aq = q̈d + Kpqe + Kdq̇e + KI ∫qedt (42) 

 

In case of noise in the signal, the derivative term can be added to prevent the derivative from growing too much by adding a PID 

plus filter. On the other hand, PD, PI, PID PLUS filter can vary depending on whether there is a steady state error or noise. 

Although there is no need for noise filtering in the simulation case, in real life, since all signals received from q given in Eq. 38 

definitely have noise, the noise must be filtered. However, if qd is received from some sensors, it may not necessarily have noise 

since it will be a predefined signal. Because something is being followed in real time. If this is not predefined, there may be noise. 



Ozer, M.M.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 229-253. 

244 

 

Therefore, the PID plus filter must be used. Similarly, it may depend on whether the system shows a steady state error or not. 

Although no filter is needed during the simulation, a little bit of steady state error occurs while the system is being tested. 

Therefore, a very small amount of integral controller is added after making sure that the gain is very small in order to avoid 

stability in the system. As a result, with inner loop control expressed by Eq. 36 and outer loop control as shown in Eq. 37 system 

control can be provided and the desired trajectory can be followed. In addition, it was stated that the q term in the equation of 

motion of a differential drive space exploration rover has five elements as x, y, z, θ, ϕ1,ϕ2. The position of q is chosen to be x and 

y of the body center. Then, ϕ1 (right) and ϕ2 (left) represent the ϕ of the right tire and the left tire. When the q expression is 

needed, it is necessary to have qd or q̇d for the control law. Then, the x and y elements in the desire qd having 5 elements (qd =
[xd, yd, θd, ϕ1,d, ϕ2,d])) can be taken from the x point on the curve of any road. However, θ represents the slope of the tangent 

line, which is the tangent inverse of y . Thus, it can desire find the corresponding angle of two tires. Therefore, the expression 

desire q must be found. In order to find desire q̇d, its derivative can be found independently in 5 elements (q̇d = [ẋd, ẏd, θ̇d,

ϕ̇1,d, ϕ̇2,d]). Then, the expression x can be integrated in a way that it changes with respect to time instead of changing with respect 

to x. In addition, here, q̈d and q signals are needed in addition to q̇d. 

 

When q̇d is obtained, it provides to obtain qd with integration on Simulink and q̇d with derivative. Then the target here depends 

on obtaining q̇d expression. During its finding, the slope of y according to x should be selected in such a way that traversing the 

curve speed (Vd) can be provided. Therefore, in order to find ẋd, ẏd etc. expressions, these two criteria should be taken into 

consideration at the same time. In order to produce these signals, 5 elements should be examined separately. Since it is the first 

term, it is possible to start from the speed relation during the obtaining of ẋd. The position of the vehicle expressed with x and y 

axes can be expressed as rectangular coordinates Eq. 43, where Vd is the constant speed of the robot. 

 

Vd = √(Vx)
2 + (Vy)

2
 (43) 

 

Where Vx is the derivative of x with respect to time and Vy is the derivative of y with respect to time, and since these expressions 

are what is desired, this desire becomes Vx and this desire becomes Vy. Then these terms take the form of the derivative of  ẋd 

and ẏd. By taking the square of both sides, Eq. 44 is obtained and it is accepted as 1 unit during the testing of the system. Although 

the vehicle's passing speed on the road is selected as one unit, i.e. 1 meter per second, different values can be set for different 

control design conditions according to how fast the vehicle is desired to move. 

 

Vd
2 = 1 = ẋd

2 + ẏd
2 (44) 

 

Since the desired trajectory is considered as 𝑦𝑑 = 𝑥𝑑
2  is a function of �̇�𝑑. If the derivative of both sides with respect to time is 

taken as shown in Eq. 44, Eq 45 is obtained. 

 

�̇�𝑑 = 2𝑥𝑑 �̇�𝑑 (45) 

 

Here, instead of the derivative of the right side with respect to 𝑥𝑑, the derivative with respect to 𝑥𝑑 is first taken and this expression 

is multiplied by the derivative of 𝑥𝑑 with respect to time, thus the chain rule is used. In addition, the speed expression determined 

as 1 unit is formed into the Eq. 47 and the equation is arranged according to its factored form. 

 

1 = �̇�𝑑
2 + (2𝑥𝑑)2�̇�𝑑

2 = �̇�𝑑
2[1 + (2𝑥𝑑)2] (46) 

 

The ẋd term is removed from this rearranged expression to form Eq. 47. 

 

ẋd =
1

√1 + (2xd)
2
   (47) 

 

It has been found that ẏd can be expressed with Eq. 45 while ẋd is found. When the ẋd expression expressed with Eq. 47 is 

combined with the ẏd expression expressed in Eq. 45, the final ẏd expression is formed with Eq. 48. 
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ẏd =
2xdVd

√1 + (2xd)
2
   (48) 

 

After finding the first two elements of q̇d, θd’ must be found and θ̇d must be expressed by taking its derivative with respect to 

time. The slope of the tangent line θ is equal to the arctangent of y′. However, since the expression y′ is the derivative of yd with 

respect to xd (d(yd)/d(xd)), it is expressed with y′=2xd. After finding θd
′  by taking the derivative of θd with respect to time 

(d/dt), the expression θ̇d is obtained by taking the time derivative of the arctangent, Eq. 49. 

 

θd = atan(yd
′ ) = atan(2xd)   then   θ̇d =

2ẋd

1 + (2xd)
2
 (49) 

 

It is clearly seen that the equation expressed here is the derivative of the arctangent of ẋd. From here, when Eq. 45 is combined 

with Eq. 47, the final θ̇d equation is obtained with Eq. 50. 

 

θ̇d =
2Vd

(√1 + (2xd)
2)

3
 
 (50) 

 

Finally, by finding the rate of change or angular velocity of the two tires in the desired condition, ϕ̇1 and ϕ̇2, all elements for 

implementing control will be known. As shown in Fig. 2, the relationships between the angular velocities of the wheels and the 

forward speed of the body center and the angular rotation of the body (radius of the two tires, r, and radius width of the body, W, 

are known. Since ϕ̇1 and ϕ̇2 are in the same direction in the kinematic equations, the counter clockwise signs for ϕ̇1 and the 

clockwise signs for ϕ̇2 are expressed as opposite. Looking at the two linear equations expressed in Eq. 51, Vd is a controllable 

parameter and after deriving θ̇d, ϕ̇1 and ϕ̇2 are obtained by the known right-hand-side relation. 

 

{

r

2
(ϕ̇2 − ϕ̇1) = Vd

−r

2W
(ϕ̇2 + ϕ̇1) = θ̇d

   then   [
ϕ̇1

ϕ̇2

] = [
−

r

2

r

2
−r

2W

−r

2W

]

−1

[
Vd

θ̇d

] (51) 

 

Here, θ̇d and Vd used in the equation make the angular velocities desired (ϕ̇d,1 and ϕ̇d,2) since they are used in the creation of ϕ̇1 

and ϕ̇2. Therefore, the desired angular velocities (ϕ̇d,1 and ϕ̇d,2) can also be found with Eq. 51. Thus, q̇d can be obtained, and q̈d 

and qd expressions can be obtained by taking the integral and derivative, respectively. In addition, it is possible to create the outer 

loop control shown in Eq. 39. After the controller application is implemented, a Matlab script with defined parameters is written 

to basically provide the simulation of the equations of motion and it is provided to call the equations of motion in the Simulink 

model. As shown in Fig. 4, the inner loop that provides the rover movement is the outer loop control. In addition, it provides the 

 q̇d generator points containing the path traversal equations. From here, the initial conditions of the rover are double integrated 

and the resulting  q̈d generator is obtained.  
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Fig. 4. Simulink model of the system. 

 
All positions and velocities expressed here belong to a second-order system. When the rover is used, recognition allows the vehicle 

to pass through all desired paths from a certain start to a certain end. However, since this creates the problem of which path the 

vehicle should take, it is necessary to define either directly based on the path planning algorithm or mathematically the path it 

wants to take. As a result, the control design of a differential drive robot has been realized to follow a certain path autonomously. 

The design under this heading is basically based on Eq. 34. Thus, the application of multi-variable central control inner and outer 

loop control to the differential drive space exploration rover has been explained. The numbers used here and the conditions are 

presented and simulated to show that the initial system works. In this context, the mass of the rover's chassis is 30 kilograms, the 

mass of each wheel is 1 kilogram, the width of the body (2w) is 150 cm, the radius of each tire is 15 cm, the thickness of each 

wheel or tire is 2.5 cm, the offset between the center of gravity of the body and the center of the wheels (d) is 30 cm and the mass 

moment of inertia for the body is 15.625 kilogram-meter-square. In the simulation model established in the Simulink environment, 
3 different orbits were used in order to have different dynamics of the orbits: sinusoidal orbit, infinite orbit and square orbit. 

 

Fig. 5.a shows the X and Y axis errors with the rover's sinusoidal orbit tracking. The obtained results show that the rover converges 

to the reference orbit in a short time. As seen in the figure, the rover managed to settle into the reference orbit in a short time with 

the selected parameters. The position error was eliminated in about 5 seconds. It took about 1 second for the estimated parameters 

to become stable after the rover settled into the orbit and became stable. Similarly, Fig. 5.b shows the X and Y axis errors with the 

rover's infinite orbit tracking. As seen in the graph, the rover managed to settle into the reference orbit in a short time with the 

selected parameters. Although the position error was eliminated in about 7 seconds, adopting a dynamic structure causes an instant 

increase in the X axis error at the 30th second. It took about 0.4 seconds for the estimated parameters to become stable after the 

rover settled into the orbit and became stable. It was observed that all parameters were asymptotically stable. In addition, the 

rover's square orbit tracking and X and Y axis errors are shown in Fig. 5.c. As seen in the graph, the rover managed to settle into 

the reference orbit with the selected parameters, but due to the dynamic movements at the corner points, the rover made position 

errors in the axes. These errors are also very obvious in the graphs. These errors were resolved in a short time and the reference 

orbit tracking was successfully performed again. In the selected square orbit, there are only dynamic movements at certain 

positions, and in other positions there are only movements with linear speed. In places where the orbit is stationary, the estimation 

parameters also remained stationary. 

 



Ozer, M.M.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 229-253. 

247 

 

 
Fig. 5. Orbit tracking and axis errors. 

 

As seen in Fig. 6.a, the instantaneous angular velocity for the sinusoidal orbit was able to settle at the targeted angular velocity in 

a very short time, while it took about 0.4 seconds for the linear velocity to stabilize. However, as seen in Fig. 6.b, the instantaneous 

angular velocity and linear velocity for the infinite orbit were able to settle at the targeted velocities in about 0.2 seconds. Similarly, 

as seen in Fig. 6.c, the instantaneous angular velocity and linear velocity for the square orbit were able to settle at the targeted 

velocities in about 0.2 seconds. Simulation studies were carried out in the Simulink environment and analyses were carried out in 

3 different orbits, and it was observed that the rover moving in the infinite orbit minimized the position and speed errors in a 

shorter time compared to the sinusoidal orbit and became stable in a shorter time in parallel. In addition, it was observed that the 

angular velocity in the square orbit changed less over time. Therefore, it was realized that stable orbits such as square orbits were 
not suitable for applications where parameter estimations would be made. In this context, it was clearly seen that the estimation 

success of sinusoidal and infinite orbits was much higher. 
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Fig. 6. 2D path planning for roadmaps with different obstacles. 

 

 

6    Path Planning 
 

The Rapidly-Exploring Random Tree (RRT) algorithm is a path planning method developed specifically for the purpose of 

addressing nonholonomic constraints. This approach rapidly expands the tree using control inputs. Unlike other traditional 

methods, RRT focuses on randomly selected points instead of directing the system from point to point. RRT offers a wide range 

of applications and can address holonomic, nonholonomic and kinodynamic planning problems. It determines the number and 

complexity of parameters in a system and is of great importance in engineering disciplines, especially mechanical engineering, 
aerospace engineering, robotics and structural engineering. The algorithm selects random points and branches towards these points 

while creating a path from the starting point to the target. However, it does not reprocess previously visited nodes and instead of 

considering a nearby node, it selects a random node on the map and starts from a different previously visited node to reach this 

node. The search process is completed when the point where the two trees meet is found and this point is the best path. In 

conclusion, the Rapidly-exploring Random Tree (RRT) algorithm provides a fast and efficient solution to nonholonomic planning 

problems. This algorithm plays a critical role in engineering applications by ensuring that systems successfully reach their goals 

through random selection and rapid expansion. 

 

In this section, it is aimed to develop 3D path planning techniques based on 2D path planning algorithms designed for rovers and 

to make rapid progress in practice. Obstacles created in 2D environment contribute to obtaining the optimum path by preventing 

obstacles between the source and the target of the rover and using the recommended method. The RRT algorithm used for this 

purpose is one of the most widely used for autonomous rovers. The map contains three basic elements: obstacles, starting point 
and destination point, and is created using Matlab software. The algorithms include various steps for calculating the 3D path. First, 

information about obstacle heights is collected from a local starting point and transmitted to a target point. Then, the most suitable 

path for the rover to travel is determined based on obstacle heights and shortest path planning. Different alternative path plans are 

created using 2D path planning algorithms according to obstacle heights. In order to achieve these goals, 3 different areas are 

determined and the optimum path is selected as a result of running the RRT algorithm 10 times. As shown in Fig. 7, obstacles, 

each with a different length and width, are determined. The first and third obstacles in Fig. 7.a are 20 meters wide and 60 meters 
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long, and the second obstacle is 40 meters wide and 40 meters long. The path from the starting point to the target point is calculated 

in a 2D environment. Similarly, as shown in Fig. 7.b, there are four different obstacles, each with a different length and width. 

The first obstacle is 20 meters wide and 20 meters long, the second obstacle is 20 meters wide and 23 meters long, the third 

obstacle is 20 meters wide and 40 meters long, and the fourth obstacle is 20 meters wide and 50 meters long. There is also a single 

obstacle, as shown in Fig. 7.c. The obstacle is 50 meters wide and 60 meters long.  

 

 
Fig. 7. 2D path planning for roadmaps with different obstacles. 
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Fig. 8. Road performance of road maps with different obstacles compared to the algorithms in the literature. 
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For Fig. 7.a, it was seen that the path plan drawn by the first simulation among 10 iterations performed for the optimization of 

RRT was a more suitable path in terms of length and time. In a similar comparison, it was seen that the path plan drawn by the 

eighth simulation among 10 iterations in Fig. 7.b was a more suitable path in terms of length and time. Finally, it was seen that 

the path plan drawn by the fourth simulation among 10 iterations in Fig. 7.c was a more suitable path in terms of length and time. 

These situations showed that the RRT algorithm drew a path by determining different points towards the target in each simulation. 

This clearly showed with simulations that the RRT algorithm made branches by selecting random points and created the most 

suitable route to the target according to the branches. 

 
After the RRT path planning control was performed on the differential drive rover, it was compared with the Dijkstra and A* 

algorithms, which have a place in the literature for finding the shortest distance between two nodes, in order to highlight the 

benefits of the algorithm used. Fig. 8 shows the success of determining the shortest path to the target with the application of RRT 

compared to other algorithms. The obtained data showed that the A* algorithm scans the area only towards the target, while the 

Dijkstra algorithm scans a much wider area and reaches the target. The RRT algorithm, on the other hand, draws a path by 

determining different points towards the target in each simulation. The main reason for this approach is that the RRT uses random 

samples from the search area while creating a rooted tree in the initial configuration. While drawing each sample, it tries to 

establish a connection between the tree and the nearest state. If this connection passes through a completely empty area and does 

not violate any constraints, the new state is added to the tree. However, if the random sample is further away from the nearest state 

in the tree, a new state at the maximum distance in the tree is used instead of the random sample. In this way, the random samples 

are allowed to control the tree growth and determine the growth direction. 
 

 

7    Conclusions 
 

This study emphasizes that autonomous path planning for differentially driven space exploration rovers can be successfully 

achieved using a controller with nonlinear governing equations and RRT (Rapidly-Exploring Random Tree) path planning. In 

order to test different dynamics in the simulation environment, the simulation model was studied on three different orbits: 
sinusoidal orbit, infinite orbit and square orbit. The space rover quickly adjusted to the reference orbit in the sinusoidal orbit and 

eliminated the position error in approximately 5 seconds. Also, the instantaneous angular velocity reached the target values in 0.1 

seconds and the linear velocity in 0.4 seconds. In the infinite orbit, the reference orbit settlement time was approximately 7 

seconds, while both angular and linear velocities were stabilized in 0.2 seconds. In the square orbit, although the reference orbit 

was generally settled, and dynamic movements, especially at the corner points, caused temporary position errors, these errors were 

corrected in a short time and the velocities reached the target values in 0.2 seconds. The findings show that the success of the 

parameter estimation depends on the stability in the orbit and speed tracking. In the infinite orbit in particular, the fact that the 

position and speed errors were minimized in a shorter time compared to the sinusoidal orbit allowed the estimation parameters to 

stabilize more quickly. These results are an important step for space exploration rovers to be used more efficiently in complex 

tasks. In this context, advanced interfaces and communication systems for conditions have been integrated with Software-Defined 

Radio (SDR) technology with communication bands such as S-band, VHF, UHF, and the communication capabilities of the rovers 
have been significantly increased. What’s more, advanced imaging systems such as different cameras and LIDAR systems have 

helped the rovers to examine their surroundings in more detail and safely. Furthermore, for optimum path planning, it aimed to 

determine the shortest path to the target by avoiding obstacles using various two-dimensional methods that evaluate different 

conditions and requirements. Among the methods used for this purpose, Dijkstra algorithm determines the shortest distance 

between two nodes with a greedy approach, while A* algorithm determines this distance using a heuristic method. RRT algorithm 

reveals the most suitable route to the target by creating branches over randomly selected points. Simulation results showed that 

A* algorithm performs area scanning only focused on the target, RRT algorithm draws a path over different points in each trial, 

and Dijkstra algorithm reaches the target by scanning a wider area. As a result, RRT algorithm provided a shorter path to reach 

the target compared to A* method. This situation shows that RRT is more effective compared to previously widely used path 

planning algorithms such as A* and Dijkstra in the literature, and this algorithm has great potential in shaping the future strategies 

of autonomous space exploration. 

 
In future studies, a cooperative approach based on swarms of mobile robots or rovers is proposed to enable space exploration 

rovers to gain more autonomous capabilities and efficiency. This could enable rovers to perform complex tasks more effectively. 

In this context, smaller swarm members orbiting a main rover could be used to create a more detailed map of the Earth's surface 

or to perform specific tasks. These swarm members could communicate with the main rover to share data and improve the rover's 

decision-making processes. Such a swarm-based cooperation could contribute to more efficient and successful future space 

exploration missions. Moreover, this approach could further expand the boundaries of space exploration technology by offering 

exciting opportunities to study the interactions between different types of rovers. 
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