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Abstract. This article presents an analysis of computer 

vision algorithms for Lane Maintenance Assistants 

(LMA), comparing traditional methods with Convolutional 

Neural Networks (CNNs). The objective is to evaluate their 

effectiveness under diverse driving conditions using 

recognized databases and testing in both real and simulated 

environments. A proprietary database containing scenarios 

from the state of Morelos was also used. Experiments 

covered adverse conditions, such as rain (light, moderate, 

heavy), solar glare, road shadows, curves, and night 

driving with/without artificial lighting. Fog simulations 

included uniform, heterogeneous, cloudy, and combined 

types. Results showed traditional methods, such as Sobel + 

Adaptive Thresholding (SA) and Canny + Hough (CH), 

perform well in normal conditions, achieving a high 

Intersection over Union (IoU) of 0.9729 and Precision of 

0.9888 in Experiment 1. However, their performance 

declined in complex scenarios like sharp curves and 

degraded lane markings, with IoU dropping to 0.4838 and 

Precision to 0.4925 in Experiment 4. Conversely, CNN-

based algorithms, like SCNN and VGG16, demonstrated 

greater adaptability and accuracy in challenging 

environments. In Experiment 5, VGG16 achieved a Recall 

of 0.9796 and a Dice Index of 0.6575, showing superior 

lane detection in dynamic conditions. Although traditional 

methods and CNNs showed comparable IoU and Precision, 

the higher Recall in CNNs indicates better robustness, 

crucial for real-world applications. This study highlights 

the advantages of deep learning in road safety, reinforcing 

CNNs particularly VGG16 as a preferred option for lane 

detection in autonomous vehicles. 
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1 Introduction 
 

Humans make decisions constantly throughout the day, many of which are based on our perceptions of our surroundings. In 

driving, visual perception is essential to ensure safe and efficient driving. Autonomous vehicles require the ability to detect objects 

in their environment and react appropriately, which poses several challenges related to computer vision (SAE, 2021). Among 

these challenges are the identification of traffic signs, traffic lights, pedestrians and, perhaps most importantly, lane lines. The 

latter play a crucial role in vehicle motion planning, as they help determine the path to follow and avoid unintended deviations 

(Zakaria et al., 2023). Motion planning is a key technology in autonomous vehicles, but it faces significant challenges, especially 

when it comes to accurate lane detection. This process begins with lane identification and tracking along the vehicle's route, 

followed by detection of obstacles, signs, and other road features that can influence driving. This research focuses on evaluating 
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the most effective methods for lane detection, dividing them into two main categories: traditional computer vision-based 

approaches and advanced deep learning techniques, such as convolutional neural networks (CNNs). In-vehicle perception systems 

are central to addressing these challenges. These systems are composed of cameras and sensors strategically placed in the vehicle, 

whose function is to capture, analyze and process information about the environment. This information is essential for real-time 

decision making and has a direct impact on driving safety and comfort. Advanced driver assistance systems (ADAS), such as 

Lane Keeping Assist (LKA) and automatic emergency braking, rely on this capability to interpret road conditions and help the 

driver avoid accidents. The integration of data from various sensors, such as LiDAR, cameras and radar, enables a more complete 

view of the environment. This vision is essential not only for the proper operation of autonomous vehicles, but also for the efficient 

operation of ADAS systems, which perform tasks such as route planning, pedestrian detection, and collision avoidance. Recently, 

advances in deep learning techniques, especially in image and video processing, have enabled great progress in lane detection, 

with convolutional neural networks (CNNs) being one of the most effective approaches to address these problems (Zakaria et al., 

2024). Real-time lane detection is challenging due to the variability of road shapes, colors, and conditions. Traditional computer 

vision approaches, such as the Hough Transform, the Canny algorithm for edge detection, and the use of filters such as Kalman 

and Sobel, have been effective in relatively stable conditions. However, these methods tend to fail in complex scenarios, such as 

adverse weather conditions or roads with steep curves (Chand Bansal et al., 2021). In contrast, deep learning techniques, 

particularly those based on CNN, have demonstrated a great ability to improve lane detection accuracy, adapting better to various 

driving conditions and scenarios. The use of CNN and combined convolutional and recurrent network architectures such as those 

proposed by (Wang et al., 2022; Zou et al., 2020) has shown great potential to overcome the limitations of traditional methods. 

Despite their effectiveness, neural networks face challenges such as the need for large amounts of training data and the 

computational resources required for their real-time training and deployment. However, improvements in architecture and 

optimization algorithms have made neural networks increasingly applicable to lane detection, even under difficult road conditions. 

Widely used datasets for the evaluation of lane detection models, such as CULane (Pan et al., 2018) and TUSimple (Yoo et al., 

2020), remain essential for training and evaluating robust models. However, these datasets still lack a sufficient variety of scenarios 

that reflect the diversity of real-world conditions that autonomous vehicles may face. Incorporating more variety in the datasets 

could improve model generalization and enable lane detection systems to be more accurate and reliable in real-world, adverse 

driving conditions. 

 

 
 

 

Fig. 1. General diagram of the proposed solution methodology 
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2 Methodology 
 

The proposed method for analyzing computer vision algorithms applied to lane-keeping assist systems is organized into three 

main modules: data acquisition and preprocessing, implementation of lane detection algorithms, and performance evaluation. Each 

module is designed to address a specific aspect of the system, from data collection to comparison of techniques and performance 

metrics (see Figure 1). This section describes the specifications of the development environment employed for the execution of 

the experiments, which involved both simulated images and real environments, as well as the characteristics of the computer 

system (see Table 1), the databases utilized (see Table 2), and the camera used for the creation of the database of the state of 

Morelos, Mexico. Furthermore, Table 3 outlines the software architecture applied for lane detection in road scenes, including both 

the software tools and the camera specifications. 

 

Table 1. Computing system 

Component Specification 

Processor 13th Gen Intel(R) Core(TM) i7-13650HX 2.60 GHz 

RAM memory 16 GB DDR5 

GPU RTX 4060 with 16 GB of VRAM 

Storage 1 TB SSD 

  

 

Table 2. Summary of databases used 

Database Images 
Video 

clips 
Description 

Frida & 

Frida 2 [9] 
420 N/A 

Database of varied simulated road scenes for lane detection with 

uniform, heterogeneous, and cloudy fog and lighting conditions. 

    

TuSimple 

[8] 
55,640 2,782 

Dataset with a variety of road scenes for lane detection and adverse 

weather conditions such as sharp curves and shadows. 

    

Own 

database 

(Morelos) 

[10]  

22,566 41 

Database of the state of Morelos, Mexico, with varied road scenes for 

lane detection, including sharp curves, rain, low illumination, 

darkness and shadows. 

    

 

Table 3. Software and Camera Specifications 

Element Specification 
Operating System   Linux Ubuntu 

  
Ubuntu Version 20.04 LTS 

  
Programming Framework Python 

  
Development Environment Anaconda (virtual environments) 

  
Libraries Used OpenCV, NumPy, TensorFlow, PyTorch, Scikit-learn, 

Matplotlib, Easydict. 

  

Camera Used   Hero 10 Black 

  
Camera Resolution 5312 x 2988 (Maximum resolution) 
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Capture Frequency Up to 240 fps (in 1080p); 60 fps (in 5.3K) 

  
Installed Dependencies easydict==1.6, matplotlib==2.0.2, glog==0.3.1, 

opencv-python==3.4.0.12, numpy==1.13.1, 

scikit-learn==0.19.1, python==3.7,TensorFlow==2.2, 

Keras==2.3. 

 

Each module is described in detail below, as well as its role in the methodology. 

 

 

2.1 Acquisition and Preprocessing 
 

The process begins with the acquisition and preprocessing of visual data, utilizing both state-of-the-art databases and newly 

captured data. Images and videos are collected through vehicle-mounted cameras, capturing a wide range of scenarios, including 

varying traffic conditions, lighting, and adverse weather such as rain, fog, and shadows. Preprocessing plays a critical role in 

adapting the visual data to these diverse scenarios by addressing specific challenges. For instance, de-fogging enhances visibility 

in foggy conditions, while shadow removal improves lane clarity in uneven lighting. Histogram equalization and color correction 

adjust image contrast and brightness for better feature recognition, particularly in low-light or overexposed conditions. Lane width 

estimation and marking refinement are essential for accurately identifying lanes on roads with varying geometries or worn 

markings. Additionally, defining the region of interest (ROI) focuses processing on the relevant areas of the image, minimizing 

noise and computational overhead. These preprocessing techniques collectively enhance image quality and ensure reliable lane 

detection across different environments (see Figure 2). 

 

 
 

Fig. 2. Acquisition and Preprocessing Module 

 

Block 1: Data Acquisition 

 

This first block focuses on the collection of images and videos using vehicle-mounted cameras, covering various traffic conditions, 

weather, and road environments. The data is obtained both from state-of-the-art databases and from new scenarios captured in 

adverse situations, such as rain, fog, or low illumination. 

 

Block 2: Data Preprocessing 

 

Preprocessing is crucial to optimize visual data before applying them to lane detection algorithms. The data preprocessing 

techniques used are described below: 

De-raining: removes raindrop effects in the images to improve visibility. Mathematically, the input image I can be decomposed 

into two components: 

𝐼 = 𝐿 + 𝑅 (1) 

 

where 𝐿 is the clean image and 𝑅 represents the raindrops (Ren et al., 2020). 
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De-noising: It reduces the noise generated by low illumination or camera interferences by means of filters such as the Gaussian. 

This filter smoothes the image by convolving a Gaussian kernel 𝐺(𝑥, 𝑦) with the original image 𝐼 : 

 

𝐼′(𝑥, 𝑦) = ∑  

{𝑘}

{𝑖=−𝑘}

∑  

{𝑗}

{𝑗=−𝑘}

𝐺(𝑖, 𝑗)𝐼(𝑥 − 𝑖, 𝑦 − 𝑗) 

 

(2) 

The Gaussian filter is defined as: 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑥2 + 𝑦2

2𝜎2 ) 

 

(3) 

where (σ) is the standard deviation that controls the level of smoothing (Goceri, 2023). 

Region of Interest (ROI): The Region of Interest (ROI) is a crucial step in lane detection (Haider, 2023) that focuses processing 

efforts on the areas of the image most likely to contain lanes. This not only reduces computational complexity but also enhances 

detection accuracy by excluding irrelevant parts of the image, such as the sky or surrounding scenery. The ROI is defined using a 

binary mask MM that specifies the relevant regions of the image. When applied to the input image II, the ROI is computed using 

element-wise multiplication as follows: 

𝐼𝑅𝑂𝐼  =  𝐼 𝑥 𝑀  

 
(4) 

Here, x represents the element-to-element multiplication, effectively zeroing out pixel values in I that fall outside the regions 

marked by M. The design of the binary mask M is based on prior knowledge of the camera perspective and typical lane positioning, 

such as limiting the ROI to the lower half of the image where lanes are most likely to appear. This targeted approach optimizes 

resource allocation during preprocessing and reduces noise from unrelated parts of the frame, significantly improving the overall 

performance of lane detection algorithms. 

De-fogging: Improves visibility in foggy conditions using the atmospheric transmission equation: 

 

𝐼(𝑥)  =  𝐽(𝑥)𝑡(𝑥)  +  𝐴(1 −  𝑡(𝑥)) 

 
(5) 

where 𝐼(𝑥) is the observed image, 𝐽(𝑥) is the fog-free image, 𝑡(𝑥) is the transmission map, and 𝐴 is the ambient light. The 

transmission map 𝑡(𝑥) is estimated to recover the image 𝐽(𝑥) (Qu, 2023). 

De-hazing: Similar to de-fogging, de-hazing uses the “Dark Channel Prior”, which estimates the areas less affected by haze based 

on the darkness of the color channels [15]. 

 

I(x) = 𝐽(𝑥) ∙ 𝑡(𝑥) + (1 − 𝑡(𝑥)) ∙ 𝐴 

 
(6) 

In the haze model, I(x) represents the pixel value of the hazy image at a specific point xx, while J(x) corresponds to the pixel value 

of the clean, haze-free image at the same point. The transmission t(x) at point x refers to the amount of light that has successfully 

reached that point after passing through the haze. Finally, A denotes the atmospheric color, which is a constant value that represents 

the contribution of ambient light to the haze. 

Histogram Equalization: Increases the distinction between the lanes and the road background. The cumulative histogram 𝑓 (𝑖) is 

used to adjust the intensity levels of the image: 

 

𝑥′ =  
𝑓(𝑖) −  𝑚𝑖𝑛(𝑓)

(𝑀 × 𝑁) −  𝑚𝑖𝑛(𝑓)
× (𝐿 − 1) 

 

(7) 

where M × N is the image size, and L is the number of gray levels (Roy et al., 2024). 

Gamma correction: is a technique used to adjust the brightness of an image, compensating for the non-linear behavior of human 

vision and the way displays reproduce images (Cui et al., 2022). It corrects the image’s luminance to make it appear more natural 

to the human eye by applying a power-law function to the pixel values. In digital imaging, gamma correction is essential because 

human eyes are more sensitive to changes in darker areas than in lighter ones. Without gamma correction, images could appear 
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too dark or too bright, and details in shadows or highlights might be lost. By applying gamma correction, the image can be adjusted 

to better match the non-linear response of the human visual system. 

 

𝐼′(𝑥, 𝑦)  =  𝐼(𝑥, 𝑦)𝛾  

 
(8) 

where γ controls the correction level. Values 𝛾 <  1 lighten the image, while 𝛾 >  1 darken it. 

Color Filtering: is a fundamental technique in computer vision used to identify specific features in an image, such as lane lines in 

autonomous driving applications. Color filtering leverages the color differences between the features of interest (in this case, lane 

lines) and the background by applying thresholds to the color channels in an image (Javeed et al., 2023). 

Shadow Removal: Identifies and removes shadows that interfere with lane detection (Zhang et al., 2021). The illumination and 

reflectance components of the image are separated. This decomposition can be expressed by the equation: 

 

𝐼(𝑥, 𝑦)  =  𝐿(𝑥, 𝑦)𝑅(𝑥, 𝑦)  

 
(9) 

where 𝐼(𝑥, 𝑦) is the observed image, 𝐿(𝑥, 𝑦) is the illumination component and 𝑅(𝑥, 𝑦) is the reflectance (the part without 

shadows). Methods for estimating 𝐿(𝑥, 𝑦) are usually based on color normalization using the chromaticity ratio, so that shadows 

are detected as low light intensity regions. Detected as regions of low light intensity: 

 

𝑆(𝑥, 𝑦)  =  1 −
𝑚𝑖𝑛(𝐼𝑅(𝑥, 𝑦), 𝐼𝐺(𝑥, 𝑦), 𝐼𝐵 (𝑥, 𝑦))

𝐼(𝑥, 𝑦)
  

 

(10) 

where 𝐼𝑅, 𝐼𝐺, 𝐼𝐵 are the intensities of the color channels. 

Lane Width Estimation: Verifies the detection of lanes based on their typical width. Lane width estimation is based on measuring 

the distance between detected lane lines in pixels and converting that measurement to physical units (such as meters) using a 

perspective transformation. Given a camera model and its calibration, the transformation of the image to a top view plane can be 

described by a homography matrix 𝐻. If (𝑢, 𝑣) are the coordinates of the points in the image and (𝑥, 𝑦) are the coordinates in the 

real plane, the relationship is: 

[
𝑥
𝑦
1

] = 𝐻 [
𝑢
𝑣
1

] 

 

(11) 

Then, the lane width is estimated by measuring the distance between the lane lines in the real plane (Ghanem et al., 2023). 

Top-hat/Bot-hat transforms: They highlight brightness or darkness features through the differences between the original image 

and its morphological operations (Salvi et al., 2021). Top-hat transformation is defined as: 

 

𝐼𝑡𝑜𝑝ℎ𝑎𝑡 =  𝐼 −  𝐼𝑜  

 
(12) 

where Io is the morphological aperture. The Bot-hat transform is used to highlight dark areas: 

 

𝐼𝑏𝑜𝑡ℎ𝑎𝑡 =  𝐼𝑐 −  𝐼  (13) 

where 𝐼𝑐 is the morphological closure. 

Lane Mark Refinement: The position and shape of detected lane lines are adjusted using refinement algorithms such as Canny's, 

which combines gradients and non-maximum suppression to detect edges. 

These preprocessing techniques ensure that the processed images are in optimal condition for accurate and reliable lane detection, 

regardless of weather or lighting conditions. 

 

2.2 Algorithm Implementation 
 

The second module focuses on the implementation of traditional computer vision and deep learning algorithms. Classical 

techniques are implemented to identify lane lines and analyze their geometry under standard and complex conditions. In addition, 

convolutional neural networks are used to improve the accuracy of lane identification. 
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These models are trained and tested on various datasets, addressing challenges such as adverse weather conditions or roads without 

visible markings (see Figure 3). 

 

 
Fig. 3. Algorithm Implementation Module 

 

Block 3: Lane Detection with Classical Algorithms 

 

This block applies traditional computer vision techniques for rail line detection. Classical methods, such as the Hough Transform 

and the Canny edge detector, are effective under ideal conditions, where lane lines are clearly visible. Although these algorithms 

are less computationally demanding, they may have limitations in more complex scenarios. Table 4 below reviews in detail the 

methods and algorithms used, including techniques, improvements, and differentiators: 

 

Table 4. Methods and algorithms of classical techniques 

Method/Algorithm Techniques Enhancement Differentiator Reference 

Canny, Hough. Canny + Hough. Improved detection 

of straight lines 

from edges. 

Uses Canny for edge 

detection and Hough 

for straight lines. 

(Shriwas 

et al.,  

2024) 

 

  
     

Sobel, Hough. Sobel + Hough. Use the Sobel 

operator to 

detect edges before 

applying 

Hough. 

Sobel highlights 

edges based on 

gradients 

gradient-based edges, 

Hough extracts 

lines. 

(Mushtaq 

and Bedi,  

2024) 

 

 

 
 

  
     

Sobel, Adaptive 

Thresholding. 

Sobel + Adaptive 

Thresholding 

Improved 

adaptability to 

different lighting 

conditions. 

Adaptive threshold 

adjusts 

detection according 

to the illumination. 

(Ghanem 

et al., 

2023) 

     

Canny, Morphological. Canny + 

Morphological 

Operator. 

Improves the 

continuity of the 

detected edges. 

Morphological 

operators correct 

discontinuities at the 

edges. 

(Kishor et 

al., 2024) 

     

Canny, Hough, 

Perspective 

Transformation. 

Canny + Hough + 

Perspective 

Transformation. 

Improves the visual 

representation 

of detected lanes. 

Transformation 

corrects 

perspective for better 

visualization. 

(Lee and 

Liu, 2023 
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Sobel, Perspective 

Transformation, 

Sliding Window. 

Sobel + Perspective 

Transformation + 

Sliding Window. 

Allows for a more 

detailed analysis 

of the rails in 

different sections. 

Combination of 

different approaches 

and improves 

detection. 

(Farag, 

2020) 

     

Canny, Perspective 

Transformation, 

Kalman. 

Canny + Perspective 

Transformation + 

Kalman Filtering 

Combines edge 

detection and 

motion tracking. 

Kalman filter 

predicts 

trajectories after edge 

detection. 

(Panev et 

al., 2019) 

     

Sliding Window, 

Canny, Hough. 

Sliding Window + 

Canny 

+ Hough. 

Adjusts lane 

detection based on 

position. 

Dynamic analysis 

improves the 

detection of moving 

lanes. 

(Panda 

and 

Mohanty, 

2020) 

     

Canny, Hough, 

Parabola Modeling. 

Canny + Hough + 

Parabola Modeling. 

Improved detection 

of curved rails. 

Parabola modeling 

adjusts lines to 

smooth curves. 

(Bilal et 

al., 2019) 

     

Gaussian, Sobel, 

Curved. 

Gaussian Filter + 

Sobel + Curved 

Segment Modeling. 

Allows accurate 

detection of curved 

rails from smoothed 

edges. 

Pre-smoothing 

improves detection 

of curved edges. 

(Fakhfakh 

et al., 

2020) 

     

 

Block 4: Lane Detection with Convolutional Neural Networks (CNN) 

 

This block utilizes CNNs to enhance the accuracy and robustness of lane detection under challenging conditions. The networks 

are trained on specialized datasets, enabling them to recognize distinct lane features, even when the markings are faint or degraded. 

During the training, network parameters are optimized through loss functions, which drive their improvement throughout the 

process. 

 

Neural Network Training 

 

Both the SCNN and VGG16 networks were initially trained exclusively on the Culane dataset to ensure proper generalization and 

avoid overtraining. Culane provides extensive labeled data for urban and highway lane detection, covering diverse conditions. In 

contrast, TuSimple, focused on highway scenarios, was reserved for testing purposes. This approach minimized overfitting by 

limiting training to a single dataset while leveraging TuSimple for evaluations and meaningful performance comparisons across 

different driving environments. 

 

Model implementation  

 

Neural networks such as VGG16 and SCNN (Spatial CNN) are employed due to their proven effectiveness in addressing adverse 

conditions, including roads with unclear markings or challenging weather. VGG16 is a deep convolutional neural network with 

16 layers, comprising 13 convolutional and 3 fully connected layers. It utilizes small 3x3 filters and max pooling to reduce spatial 

dimensions while capturing hierarchical features, making it highly effective for identifying complex lane structures. SCNN 

extends traditional CNN architectures by incorporating spatial convolutional operations, which propagate information along 

horizontal and vertical directions. This unique design allows SCNN to model long-range spatial dependencies, enabling it to detect 

continuous lanes even in cases of sparse, broken, or occluded markings, making it particularly suited for challenging lane detection 

tasks. 
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2.3 Evaluation and Analysis 
 

The third module focuses on the evaluation and analysis of the algorithms in real and simulated environments on simulated 

synthetic roads, state of the art databases and a proprietary dataset of roads in the state of Morelos. 

 

Block 5: Evaluation in Simulated Environments 

 

This block involves the initial evaluation of the algorithms in controlled simulations. These simulations allow recreating specific 

driving conditions, facilitating the measurement of performance in a controlled environment before performing real tests, using 

the Frida and Frida 2 image databases. 

 

Block 6: Evaluation in Real Environments 

 

This block is crucial to validate the algorithms using real-world data. Tests are performed with videos recorded on roads, including 

the dataset of the state of Morelos, which covers a variety of road scenes and adverse weather conditions such as curves, sharp 

curves, presence of rain, poor lighting conditions or darkness and presence of shadows on the road, also incorporated the TuSimple 

database, recognized as one of the most used datasets for lane detection. 

 

Block 7: Evaluation Metrics 

 

In this section, the metrics used to evaluate the algorithms implemented for lane detection are presented. Key quantitative metrics 

such as precision, recall, F1 Score, accuracy, IoU, specificity, and Dice Index were employed to precisely measure the 

effectiveness of the algorithms under various conditions and environments. 

Additionally, specific indicators like true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) were 

considered, providing a more detailed assessment of algorithm performance. These metrics offer a clear view of how the models 

correctly identify lanes and manage errors. Both classical computer vision methods and those based on Convolutional Neural 

Networks (CNNs) were evaluated in simulated scenarios and real-world tests using a proprietary dataset collected from roads in 

the state of Morelos. This rigorous and comparative evaluation enables the identification of the most effective approaches for 

implementing lane-keeping assistance systems. The comprehensive analysis of the metrics provides a deep understanding of each 

algorithm's performance, facilitating informed decisions for their application in real-world situations. 

 

Precision is defined as: 

Precision =  
TP

TP +  FP
 

 
(7) 

where 𝑻𝑷 represents true positives and 𝑭𝑷 represents false positives. 

Recall is expressed as: 

Recall =  
TP

TP +  FN
  (8) 

where 𝑭𝑵 represents the false negatives. 

F1 Score is the harmonic mean of precision and recall: 

 

 F1 = 2 ⋅
Precision ⋅ Recall

Precision +  Recall
 (9) 

Accuracy is defined as: 

 

 Accuracy =  
TP +  TN

TP +  TN +  FP +  FN
 (110) 

where 𝑻𝑵 are the true negatives. 

Intersection over Union (IoU) is calculated as: 

 

IoU =  
|A ∩  B|

|A ∪  B|
 (11) 
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where 𝑨 is the predicted area and 𝑩 is the ground truth area. 

Specificity it is defined as: 

Specificity =  
TN

TN +  FP
 (12) 

 

where 𝑻𝑵 are the true negatives and 𝑭𝑷 are the false positives. 

Dice Index it is calculated as: 

Dice =  
2 |A ∩  B|

|A|  +  |B|
 (13) 

 

where 𝑨 is the predicted area and 𝑩 is the actual area. 

 

Block 8: Comparative Analysis of Results 

 

In this block, a comparative analysis of the results of different algorithms, both traditional and neural network-based, is performed. 

 

3 Experimental Procedures 
 

Below, five experiments are presented to evaluate the performance of computer vision algorithms for lane detection under various 

scenarios, using different databases and techniques. The objective of this series of experiments is to assess the effectiveness of the 

algorithms in diverse conditions and to gain a deeper understanding of their performance. The experiments conducted encompass 

various approaches to lane detection, beginning with the application of traditional computer vision techniques for detecting straight 

lanes in the Frida, Frida 2, TuSimple, and a proprietary database. This is followed by an exploration of extended traditional 

methods tailored to curved lanes, utilizing multiple datasets with road curves. Finally, the study transitions to advanced 

experimentation using deep learning models for lane detection. For the experimental phase, three databases were employed. The 

previously mentioned metrics were utilized to evaluate the performance of the lane detection models on the Frida and Frida 2 

image databases, specifically designed for this purpose. The Frida database consists of 90 synthetic images organized into 18 

urban road scenes, while Frida 2 includes 330 synthetic images covering 66 varied road scenes. Additionally, the TuSimple 

database, one of the most widely used datasets for lane detection, was included. The TuSimple dataset contains 55,640 images 

from 2,782 video clips, with each clip comprising 20 frames. Moreover, a proprietary database of roads from the state of Morelos 

was incorporated. This dataset includes 22,566 images from 41 video clips, featuring a variety of road scenes and adverse weather 

conditions, such as curves, sharp turns, rain, low lighting conditions, darkness, and road shadows. Figures 2, 3, and 4 provide a 

preview of the databases used for lane detection, with Figure 2 detailing the Frida and Frida 2 databases, Figure 3 covering the 

TuSimple database, and Figure 4 outlining the proprietary Morelos database. 

 

 
Fig.4. Samples from the Frida and Frida 2 databases,  

featuring a variety of road scenes and weather conditions 
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Fig. 5. Samples from the TuSimple database with a variety of road scenes 

 

 

 
Fig. 6. Samples from the proprietary database Morelos with a variety  

of road scenes and weather conditions 

 

3.1 Experimental Results and Discussion 
 

This study involves five experiments aimed at evaluating lane detection performance under various challenging conditions. Each 

experiment utilizes different datasets and detection techniques, either traditional methods or deep learning models. The datasets 

include Frida, TuSimple, Morelos, and a combination of these, while the techniques range from classical methods to modern deep 

learning models. The experiments assess performance under conditions such as direct sunlight, reflections, fog, rain, shadows, 

and curves. The metrics evaluated include Precision, Recall, F1 Score, Accuracy, IoU, Specificity, and Dice Index. See Table 5. 

 

Table 5. Summary for the 5 experiments 

Experiment Technique Dataset Adverse Conditions Metrics Evaluated 

Frida and Frida 2 

(Straight Lanes) 

Traditional Frida, Frida 2 Direct Sunlight, Sun Glare,  

Fog (uniform, heterogeneous, 

cloudy) 

 

 

 

 

 

 

 

 

Precision, Recall, F1 Score, 

Accuracy, IoU, Specificity,  

Dice Index 

    
TuSimple  

(Straight Lanes) 

Traditional TuSimple Direct Sunlight, Sun Glare,  

Shadows, Curves (light,  

moderate, sharp) 

    
Morelos Database  

(Straight Lanes) 

Traditional Own Database 

(Morelos) 

Rain (light, moderate, heavy), Direct 

Sunlight (Sun Glare), Curves, Night 

with Artificial Light, Night  

without Artificial Light 

    
Curved Lanes  

(Multiple Datasets) 

Traditional Frida, TuSimple,  

Morelos 

Direct Sunlight, Sun Glare,  

Fog, Curves  

(different severities) 
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Deep Learning Models 

(Multiple Datasets) 

Deep Learning Frida, TuSimple, 

Morelos 

Various conditions  

(similar to the previous ones) 

     
  

Traditional techniques on straight rails. 

 

First experiment. In this experiment, lane detection algorithms based on traditional computer vision techniques were evaluated 

under adverse conditions. These conditions included direct sun, normal curves, and various stages of haze: uniform, 

heterogeneous, cloudy, and heterogeneous-cloudy haze. Images from the Frida and Frida 2 databases, which simulate driving 

conditions in reduced visibility scenarios, were used. The graphs of the metrics are presented in Figure 5, where the legend SA 

refers to Sobel + Adaptive, CM refers to Canny + Morphological, SCH refers to Sliding + Canny + Hough, and CH refers to 

Canny + Hough. In Figure 7, the results obtained by the different straight-line detectors are presented. Figure 8 presents the results 

obtained by the different straight-line detectors. For the confusion matrix details, see Table 6. 

 

 
 

 

Fig.7. Quantitative results of lane detection on the Frida database 

 

The Sobel + Adaptive approach demonstrated outstanding performance, achieving a high true positive rate and maintaining low 

false positive and false negative values, particularly excelling in foggy conditions. In contrast, the Canny + Morphological method 

showed less efficient performance due to a high false positive rate, although it successfully identified most lanes. The Sliding + 

Canny + Hough technique struck a good balance between true positives and negatives, minimizing false negatives and delivering 

solid performance overall. Finally, the Canny + Hough algorithm proved to be the most effective, offering high precision and 

recall even under challenging conditions. 
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Fig.8. Qualitative results on the Frida database 

 

Table 6. Confusion matrix elements for the experiment 

Algorithm TP FP FN TN 

Sobel + Adaptive Thresholding 0.97995 0.01105 0.01905 0.98795 

Canny + Morphological 0.91605 0.45905 0.08495 0.54195 

Sliding + Canny + Hough 0.97195 0.13205 0.02695 0.86895 

Canny + Hough 0.98895 0.07295 0.01105 0.92795 

     
Second experiment. In this other experiment, lane detection algorithms based on traditional computer vision techniques were 

evaluated, applied to the TuSimple database. This database is widely used in the state of the art to evaluate lane detection methods 

in realistic and challenging driving conditions. The conditions evaluated included direct sunlight, sun glare, shadows, and curves 

of varying complexity: mild, moderate, and sharp. The metric charts are shown in Figure 9. Figure 10 presents the results obtained 

by the different straight-line detectors. For the confusion matrix details, see Table 7. 
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Fig.9. Quantitative results of lane detection in the TuSimple database 

 

The Sobel + Adaptive method demonstrated outstanding performance, achieving a high true positive rate and low false positive 

values, with results consistent with those of previous experiments. On the other hand, the Canny + Morphological approach 

correctly detected a significant number of lanes but suffered from a high number of false positives, which reduced its overall 

effectiveness. The Sliding + Canny + Hough technique struck a good balance between true positives and false positives, delivering 

solid performance comparable to Sobel + Adaptive. Finally, the Canny + Hough algorithm proved to be the most effective, 

achieving high precision, recall, and F1 score, and demonstrating an exceptional ability to accurately detect lanes. 

 

 
Fig.10. Qualitative results in the TuSimple database 
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Table 7. Confusion matrix elements for the experiment 

Algorithm TP FP FN TN 

Sobel + Adaptive Thresholding 0.97734 0.01322 0.02156 0.98567 

Canny + Morphological 0.91823 0.45734 0.08745 0.54456 

Sliding + Canny + Hough 0.97344 0.13122 0.02834 0.87145 

Canny + Hough 0.99034 0.07511 0.01089 0.93012 

     
Third experiment. This experiment focused on the evaluation of lane detection algorithms based on traditional computer vision 

techniques, using a database specifically created to represent the unique conditions of roads in the state of Morelos. These 

conditions include adverse scenarios such as rain (with light, moderate, and heavy intensity), assessing the impact on road marking 

clarity; solar glare caused by direct sunlight, complicating edge detection; night driving with either no artificial lighting or partial 

road lighting; and variations in road surface, including different types of asphalt, wear, and deteriorated road markings. The metric 

graphs are presented in Figure 11. The results obtained by the different straight-line detectors are presented in Figure 12. For the 

confusion matrix details, see Table 8. 

 

 
 

Fig.11. Quantitative results of lane detection on the proprietary database 

 

Sobel+Adaptive: It showed the best overall performance, with an IoU of 0.96801 and an F1 Score of 0.98374. This algorithm 

stood out for its high accuracy and robustness against false positives. Canny+Morphological: It achieved the worst results, with a 

high percentage of false positives and low specificity. This suggests difficulties in complex scenarios, such as heavy rain and sun 

glare. Sliding+Canny+Hough: It demonstrated a balanced performance, excelling in scenarios with lighting variations and worn 

surfaces, achieving an F1 Score of 0.92269. Canny+Hough: Although it did not reach the values of Sobel + Adaptive, this 

algorithm was robust, especially in nighttime driving and fog conditions, obtaining an IoU of 0.91843 and an F1 Score of 0.95748. 
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Fig.12. Qualitative results on the proprietary database 

 

Table 8. Confusion matrix elements for the experiment 

Algorithm TP FP FN TN 

Sobel + Adaptive Thresholding 0.97888 0.01234 0.02001 0.98677 

Canny + Morphological 0.91465 0.46012 0.08678 0.54389 

Sliding + Canny + Hough 0.97023 0.13347 0.02911 0.87056 

Canny + Hough 0.98712 0.07422 0.01345 0.92678 

     
Extension of traditional techniques to curved lanes. 

 

Fourth experiment. This experiment evaluated different lane detection methods for curved lanes using computer vision algorithms. 

Unlike straight lanes, curved lanes represent a greater challenge due to how the perception of the curve changes as the vehicle 

approaches. This variation in perspective can make curves appear sharper or smoother, depending on the distance and angle of 

view. The metric graphs are presented in Figure 11, where the legend CHP refers to Canny + Hough + Parable, GSC refers to 

Gaussian + Sobel + Curved, CHP2 refers to Canny + Hough + Perspective and SPS refers to Sobel + Perspective + Sliding. The 

metric graphs are presented in Figure 13. The results obtained by the different straight-line detectors are presented in Figure 14. 

For the confusion matrix details, see Table 9. 
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Fig.13. Qualitative results of curved lane detection across various datasets 

 

Canny + Hough + Parabola (CHP) stood out due to its high lane detection rate, reflected in a high number of true positives (TP = 

0.974). However, this performance comes at a significant cost, as it also showed a high rate of false positives (FP = 0.975). This 

suggests that while it is effective at detecting lanes, it tends to confuse other elements, such as lines or edges that are not part of 

the lane. On the other hand, Gaussian + Sobel + Curved (GSC) was the most balanced and precise algorithm. Its low false negative 

rate (FN = 0.035) indicates that it rarely misses lanes, and its lower proportion of false positives compared to CHP makes it robust, 

especially in sharp curves. The Canny + Hough + Perspective (CHP2) and Sobel + Perspective + Sliding (SPS) algorithms offered 

acceptable performance, but with limitations. Both had higher false negative and false positive rates, suggesting they are more 

prone to errors, especially in adverse conditions such as shadows, lighting changes, or very tight curve geometries. 

 

 
 

Fig.14. Quantitative results of curved lane detection across various datasets 
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Table 9. Confusion matrix elements for the experiment 

Algorithm TP FP FN TN 

Canny + Hough + Parabola 0.974 0.975 0.119 0.014 

Gaussian + Sobel + Curved 0.959 0.988 0.035 0.011 

Canny + Hough + Perspective 0.950 0.956 0.212 0.036 

Sobel + Perspective + Sliding 0.951 0.957 0.193 0.034 

     
 

Deep Learning Models Techniques. 

 

Fifth Experiment: In this experiment, deep learning techniques were adopted for lane detection, moving beyond the traditional 

computer vision methods used in previous studies. Two neural network architectures were evaluated: SCNN (Spatial 

Convolutional Neural Network) and VGG16. The first, specifically designed to capture the spatial structure of roads, is capable 

of modeling relationships between different points of the lanes, making it particularly effective in complex scenarios such as sharp 

curves or multiple lane lines. Meanwhile, VGG16, with its deep convolutional design, allows for hierarchical feature extraction, 

which is crucial for tackling challenging conditions such as shadows, worn lane lines, or the presence of obstacles. 

 

For this experiment, the networks were evaluated using three datasets: Frida & Frida 2, TuSimple, and a proprietary dataset 

developed specifically to represent scenarios from the state of Morelos. These datasets included diverse environmental conditions, 

such as daylight, night, rain, fog, and a variety of roads with sharp curves and worn lane markings. The metric graphs are presented 

in Figure 15, and the results obtained by the different SCNN & VGG16 architectures for the three datasets are shown in Figures 

16-18. For the confusion matrix details, see Table 10. 

 

 

 
 

Fig.15. Quantitative results of lane detection with deep learning on the proprietary database 

 

Both architectures showed high recall values, indicating that they are highly effective at detecting most of the present lanes. 

However, VGG16 slightly outperformed SCNN in balancing precision and recall, reflected in a higher F1 Score (0.65588 vs. 

0.65165). Both faced challenges in reducing false positives, a crucial aspect for improving specificity. 
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Fig.16. Qualitative results with SCNN & VGG16 architectures on the proprietary database 
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Fig.17. Qualitative results with SCNN & VGG16 architectures on the Frida & Frida 2 database 
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Fig.18. Qualitative results with SCNN & VGG16 architectures on the TuSimple database 

 

Table 10. Confusion matrix elements for the experiment 

Algorithm TP FP FN TN 

SCNN 0.955 0.960 0.045 0.015 

VGG16 0.960 0.980 0.020 0.010 
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As shown in Table 11, the highlighted approaches for each experiment demonstrate the best-performing configurations based on 

the confusion matrix metrics. The table summarizes the True Positives (TP), False Positives (FP), False Negatives (FN), and True 

Negatives (TN) for each selected approach. 

 

Table 11. Highlighted Approaches by Experiment 

Experiment Highlighted Approach TP FP FN TN 

1 Canny + Hough 0.988 0.072 0.011 
 

0.927 

2 Canny + Hough 0.990 0.075 0.010 0.930 

3 Canny + Hough 0.987 0.074 0.013 0.926 

4 Gaussian+Sobel+Curve 0.959 0.988 0.035 0.011 

5 VGG16 0.960 0.988 0.020 0.010 

      
The table presenting metrics derived from the confusion matrix including True Positives (TP), False Positives (FP), False 

Negatives (FN), and True Negatives (TN) focuses specifically on the model’s binary classification performance. These 

metrics evaluate how many lanes were correctly detected (TP), how many were incorrectly classified as present when they 

were not (FP), how many were missed (FN), and how many were correctly identified as absent (TN). This assessment 

provides a more precise understanding of the model’s ability to distinguish between lane presence and absence, which is 

crucial for minimizing classification errors. While confusion matrix-based metrics offer detailed insights into classification 

accuracy (true and false positives and negatives), broader performance metrics such as Intersection over Union (IoU), 

Precision, Recall, F1 Score, Accuracy, Specificity, and Dice Index provide a more comprehensive evaluation of the 

model’s segmentation capabilities and overall effectiveness.  

 

Comparison of Algorithms Across Experiments 

 

Table 12 presents a comparative analysis of the best-performing algorithms for each experiment based on key evaluation 

metrics, including Intersection over Union (IoU), Precision, Recall, F1 Score, Accuracy, Specificity, and Dice Index. The 

highlighted algorithm in each experiment corresponds to the one that achieved the highest performance across most 

metrics. 

 

Table 12. Best-Performing Algorithms by Experiment 

Experiment Best Algorithm IoU Precision Recall F1 Score Accuracy Specificity Dice Index 

1 Sobel + Adaptive 

Thresholding 
0.9729 0.9888 0.9809 

 

0.9848 0.9849 0.9889 0.9848 

2 Sobel + Adaptive 

Thresholding 
0.9656 0.9866 0.9784 0.9825 0.9825 0.9867 0.9825 

3 Sobel + Adaptive 

Thresholding 
0.9680 0.9875 0.9799 0.9837 0.9838 

 

0.9876 0.9837 

4 Gaussian + Sobel + 

Curved 
0.4838 0.4925 0.9647 0.6521 0.4867 0.0110 0.6521 

5 VGG16 0.4898 0.4948 0.9796 0.6575 0.4924 0.0101 0.6575 

 

These metrics serve to evaluate the overall performance of lane detection algorithms. They include Intersection over Union 

(IoU), Precision, Recall, F1 Score, Accuracy, Specificity, and the Dice Index. Together, these metrics offer a 

comprehensive assessment of the model's ability to accurately detect lane markings in images. IoU quantifies the overlap 

between the model's prediction and the ground truth, while Precision and Recall evaluate the model’s ca pability to 

minimize false positives and correctly identify true positives, respectively. The F1 Score provides a balanced measure that 

combines Precision and Recall, and Accuracy reflects the overall proportion of correct predictions.  

 

4 Conclusions 

 
Based on the results obtained from the various experiments, significant conclusions can be drawn regarding the performance of 

the algorithms under different conditions. In the conducted experiments, the Sobel + Adaptive Thresholding and Canny + Hough 

algorithms demonstrated outstanding performance, particularly in simple or ideal conditions, where they achieved high values in 

key metrics such as IoU (up to 0.97295 for Sobel + Adaptive Thresholding in Experiment 1) and Precision (up to 0.98885 for 
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Sobel + Adaptive Thresholding in the same experiment). These algorithms maintained superior performance in terms of Recall, 

F1 Score, Accuracy, and Dice Index, suggesting a high capability for correctly detecting lanes in straightforward scenarios. 

However, as test conditions became more complex, as evidenced in Experiment 4, traditional algorithms such as Canny + Hough 

+ Parabola and Gaussian + Sobel + Curved experienced a significant decline in performance. These methods exhibited low IoU 

values (around 0.47) and moderate Precision (around 0.49), indicating that they are not as effective in handling challenging 

situations such as sharp curves or degraded lane markings. This behavior highlights the limitations of classical approaches in 

managing more dynamic and complex conditions. On the other hand, deep neural network-based models such as SCNN and 

VGG16 demonstrated superior performance in terms of Recall and F1 Score, particularly in more difficult scenarios. In 

Experiment 5, VGG16 achieved a Recall of 0.9796 and a Dice Index of 0.6575, indicating a remarkable ability to detect lanes in 

challenging conditions with a lower false negative rate. Although metrics such as IoU and Precision were comparable between 

deep networks and traditional algorithms, the higher Recall suggests that neural networks are more sensitive to lane detection, 

which is crucial in dynamic traffic environments. The results suggest that deep neural network-based algorithms, particularly 

VGG16, offer a significant advantage over traditional methods when adapting to complex conditions. While Sobel + Adaptive 

Thresholding and Canny + Hough are effective in simple environments, neural networks exhibit greater generalization capabilities 

and more robust performance in dynamic settings. This reinforces the importance of considering neural networks as a preferred 

option for lane detection in real-world scenarios, where conditions can vary significantly. 
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