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Abstract. Chemists often rely on computational prediction 

techniques to optimise laboratory experiments. However, 

selecting and configuring these techniques can be a 

daunting task for those without a background in computer 

science. A potential solution arises when chemists 

collaborate with computer scientists to define and 

implement the prediction task. Based on this collaboration, 

we propose a novel architecture that reflects key aspects of 

this interaction: the expertise of computer scientists, their 

commitment to addressing the prediction task, and the 

discussions that facilitate consensus. Our proposed 

architecture enables chemists to generate solution proposals 

across the various stages of the prediction process, 

leveraging consensus-based decisions made by intelligent 

agents and incorporating a lazy learning approach. 
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1 Introduction 

 
Computational chemistry is a scientific discipline dedicated to extracting structural and chemical information from molecular 

systems using mathematical calculations derived from fundamental physical laws (E. San Fabián, 2020). Despite the 

development of numerous software tools in this field, these tools generally fall into three primary application contexts: input 

representation, data presentation, and data processing. This paper highlights examples of computational chemistry contributions 

organized by these contexts. 

 

In the context of input representation, significant contributions include chemical notation systems such as the Simplified 

Molecular Input Line Entry System (SMILES) (Weininger, 1988), which leverages molecular graph theory and is widely 

supported by software applications. Another example is the Crystallographic Information File (CIF) (Hall et al., 1991) , a self-

descriptive format designed for both human and machine readability to manage crystallographic data. Input representation 

primarily addresses the capture and portability of data for subsequent processing and presentation. 

 

In the data presentation context, contributions are centered on visualization techniques. For instance, Jmol (Hanson, 2016; 

Scalfani et al., 2016) is a molecular structure viewer that supports biochemical applications, employs 3D graphics, is compatible 

with SMILES, and operates on the HTML5 web standard. Visualization tools such as Jmol facilitate chemical research by 

enabling researchers to effectively capture and interpret structural information. 

 

The data processing context encompasses software that applies computational methods to simulate molecular interactions and 

predict chemical properties. Examples include Gaussian (M. J. Frisch et al., 2016; Young, 2002) and GAMESS (Barca et al., 

2020; Gordon & Schmidt, 2005), which implement various ab initio, molecular mechanics, and quantum mechanics methods. 

These tools are designed to predict reaction outcomes and material properties through computational modeling and simulation. 

Beyond computational calculus, modern approaches have integrated data mining and machine learning to enhance chemical 
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predictions. Data mining has been applied to predict trends and solve complex problems in chemical, material, and engineering 

processes (Hao Li et al., 2019). Machine learning techniques have been utilized for protein structure prediction, material design, 

and property prediction, offering classification and prediction capabilities (Goh et al., 2017). 

 

Despite these advancements, the task of configuring computational prediction techniques often falls to chemists, who may lack 

formal training in computer science. This limitation leads to the treatment of prediction tools as opaque "black boxes" and 

contributes to suboptimal parameter configurations (Keith et al., 2021). The choice and configuration of algorithms, parameters, 

and datasets are critical to achieving reliable results but can present significant challenges without computational expertise. For 

example, consider a scenario where a chemist aims to predict whether the interaction between two substances will result in gel 

formation, solubility, insolubility, or precipitation. The chemist must define the dataset and problem characteristics and consult 

computational experts, each of whom will draw from their experience to propose appropriate parameter configurations. 

Differences in expertise and methodology often lead to varied solutions, underscoring the need for a systematic approach to 

parameter configuration. 

 

This paper proposes an architecture designed to automate the configuration of predictive applications in computational 

chemistry. By simulating the reasoning processes of computational experts, the architecture optimizes the performance of 

machine learning and data mining techniques. The configuration process begins with a description of the prediction problem and 

relevant dataset characteristics, generating solution proposals tailored to the specific context. These solutions include the 

selection of computational techniques, parameter adjustments, and dataset modifications. 

 

The proposed architecture employs a multi-agent system (MAS) to evaluate and propose parameter configurations. Each agent 

represents a virtual expert with distinct reasoning approaches, using attributes such as exploration and experience to adapt and 

improve their recommendations over time. The agents negotiate to reach consensus, ensuring that the solutions reflect collective 

expertise and are optimized for the prediction task. 

 

The architecture features two operational phases: preparation and configuration. The preparation phase leverages an experiment 

generator to produce knowledge for the agents, allowing seamless integration of new data without requiring updates to a 

generalization model. This contrasts with architectures such as that proposed by (Cerecedo-Cordoba et al., 2017), which rely on 

intensive training phases to construct generalization models. While systems like the Automated Machine Learning (AutoML) 

(Hutter et al., 2019) focus on automating the entire machine learning pipeline—including model selection, hyperparameter 

optimization, and evaluation—our architecture emphasizes simulating the reasoning processes of computing experts in 

addressing prediction problems. In particular, our lazy learning approach allows knowledge to be incorporated from diverse 

sources, such as data mining on literature or procedural generation of artificial instances. In the configuration phase, the agents 

apply similarity-based reasoning, comparing examples in the training dataset with the situation presented by the end user. 

Unlike AutoML, which relies on predefined algorithms and optimization techniques, our architecture uses agents that represent 

different computer experts. These agents propose solutions using distinct approaches and negotiate to reach a consensus. This 

negotiation ensures that the solutions are acceptable to all agents and reflect the collective expertise embedded in the system. 

 

 This is followed by a review of algorithm configuration for computational chemistry, which explores key aspects such as 

prediction techniques (2.1), parameter adjustment challenges (2.2), and approaches to parameter setting (2.3). Next, an 

architecture for parameter configuration is proposed, including scenario analysis (3.1), multi-agent negotiations for collaborative 

decision-making (3.2), and the detailed architecture and its implementation (3.3). A proof of concept is then presented to 

validate the proposed architecture experimentally. The discussion section reflects on the results, their implications, and 

limitations, while the document concludes by summarizing the findings and suggesting directions for future work. 

 

 

2 Review of algorithm configuration for computational chemistry 
 

The deployment of prediction tasks in computational chemistry involves decision-making across various technical and 

theoretical dimensions. Examining the algorithms applied within this field provides insight into parameter adjustment strategies 

that can automate decision-making processes. Reviewing contributions to computational chemistry prediction facilitates the 

identification of key action points for the configuration architecture proposed in Section 3. 
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2.1   Prediction in computational chemistry 
 

The prediction of chemical structures and properties is a well-explored topic in the literature, approached through diverse 

methodologies. For example, Finocchi (Finocchi, 2011) highlights theoretical tools such as Density Functional Theory (DFT), 

which serves as a computational alternative to the Schrödinger equation in materials science. Additionally, data mining and 

machine learning techniques have been extensively utilized to develop predictive systems in this domain. 

 

Machine learning, a branch of artificial intelligence, is dedicated to identifying patterns and generalizations within datasets. It is 

defined as the study of algorithms that improve their performance with experience and data (Mitchell, 1997). Its purpose is to 

build computer programs that automatically shape and enhance your experience (Stuart J. Russell et al., 2010).  Conversely, data 

mining is a methodology for uncovering intrinsic patterns and relationships within data, often for predictive purposes. By 

leveraging statistical analysis, data mining predicts variables that are otherwise challenging to obtain experimentally (Hao Li 

et al., 2019).  This approach is closely associated with computational statistics, particularly in unsupervised learning contexts, 

and is often applied in exploratory data analysis (Fehri et al., 2019). 

 

Data mining techniques have demonstrated significant success in predicting trends and solving complex problems in chemical, 

material, and engineering processes (Hao Li et al., 2019). For example, Günay (M. Erdem Günay et al., 2018) employed 

decision trees to identify optimal conditions for CO₂ electroreduction, using the technique to determine variable significance and 

identify three key traits of interest. 

 

Machine learning has been applied to a wide range of problems in chemistry. For instance, Gupta (Gupta et al., 2016) explored 

gelation prediction using various machine learning techniques, including Support Vector Machines (supervised learning), 

Random Forest (ensemble learning), Artificial Neural Networks (ANN, supervised learning), and K Nearest Neighbors (KNN, 

pattern recognition). Similarly, Loredo's work (Loredo-Pong et al., 2022) focused on predicting the gelation of benzoate 

organogelators using the KNN algorithm. Their study involved generating training datasets with alternating physicochemical 

attributes, including polarity, heteroatoms, and solvent saturation. The classifier's output—a predicted aggregation state (gel, 

soluble, insoluble, or precipitate)—was validated against laboratory results. 

 

Deep learning has experienced a resurgence in computational chemistry, as noted by Goh (Goh et al., 2017). The author 

highlights the efficiency and applicability of deep neural networks in areas such as quantitative structure-activity relationships, 

protein structure prediction, material design, and property prediction. This resurgence is attributed to advancements in GPU-

based computation and the expansion of chemical data for training purposes. 

 

A notable example of integrating data mining and machine learning is the work by Cerecedo (Cerecedo-Cordoba et al., 2017), 

who proposed an architecture for estimating the melting temperature of ionic liquids. Their approach includes an extensive 

training phase involving clustering techniques, genetic algorithms to generate artificial neural networks (ANNs), and cross-

validation for result weighting and parameter selection. 

 

These works can be conceptually described through a three-layer framework (see Figure 1). The base layer addresses the real-

world prediction problem, while the middle layer focuses on problem treatment, including algorithm selection and dataset 

structure. The upper layer involves parameter selection, specifying the configuration values that optimize algorithm 

performance. 

 

For example, Loredo addressed the prediction of gelation (base layer) using the KNN algorithm (problem treatment layer) and 

obtained parameter values through experimental design (parameter selection layer). Figure 1 illustrates this conceptual 

framework. Similarly, Cerecedo tackled the prediction of melting temperatures (base layer) using neuroevolution techniques 

(problem treatment layer) and an exhaustive grid search for parameter optimization (parameter selection layer). 
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Fig. 1. Layer diagram, application case abstraction. The configuration architecture acts on all three layers of the prediction task 

 

 

Like other computational techniques, data mining and machine learning algorithms require users to define specific 

configurations to ensure optimal performance. For instance, in the KNN algorithm, the parameter k determines the number of 

nearest neighbors considered during classification. The performance of these algorithms is intrinsically linked to their 

parametric configuration, and various optimization techniques have been proposed in the literature to address this challenge. 

 

2.2   Parameter adjustment 
 

The parameter adjustment problem pertains to the selection of appropriate values for algorithm parameters to control their 

behavior effectively (Birattari, 2005). It constitutes a computational optimization problem, as the efficiency and performance of 

algorithms are significantly influenced by their parametric configurations. The specific combination of parameter values for an 

algorithm is referred to as its parametric configuration. 

 

Identifying optimal parameter values is critical, particularly for specific problems and contexts. However, as noted by Molina 

(Molina et al., 2012), djusting the parameters of data mining techniques can be computationally expensive and may introduce 

biases due to assumptions made during the process. Automatic parameter adjustment has been widely studied in the literature, 

employing various approaches and techniques. For instance, Cayci's work (Cayci et al., 2011), utilized Bayesian networks to 

identify the effects of parameter configurations in data extraction algorithms. Similarly, Srivastava (Srivastava, 2005) employed 

learning techniques to optimize parameter configurations in search-based algorithms, focusing on domain-specific adjustments 

and incorporating user-defined criteria. 

 

Michalewicz (Michalewicz & Fogel, 2004) proposes a classification of parameter setting strategies based on the level of 

adaptation, as illustrated in Figure 2. This classification distinguishes between two primary moments of adjustment: 

• Parameter Tuning: This refers to adjustments made before the algorithm's execution, providing an initial 

configuration. Techniques for parameter tuning include trial and error, experimental design, and metaheuristic 

algorithms, which iteratively optimize parameter values. 

• Parameter Control: This involves dynamic adjustments made during the algorithm's execution. Parameter 

control can be further categorized as: 

◦ Deterministic Control: The parametric configuration follows predefined rules, without feedback from the 

algorithm's performance. 

◦ Adaptive Control: Adjustments are informed by feedback, allowing parameters to change in response to 

the algorithm's state. 

◦ Self-Adaptive Control: Parameters are encoded within the algorithm itself and evolve through 

mechanisms such as mutation or recombination. For example, in genetic algorithms, parameter values are 

represented within chromosomes and optimized alongside solutions. 

 

Although parameter tuning and control are often treated as separate processes, Eiben (Eiben et al., 1999). recommend 

combining these strategies—using tuning techniques to determine initial configurations and parameter control to adapt settings 

during execution. 
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Fig. 2. Classification of parameter setting (Michalewicz & Fogel, 2004) 

 

 

The study of parameter adjustment examines the influence of algorithmic parameters on results, aiming to optimize 

configurations while avoiding overfitting. Overfitting occurs when parameters are excessively tailored to a specific dataset, 

potentially compromising generalizability. Eiben (Eiben et al., 1999) provide four key guidelines for selecting appropriate 

control techniques: 

• Parameters exhibit varying degrees of influence on algorithm performance; therefore, understanding the 

parameter-impact relationship is essential. 

• Problem-specific characteristics influence parameter effectiveness, making it necessary to identify those that 

render parameter values suboptimal and may require adjustment during execution. 

• The role of each parameter in eliciting desired algorithmic behavior should be carefully studied, along with 

the algorithm's operational states. 

• Relevant information—such as problem-specific data, algorithmic learning insights, execution statistics, and 

runtime status—should inform the generation of new parametric configurations. 

 

By systematically addressing these considerations, it is possible to refine parameter adjustment strategies, enhancing the 

performance and reliability of algorithms across diverse applications. 

 

2.3   Techniques for parameter setting 
 

Heuristic and evolutionary computation techniques have been widely employed to address the parameter adjustment problem. 

For instance, Martínez (Martínez González, 2001) demonstrated the use of heuristic methods, specifically the simplex method, 

to optimize parameter settings for various models. The study included simulations of a desorption column using Ecosim 

software, highlighting the effectiveness of the Nelder-Mead simplex method, particularly in scenarios involving numerous 

parameters. 

 

Regarding metaheuristic techniques—general strategies for designing algorithms—Rivera (Rivera Zárate, 2009) investigated 

parameter adjustment under dynamic conditions for the semantic query routing problem (SQRP). Using an ant colony 

optimization algorithm, Rivera integrated Hoeffding competencies to configure the algorithm, achieving superior performance 

for SQRP in comparison to other approaches documented in the literature. 

 

Evolutionary computation has been applied to parameter setting, as demonstrated by Fernández (Fernandez et al., 2019). Their 

work tackled parameter elicitation for multi-criteria decision problems using an evolutionary algorithm (EA). Starting with a 

preference model and a set of examples provided by decision-makers, the study employed Preference Disaggregation Analysis 

(PDA), a specialized regression method, to estimate parameter values. Fernández optimized PDA results using a multi-objective 

genetic algorithm (GA), demonstrating how indirect elicitation enables parameter inference from example datasets. 

 

Cerecedo (Cerecedo-Cordoba et al., 2017) presented an architecture for estimating the melting temperature of ionic liquids. The 

methodology involved an exhaustive grid search to configure Support Vector Regression (SVR) and Regression Trees (RT), 

clustering data into groups. Subsequently, different artificial neural networks (ANNs) were trained and optimized using genetic 

algorithms. The approach aimed to enable ANNs to effectively learn the selection of SVR and RT models, contributing to 

improved predictive accuracy. 
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Automated Machine Learning (AutoML) research, as summarized by Hutter (Hutter et al., 2019), seeks to automate the end-to-

end application of machine learning to real-word problems. Core tasks include feature engineering, model selection, 

hyperparameter tuning, and evaluation. Techniques such as reinforcement learning, Bayesian optimization and evolutionary 

algorithms are frequently used. AutoML has shown notable success in domains such as healthcare, finance, and natural language 

processing, reducing manual effort while delivering robust, data-driven insights. 

 

Referring to the abstraction in Figure 1, the works described align with the parameter selection layer. These contributions share 

the goal of optimizing parameter values to enhance algorithm performance. However, several challenges emerge: 

• Parameter Interdependence: Some methods adjust all parameters simultaneously, treating them as a unified 

entity without distinguishing their individual roles in algorithmic operations. This approach requires 

balancing the roles of each parameter to achieve satisfactory algorithm performance. While multiple 

configurations may be generated and the most suitable one selected, this process can be time-consuming and 

reliant on user expertise. 

• Single Parameter Focus: Methods targeting individual parameter adjustments often require functions that 

consider interactions with other parameters. This shifts the challenge of balance to the parameters involved in 

these interdependencies. 

• Lack of Experience Mechanisms: Selecting optimal configurations often relies on expert experience, which 

includes understanding algorithmic operations and research objectives while avoiding biases. However, 

current state-of-the-art methods lack mechanisms to accumulate and leverage experience over time. Instead, 

parameter adjustment is frequently treated as an isolated exercise tailored to specific research scenarios. 

 

Cerecedo (Cerecedo-Cordoba et al., 2017), illustrate a potential solution by generating multiple configurations, prioritizing the 

most promising, and discarding less effective ones. While experience does not eliminate the need for running algorithms with 

varied settings, it can accelerate the identification of relevant configurations and reduce wasted computational resources. 

Developing mechanisms to capture and apply accumulated knowledge could significantly enhance the efficiency of parameter 

adjustment processes. 

 

 

3 An architecture for parameter configuration 

 

3.1   Scenario analysis 
 

In computational chemistry, opportunities arise in improving the performance and behavior of data mining and machine learning 

techniques used for prediction. Many of these techniques require adapting parameters to specific application scenarios. 

However, users without expertise in computer science, such as chemists, often rely on advice from computer scientists to 

configure these parameters. 

 

Computer science experts typically recommend techniques and parameter settings based on their experience. Yet, different 

experts may propose different solutions, reflecting varying commitments or preferences. These differences may lead to varying 

levels of practical effectiveness. This scenario suggests the potential for modeling expert interactions using an agent paradigm, 

where experts (agents) negotiate and collaborate to automate consensus decision-making for optimal parameter configuration. 

 

Figure 3 illustrates an overview of the architecture for parameter configuration, which comprises two primary phases: the 

preparation phase and the configuration phase. The preparation phase focuses on building a experience corpus about predictive 

techniques and their behavior under various conditions. To generate this knowledge, an experiment generator performs 

exploratory runs, recording the results and relevant characteristics in a database. In the configuration phase configurators utilize 

the experience corpus to analyze the user's query and propose configurations for the prediction task. The configurators engage in 

a negotiation process to refine these proposals and reach a consensus. The outcome is a set of configurations tailored to the task, 

aligned with the negotiation and interaction strategies detailed in section 3.2. 
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Fig. 3. General view of the architecture for parameter configuration 

 

The architecture integrates seven key elements: 

• User's query: Defines the problem and provides the associated data corpus. 

• Configurators: Represent expert agents tasked with proposing configurations. 

• Configurators' experience: An objective and standardized experience corpus derived from observed 

algorithm behavior. 

• Configuration commitments: Tendencies influencing how configurators approach prediction tasks. 

• Formulation of configurations: Internal process where configurators identify solutions based on prior 

experience. 

• Discussion of configurations: Negotiation among configurators to evaluate and refine proposals. 

• Adaptation of configurations: Mechanism enabling configurators to revise configurations during 

discussions. 

 

The user's query serves as the input for the architecture, describing the prediction problem and the associated data corpus. The 

user must capture characteristics of the prediction problem using a form that covers aspects relevant to the configurators. For 

example, configurators may approach problems differently depending on whether variable selection has already been performed 

on the dataset. 

 

Configurators' experience consists of a systematically built experience corpus derived from observations of algorithm 

performance under diverse conditions. To minimize bias, this experience is designed to be broad, objective, and uniformly 

applied across all configurators. 

 

The formulation of configurations involves configurators analyzing their experience to locate past examples most similar to the 

user's query. This process enables them to generate initial solutions tailored to the problem. 

 

Once configurations are formulated, the discussion phase begins. Configurators propose solutions and collaboratively evaluate 

their suitability. Through this negotiation, they refine the proposals, identifying configurations that best address the prediction 

task. 

 

The adaptation of configurations occurs during discussions when configurators revise their initial proposals. This iterative 

process ensures that configurators can incorporate feedback and converge on improved solutions. The extent of these 

adaptations depends on each configurator’s willingness to adjust their initial preferences. 

 

Finally, configuration commitments represent the tendencies or preferences that influence how configurators approach 

prediction tasks. These commitments can focus on algorithm selection, parameter tuning, or dataset modifications. Each 

commitment shapes how configurators prioritize features and assess their relevance to the user's query, directly impacting the 

configuration process. 

 

 

Figure 1 (Case C) illustrates the architecture's abstraction. The user defines the real problem layer, while the architecture 

addresses the parameter selection and problem treatment layers. Based on the user's data, the architecture evaluates algorithm 

options, parametric configurations, and dataset modifications to optimize the prediction task. 
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The negotiation and adaptation of configurations among configurators represent a challenge in itself. The final configurations 

must satisfy all parties while combining the strengths of individual proposals. Viewing configurators as a multi-agent system 

(MAS) provides a solution framework. MAS enables negotiation and collaboration, employing computational techniques for 

parameter tuning and leveraging machine learning to improve configurators' experience and results over time. 

 

The described architecture demonstrates potential for automating parameter configuration, reducing reliance on human 

expertise, and enhancing predictive performance. Further development of MAS-based negotiation mechanisms and experience-

driven learning will enable more robust and efficient solutions tailored to diverse scientific challenges. 

 

3.2   Multi-agent negotiations 

 

Negotiation plays a fundamental role in various domains of human interaction. While often associated with formal agreements 

such as commercial transactions, labor contracts, or political treaties, negotiation occurs in everyday scenarios, often without 

explicit acknowledgment of its presence. For instance, a family deciding whether to spend a Sunday afternoon at a park or at the 

cinema engages in a negotiation process. Factors influencing this decision may include individual preferences for activities or 

specific information, such as available movie showings. Similarly, subsequent decisions—such as where to eat—constitute 

additional negotiation scenarios, balancing options like dining at a restaurant or ordering specific types of food. These examples 

illustrate that negotiation serves as a mechanism to reconcile differing interests and reach solutions that are both realistic and 

mutually satisfactory. Formally, negotiation is a structured process aimed at achieving agreements, whether for resolving 

conflicts, establishing partnerships, or optimizing collaborative outcomes (Baarslag, 2014).  

 

In the context of Multi-Agent Systems (MAS), negotiators are represented by deliberative software agents. Endowing these 

agents with negotiation capabilities necessitates engagement with the field of automated negotiation, which focuses on the 

formalization of negotiation mechanics and strategies into computable models. The goal is to develop algorithms and protocols 

that facilitate effective agreement formation. 

 

Iglesias (Iglesias Fernández, 1998) identifies three fundamental aspects integral to negotiation in MAS: 

• Communication Mechanisms: These define the language and semantics for exchanging negotiation-related 

information, such as proposals, refinements, and confirmations, as well as the objects of negotiation (e.g., 

plans, task offers). 

• Decision-Making Capabilities: These involve the evaluation criteria and strategies agents employ to maximize 

objectives, such as utility functions or preference hierarchies. In the context of configuration systems, this 

relates to formulating and adapting configurations. 

• Negotiation Process Dynamics: This aspect examines the overarching models and participant behaviors in 

negotiation scenarios, enabling the integration of behavioral tendencies linked to configuration commitments. 

     

wo critical challenges must be addressed to enable multi-agent negotiation: defining mechanisms for communication and 

generating meaningful content for negotiation exchanges. The former is governed by the negotiation protocol, which establishes 

the rules and sequence of actions during the negotiation. The latter relies on the agent's decision-making model, which 

determines the rationale behind the proposals and responses. Negotiation protocols specify permissible actions, the timing of 

these actions, and the conditions under which agreements are finalized. For instance, the Alternating Multiple Offers Protocol 

(AMOP) emphasizes continuous proposal generation and voting, facilitating equitable participation and balanced outcomes 

(Baarslag, 2014). Decision-making models, on the other hand, focus on the reasoning processes agents use to evaluate options 

and optimize their outcomes. These models, when integrated with a flexible negotiation protocol, are crucial in determining the 

success of an agent's strategy (Baarslag et al., 2018). In our case, the negotiation domain corresponds to the configuration space 

derived from the configurators' experience. Agents' preferences, informed by their configuration commitments, guide their 

decisions within this domain. Proposals that fail to meet a minimum utility threshold, as determined by the agents' adaptive 

behavior, are iteratively refined to enhance their acceptability. 

 

Software tools such as GENIUS and NegMAS have been developed to facilitate multi-agent negotiation. These platforms 

provide programmatic resources and frameworks for defining negotiation domains, preference profiles, and protocols. GENIUS 

(Hindriks et al., 2009) , implemented in Java, supports bilateral negotiation research by offering tools for configuring 

negotiation sessions, simulating interactions, and analyzing outcomes through graphical and statistical summaries. 

Complementary to GENIUS is Jupiter, a Python-based extension that integrates machine learning libraries, enhancing agents' 

ability to participate in GENIUS-managed negotiations (Fukui & Ito, 2018). NegMAS (Mohammad et al., 2021) , Python-based, 
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is designed for dynamic negotiation environments, supporting interdependent negotiations and agents with variable utility 

functions and flexible mechanisms beyond conventional protocols. 

 

3.3   Architecture and implementation 
 

The analysis of the proposed scenario delineates the abstract elements that compose the system architecture, as illustrated in 

Figure 5. From this framework, two distinct phases emerge, each serving a specific purpose: the preparation phase and the 

configuration phase. These phases are examined in detail below. 

 

The preparation phase simulates professional training experiences by generating experimental performance data. This data 

enables agents to evaluate and propose configurations based on their understanding of prediction techniques in diverse work 

scenarios. The agents employ a utility calculation mechanism to quantify the suitability of potential configurations and 

implement a negotiation strategy based on weighted distances to facilitate consensus. Work scenarios are characterized by 

variables such as dataset properties, algorithm types and features, and configuration options. 

 

Figure 5 illustrates the interplay of key entities in this phase. The seed datasets entity contains datasets with controlled variations 

in attributes, such as the number of records, class distributions, and variable selection. The algorithm descriptors entity provides 

information about algorithms, including their learning paradigm, generalization capabilities, and preprocessing requirements. 

The configuration options entity outlines the modular components of algorithm configurations and potential parameter settings. 

Insights from studies such as Villarreal’s (Villarreal-Hernández et al., 2023), focusing on the KNN algorithm family, inform the 

structure of these options. For instance, configuring the KNN algorithm involves decisions about data preparation, heuristic 

selection, and parameter optimization, such as the k-value. 

 

The experiment generator integrates seed datasets with configuration options to perform cross-validation experiments. This 

process generates performance data by iterating over compatible configurations, applying transformations to datasets (e.g., 

modifying columns or records), and expanding the range of experimental scenarios. The resulting experience corpus 

consolidates this performance data, associating it with descriptors related to dataset characteristics, algorithm configurations, 

and prediction problems. For the KNN algorithm family, the experience dataset includes 18 fields grouped into descriptors, as 

detailed in Table 1. This dataset serves as a repository of algorithm behavior under varying conditions, providing agents with 

examples that link performance outcomes to specific configurations and scenarios. 

Table 1. Characteristics of the experiments, grouped by descriptor group 

Descriptor group Experiment characteristic field 

Prediction problem 

descriptors 

- Classes to consider 

- Target class 

- Variable preselection 

- Present categorical fields 

Dataset descriptors 

- Number of records 

- Present classes 

- Size difference among classes 

- Number of variables 

Algorithm descriptors 

- Learning type 

- Association type 

- Requires modification of the dataset 

- Produces a generalization model 

Algorithm configuration 

descriptors 

- Closeness metric 

- K parameter value 

- Class assignment policy 

- Dataset record reduction 

Performance descriptors 
- Mean precision 

- Standard deviation of precision 
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Fig. 4. The architecture for parameter configuration, including modules as negotiating agents 

 

The configuration phase focuses on achieving consensus among configurators to determine the optimal configuration for a given 

prediction task. Negotiation interactions enable agents to exchange proposals and converge on solutions that satisfy their 

respective configuration commitments. The negotiation strategy seeks to identify configurations that perform well in scenarios 

analogous to the query while aligning with individual commitments. 

 

This phase begins with user interaction. The user provides a dataset and defines the prediction problem through a simplified 

from that captures key descripts (Table 1). The user specifies elements such as the classes of interest, prior variable selection 

procedures, and dataset composition (e.g., numeric or categorical data). Dataset characteristics, such as record count, class 

distribution, and variable count, can be obtained through direct analysis. These steps are encapsulated in the problem 

characterization entity (Figure 5), which produces a query string aligned with the experience corpus. 

 

The query is then passed to the multi-agent negotiation system. The referee agent manages the negotiation session, initializing 

the process by communicating the prediction problem to the configurator agents. During this preamble, agents prepare their 

reasoning frameworks and negotiation strategies. 

 

A novel negotiation strategy based on lazy learning and weighted distance metrics is proposed for the configurator agents. This 

approach mirrors human problem-solving, which relies on identifying similar cases from past experiences. Two human traits—

experience and preferences—affect the perception of similarity. In this system, the experience is shared among agents through 

the experience dataset, while preferences capture individual perspectives on the problem. 

 

 
Fig. 5. Interest relationships between commitments and descriptors. 

 

The preparation of preference profiles and weight vectors was grounded in a reasoning process that aligns with the commitments 

researchers adopt when addressing prediction tasks. These commitments inherently reflect a biased behavior, which can be 

systematically modeled through a preference scheme combined with the application of weighted distance metrics. To formalize 

the preferences of the agents, the experience dataset generated during the preparation phase serves as the foundational reference. 

 

Each descriptor within the experience dataset is treated as a distinct set of variables, and the experiments encapsulated in this 

dataset are represented as records described by these variables. These records constitute a unique collection of objects that must 

be evaluated through preference mechanisms. Interest relationships are established between the descriptors in the experience 

dataset and the commitments each agent embodies. Figure 6 illustrates these relationships, wherein each configurator agent 

exhibits a differentiated level of interest in the descriptors, contingent upon their specific commitment. 
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Interest relationships are categorized into two levels: high and medium. While most descriptors are assigned medium interest by 

default, those directly aligned with an agent’s commitment—including algorithm evaluation—are classified as having high 

interest. For instance, agents committed to problem-technique analysis prioritize prediction problem descriptors, algorithm 

descriptors, and algorithm evaluation descriptors. The magnitude of differentiation between high and medium interest is 

governed by a differentiation rate, which quantifies the disparity in importance. These interest relationships fulfill two critical 

objectives: 

1. Utility Impact Definition: They influence the contribution of each descriptor to the calculation of utility for a 

given parametric configuration. Drawing on methods for calculating utility via normalized preference profiles 

(Baarslag et al., 2018; Hindriks et al., 2009; Lin et al., 2014), preference values are assigned to negotiation-

relevant topics, corresponding to the descriptors. Descriptors classified as high interest exert a greater 

influence on the utility computation than those with medium interest, although both contribute to the 

aggregate utility score. 

2. Dimensionality Reduction for Distance Calculation: They refine the experimental characterization space by 

minimizing the influence of less relevant descriptors on distance metrics. Consequently, when comparing a 

user-provided case with the experience dataset, agents perceive experiments with relevant interest 

relationships as being closer in reduced-dimensionality spaces. 

 

When tasked with resolving a prediction problem, agents identify the most analogous case within their experience dataset. This 

involves calculating the distance between the new case and historical experiments, with utility and distance demonstrating an 

inverse relationship. Configurations that are closer in this reduced space exhibit higher utility values. 

 

Given that utility and distance are computed relative to interest relationships, agents' rankings of configurations reflect their 

unique commitments. As a result, even when agents share access to the same experience dataset, their prioritized configurations 

may differ. Each agent independently ranks configurations by utility, with the top-ranked configuration—characterized by 

maximum utility and minimum distance—representing the ideal offer for the corresponding configuration commitment. 

 

The acceptance threshold represents a tolerance level that allows for a controlled trade-off between maximizing utility and 

achieving a faster agreement. Initially, this threshold is set to a strict value to prioritize high-utility configurations. A proposal 

from one agent is deemed acceptable by another if the perceived utility of the proposal meets or exceeds the accepting agent’s 

threshold. Ideally, all agents propose their optimal configurations in the initial round, and a unanimous agreement is reached.

  However, if consensus is not achieved, agents can iteratively adjust their acceptance thresholds to facilitate an agreement while 

minimizing utility loss. The extent of these adjustments is determined by the accumulated negative interactions from prior 

negotiation rounds. A negative interaction occurs when a configuration proposed by one agent is rejected through a vote by 

another. 

 

In this context, the list of alternative offers comprises configurations from the experience dataset that meet the updated 

acceptance thresholds. Since this dataset has been pre-analyzed and ordered, alternative configurations are readily available for 

evaluation. With these negotiation elements defined, the referee agent oversees the execution of the negotiation protocol. 

 

During the configuration phase, the referee agent implements and manages the negotiation protocol. For this architecture, the 

Alternating Multiple Offerings Protocol (AMOP) (Baarslag, 2014) was selected due to its ability to ensure equitable 

participation among agents and to incorporate inter-agent feedback. AMOP operates in iterative rounds, where each round is 

divided into an offer phase and a voting phase: 

• Offer Phase: The referee agent prompts each configurator agent to generate and submit an offer, defined as a 

proposed configuration for the prediction task. 

• Voting Phase: The referee agent sequentially presents these offers to all other configurator agents, soliciting 

their votes for each proposal. Each agent evaluates the proposals based on their own preference profiles and 

communicates their votes to the referee agent, who aggregates and reports the results. 

 

f unanimous agreement is reached, the negotiation concludes. Otherwise, additional rounds are initiated, with agents refining 

their proposals based on the negotiation dynamics. 

 

In the initial offer phase of the first round, agents propose their ideal offer—the configuration with the highest utility derived 

from the entire experience dataset. In subsequent rounds, agents incorporate the offers of others into their decision-making. 

Specifically, each agent identifies the most favorable offer from other agents (based on its own preference profile) and selects a 
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configuration from its alternative offers that minimizes the average distance to these favorable offers. This iterative process 

balances exploration of alternative solutions with adherence to individual preferences, thereby increasing the likelihood of 

reaching consensus. 

 

Upon achieving an agreement—or exhausting the predefined round limit—the referee agent proceeds to execute the selected 

configurations using the provided working dataset. This process involves two steps: (1) applying any required modifications to 

the dataset and (2) generating an instance of the chosen algorithm configured with the negotiated parameters. Cross-validation is 

performed on this instance to evaluate its performance, and the results are presented to the user. This output includes a ranked 

list of configurations and the corresponding data necessary for the user to execute their prediction task with unclassified data. 

 

The proposed architecture exhibits a high degree of scalability and adaptability. The three storage entities utilized by the 

experiment generator—seed datasets, algorithm descriptors, and configuration options—can be incrementally expanded as new 

research on algorithms and datasets becomes available. The experiment generator employs a greedy exploration strategy, 

iterating through combinations of options to produce a cumulative experience corpus. Additionally, this corpus can be enriched 

by mining performance data from existing publications, provided the experiments are reproducible or their results can be 

directly integrated into the corpus. 

 

During the configuration phase, the system's flexibility is further enhanced by the use of interest relationships. These 

relationships enable the integration of new configuration commitments and descriptors, thereby enriching the negotiation 

process. Importantly, the negotiation strategy is designed to operate dynamically on the current experience corpus, eliminating 

the need for recalculating generalization models. This ensures that the architecture continuously incorporates the most up-to-

date knowledge. 

 

As the number of configuration commitments increases, so does the number of configurator agents involved in the negotiation. 

Despite this, the computational overhead remains manageable. Each configurator agent performs a lightweight analysis of the 

experience corpus during the preamble phase of negotiation, ensuring rapid execution. 

 

The architecture was implemented using the Python programming language, taking advantage of the facilities offered by the 

NumPy (Harris et al., 2020) and Scikit-learn (Pedregosa et al., 2011) libraries. 

 

 

4 Proof of concept 

 

4.1 Setting up the preparation phase 
 

The proof of concept was conducted to validate the proposed architecture, beginning with the configuration of the storage 

entities feeding the experiment generator. During the preparation phase, the seed datasets utilized were classical benchmark 

datasets commonly employed in academic classification studies: Wine, Iris, and Breast Cancer. The case study selected for this 

proof of concept was based on the work of Loredo (Loredo-Pong et al., 2022) , where the configuration options and algorithm 

descriptors focused on the K-Nearest Neighbors (KNN) algorithm. These descriptors and options were adapted from (Villarreal-

Hernández et al., 2023) and are summarized in Table 2. 

 

For the estimation of the K-value, the parameter n represents the number of records in the dataset under configuration. The 

experiment generator utilized the seed datasets to produce modified datasets by applying a combination of variable estimation 

and record reduction options. This process resulted in a total of 36 datasets available for experimentation. The generator 

conducted cross-validation by combining configurations from the various option categories. For K-values, the generator 

identified the highest value produced by the options and generated a range of experiments with K∈[1,max(K)]. Inoperative or 

redundant configurations, such as cases where K=1 combined with frequency count, were discarded, as these settings behave 

identically to direct assignment. Instead, the minimum K value allowed for frequency count policy is 3. As shown in Table 2, 

the current repertoire of distance functions does not include options specifically designed to handle categorical label values 

directly. The distance functions were chosen around the case study, this does not require addressing categorical fields, therefore, 

this delimitation has no impact on performance. 

 

Each configuration variant and modified dataset produced a distinct experiment. A total of 3,359 experiments were executed 

over a runtime of 24:05 minutes, and the results were stored in the experience corpus. The evaluation of configuration precision 
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was conducted using the balanced accuracy metric, which emphasizes a more equitable assessment across all classes. Unlike 

standard accuracy, which can be skewed by the performance on majority classes, balanced accuracy ensures fairness by 

averaging the recall for each class, thereby providing a more representative measure of overall performance (Brodersen et al. , 

2010; Kelleher et al., 2015). 

Table 2. Configuration options implemented for the proof of concept around the KNN algorithm are listed by category. In 

the estimation of K value column n is the number of records in the dataset 

Dataset variable 

estimation 

Dataset record 

reduction 

Closeness-similarity 

metrics 

Estimation of K 

value 

Class assignment 

policies 

None None Euclidean 
7 (Recommended 

from literature) 
Frequency count 

Pearson Centroids Manhattan 
1 (Required by 

Nearest Neighbor) 
Direct assignment 

Chi-square 
Fast condensation 

(Angiulli, 2005) 
Minkowski p=1.5 The square root of n Simple majority 

One hot encoder  Minkowski p=100 
n2/8 (Enas & Choi, 

1986) 
Qualified majority 

  Chebyshev 
n3/8 (Enas & Choi, 

1986) 

Neighbors with 

weights 

 

 

4.2 Setting up the configuration phase 
 

During the forecast phase, the configurable parameters pertained to the multi-agent negotiation process. The referee agent was 

configured with a maximum limit of 200 negotiation rounds. Additionally, the roles for the configurator agents—problem-

technique, parameter-corpus, and parameter-technique—were defined and assigned. Once invoked, each configurator agent 

initialized its configuration preamble, during which preferences and weights for the negotiation strategy were generated. These 

values were dependent on the differentiation rate, which was set to 0.15 in this proof of concept. 

 

The case study by Loredo (Loredo-Pong et al., 2022) employed the KNN algorithm to predict the state of aggregation for 

substances, classifying them into four categories: solution (S), gel (G), precipitate (P), and insoluble (I). The study analyzed a 

series of alkoxybenzoates and solvents, characterized by their Hansen Solubility Parameters and the number of carbons in the 

alkyl tail. During the development of this work, several training datasets were generated, as detailed in Table 3. The "Data 

Type" column in Table 3 indicates from left to right the composition of the dataset with the form Type (consecutive columns of 

the same type). 

Table 3. Characteristics of the datasets generated by Loredo. The aggregation states were obtained from experiments in 

the laboratory 

Dataset Variables Population Distribution by classes 

(G, I, P S) 

Data Type 

A 38 240 28, 4, 7, 203 Int(1), Binary(30), Int(7) 

B 24 270 47, 3, 3, 217 Binary(15), Decimal(1), Int(4), 

Decimal(3), Int(1) 

C 11 270 47, 3, 3, 217 Int(1), Decimal(3), Int(3), Decimal(3), 

Int(1) 

D 24 270 47, 223 Binary(15), Decimal(1), Int(4), 

Decimal(3), Int(1) 

E 11 270 47, 223 Int(1), Decimal(3), Int(3), Decimal(3), 

Int(1) 

 

Datasets D and E were transformed into binary classification problems by grouping classes into gel and non-gel categories. All 

datasets contained numerical representations of physicochemical descriptors (e.g., Ester, Ether, Polarity) and, in the case of 
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datasets A, B and D, included processed categorical labels. These categorical variables were processed using One-Hot 

Encoding, as shown in the configurations LrdA, LrdB, and LrdD in Table 4. 

 

In Figure 6, the elements discussed in Sections 4.1 and 4.2 are highlighted, illustrating their relationship with the entities that 

comprise the configuration architecture. 

 

 
Fig. 6. The architecture for parameter configuration, the annotations indicate the elements discussed in this section} 

 

4.3 Experimentation with KNN configurations 
 
Using each training set, Loredo evaluated various configurations of the KNN algorithm. These configurations, identified in 

Table 4 as Lrd+Dataset+Configuration Number, were defined according to the order and conventions presented in (Villarreal-

Hernández et al., 2023). For the class assignment policy, the inverse of the distance was employed as the weighting schema for 

neighbors. 

Table 4. Configurations proposed by Loredo (named Lrd+Dataset+Configuration Number) and proposed by the 

configurator agents (named Id+Configuration Number) for the different datasets of the gelation prediction problem 

Algorithm 

configuration name 

Variable 

estimation 

Record 

reduction 
K 

Distance 

metric 

Class assignment 

policy 
Dataset 

ID 928 None None 3 Manhattan Simple majority A 

LrdA1 One hot 

encoder 

None 5 Euclidean Frequency count A 

LrdA2 One hot 

encoder 

None 10 Euclidean Neighbors with 

weights 

A 

ID 1633 None None 3 Manhattan Simple majority B 

LrdB1 One hot 

encoder 

None 3 Euclidean Frequency count B 

LrdB2 One hot 

encoder 

None 3 Euclidean Neighbors with 

weights 

B 

LrdB3 One hot 

encoder 

None 5 Euclidean Neighbors with 

weights 

B 

LrdB4 One hot 

encoder 

None 10 Euclidean Neighbors with 

weights 

B 

ID 851 One hot Centroids 1 Manhattan Direct assignment C 
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encoder 

ID 1791 None Centroids 1 Manhattan Direct assignment C 

LrdC1 None None 3 Euclidean Frequency count C 

LrdC2 None None 5 Euclidean Frequency count C 

LrdC3 None None 5 Euclidean Neighbors with 

weights 

C 

LrdC4 None None 10 Euclidean Neighbors with 

weights 

C 

ID 1633 None None 3 Manhattan Simple majority D 

LrdD1 One hot 

encoder 

None 5 Euclidean Neighbors with 

weights 

D 

LrdD2 One hot 

encoder 

None 10 Euclidean Neighbors with 

weights 

D 

ID 1633 None None 3 Manhattan Simple majority E 

LrdE1 None None 3 Euclidean Neighbors with 

weights 

E 

 

 
Table 5 presents the user queries formulated to resolve the configurations of each dataset listed in Table 3. The first column of 

Table 5 specifies the query field representing the forecast situation, while the subsequent columns display the corresponding 

feature values for each dataset query. These columns describe the system’s input query parameters in detail, which serve as the 

basis for configuration resolution. 

 

Table 5. Queries to the configuration system with their characteristics, one string per column. A query is entered for 

dataset composition associated with their letter 

Characteristic 

field 

Query for 

dataset A 

Query for 

dataset B 

Query for 

dataset C 

Query for 

dataset D 

Query for 

dataset E 

Classes to 

consider 

4 4 4 2 2 

Present 

categorical 

fields 

0 (None) 0 (None) 0 (None) 0 (None) 0 (None) 

Target class 0 (None) 0 (None) 0 (None) 0 (None) 0 (None) 

Variable 

preselection 

One hot 

encoder 

One hot 

encoder 

None One hot 

encoder 

None 

Number of 

records 

240 270 270 270 270 

Present classes 4 4 4 2 2 

The size 

difference 

between classes 

82.8 88.2 88 88 88 

Number of 

variables 

38 24 11 24 11 

 

 
The outcomes generated by the configurator agents for each query are summarized in Table 6. For Dataset A, the configurators 

reached an agreement on example 928 from the experience corpus. Similarly, agreements were achieved for examples 1633 in 



Villarreal-Hernández et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 146-169. 

161 

 

contexts B, D, and E, and for examples 851 and 1791 in context C. It is important to note that the information returned by the 

agents originates from the experience corpus, which may include data not directly relevant to the end user. 

 

The precision measures reported in Table 6 correspond to the results recorded during experimentation and do not necessarily 

reflect the performance of the final solution. For instance, the average accuracy associated with example ID 851 is 0, likely due 

to the combined effects of using a nearest neighbor approach (K=1) and a direct assignment policy. These setting are known for 

their instability, particularly when paired with variable estimation techniques such as One-Hot Encoding, which may introduce 

additional classification errors. 

 

The configurations proposed by the configurator agents, along with their corresponding dataset applications, are detailed in 

Table 4. The variable estimation option is applied cumulatively; that is, if a previous variable estimation technique has been 

applied, the new one is incorporated as well. A "None" value for variable estimation indicates that no additional technique is 

applied. 

Table 6. Output chain of the configuration system with its characteristics, one configuration per column. The relation of 

the configurations is the following: for query A, configuration ID 928; B, D, and E, ID 1633; C, ID 851 and 1791 

Characteristic 

field 

ID 928 ID 1633 ID 851 ID 1791 

Learning type Example-

based 

Example-

based 

Example-

based 

Example-

based 

Requires 

modification of 

the dataset 

0 (No) 0 (No) 0 (No) 0 (No) 

Association 

type 

Proximity Proximity Proximity Proximity 

Produces a 

generalization 

model 

0 (No) 0 (No) 0 (No) 0 (No) 

Dataset record 

reduction 

None None None None 

Dataset variable 

estimation 

None None One hot 

encoder 

One hot 

encoder 

Closeness 

metric 

Manhattan Manhattan Manhattan Manhattan 

K parameter 

value 

3 3 1 1 

Class 

assignment 

policy 

Simple 

majority 

Simple 

majority 

Direct 

assignment 

Direct 

assignment 

Mean precision 0.7960784313

72549 

1 0 0.0039215686

2745098 

Standard 

deviation of 

precision 

0.0363671313

548851 

0 0 0.0078431372

5490196 

 

 
The returned configurations were evaluated using a 5-fold cross-validation scheme. Additionally, the configurations reported by 

Loredo were reproduced for comparative purposes. Across all executed configurations, three key performance metrics were 

assessed: Precision (shown in Table 7), Dispersion (standard deviation, shown in Table 8), Execution Time in seconds (shown 

in Table 9). 
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These performance metrics were statistically analyzed using the Friedman rank test (Friedman, 1937) and then Holm test (Holm, 

1979). García (García et al., 2010) provide a comprehensive analysis of statistical tests for comparing multiple classifies across 

multiple datasets, reinforcing the validity of using the Friedman test under conditions similar to those of our study. This 

methodology ensures that the assumptions of the Friedman test are respected, particularly when applied to the context of 

classifier comparisons with repeated measurements. We believe this aligns with the insights provided in (Demsar, s.f.), which 

emphasizes the importance of meeting these conditions.  

 

Following the recommendations of García, both the classic Friedman test and the aligned ranks Friedman test were employed, 

depending on the number of configurations compared: for datasets with more than four configurations (contexts B and C), the 

classic Friedman test was applied; for datasets with four or fewer configurations (contexts A, D, and E), the aligned ranks 

Friedman test was used. The ranks derived from these tests were subsequently processed with the Holm test to determine 

statistical significance. 

 

The results of the statistical analysis indicate that the Friedman test detected significant differences among the configurations' 

performances, ruling out ties in the rankings. Furthermore, the rejection of the null hypothesis (H0) in the Holm test confirms 

that these differences are statistically significant. 

 

Tables 7, 8, and 9 provide the detailed results of these analyses, grouped by datasets A to E, and include the performance 

metrics along with their respective Friedman ranks and Holm test results. For the implementation of the statistical tests, the 

STAC Python library (Rodriguez-Fdez et al., 2015) was employed. For precision metrics, a higher rank is considered indicative 

of better performance. Conversely, for dispersion and execution time, lower ranks denote superior outcomes, as these metrics 

benefit from minimization. 

 

Table 7. Precision configuration evaluation, grouped by dataset. In each group, the configurations are ordered according 

to their Friedman rank. Columns marked with Holm comparison H0 (column five onwards) present the VS between 

configurations 

Dataset Algorithm Mean 

precision 

Friedman 

rank 

Holm comparison 

H0 

    ID 928 LrdA1 LrdA2    

A ID 928 88.00% 2.6 -- Reject Reject    

 LrdA1 87.65% 2.4 Reject -- Accept    

 LrdA2 60.48% 1 Reject Accept --    

    ID 1633 LrdB1 LrdB2 LrdB3 LrdB4  

B ID 1633 85.70% 4.6 -- Reject Reject Reject Reject  

 LrdB1 85.50% 4.4 Reject -- Reject Reject Reject  

 LrdB2 71.11% 3 Reject Reject -- Reject Accept  

 LrdB3 63.69% 2 Reject Reject Reject -- Reject  

 LrdB4 50.18% 1 Reject Reject Accept Reject --  

    ID 851 ID 1791 LrdC1 LrdC2 LrdC3 LrdC4 

C LrdC1 84.00% 5.45 Reject Reject -- Reject Reject Reject 

 ID 1791 83.73% 5.34 Reject -- Reject Reject Accept Reject 

 LrdC2 81.80% 3.92 Reject Reject Reject -- Accept Reject 

 ID 851 80.59% 3.29 -- Reject Reject Reject Reject Accept 

 LrdC3 60.39% 2 Reject Accept Reject Accept -- Reject 

 LrdC4 47.72% 1 Accept Reject Reject Reject Reject -- 
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    ID 1633 LrdD1 LrdD2    

D ID 1633 88.00% 3 -- Reject Reject    

 LrdD1 74.23% 2 Reject -- Reject    

 LrdD2 63.14% 1 Reject Reject --    

    ID 1633 LrdE1     

E ID 1633 87.00% 2 -- Reject     

 LrdE1 75.94% 1 Reject --     

 
 

For Dataset A, the agents’ proposed configuration demonstrated a slight improvement in precision and deviation (see Table 8) 

compared to previous configurations. However, it exhibited the highest computational cost in terms of execution time, as shown 

in Table 9. 

 

In the case of Dataset B, the agents’ configuration outperformed previous proposals in terms of precision (see Table 7) and 

execution time (see Table 9), securing a close second place in terms of deviation. 

 

For Dataset C, the agents’ configuration ID 1791 achieved the highest precision and deviation ratings, albeit with a small margin 

to the second-best configuration. In contrast, configuration ID 851 was the fastest, but this came at the cost of lower precision 

and higher deviation, highlighting its limitations in predictive reliability. 

 

In Datasets D and E, the differences in precision among configurations were more pronounced compared to other contexts. 

Configuration ID 1633 provided a significant improvement in precision over previous proposals while incurring only a minor 

increase in computational time (see Table 9). 

 

Across all datasets, the agents’ configurations outperformed previous proposals in precision in four out of five cases (contexts 

A, B, D, and E) as shown in Table 7. However, this improvement was not consistently accompanied by a reduction in deviation, 

as evident in contexts B and C. 

 

Table 8. Standard deviation of precision configuration evaluation, grouped by dataset. In each group, the configurations 

are ordered according to their Friedman rank. Columns marked with Holm comparison H0 (column five onwards) present 

the VS between configurations 

Dataset Algorithm Standard 

deviation  

Friedman 

rank 

Holm comparison 

H0 

    ID 928 LrdA1 LrdA2    

A ID 928 0.0342 1.48 -- Reject Reject    

 LrdA1 0.0368 1.65 Reject -- Accept    

 LrdA2 0.0660 2.87 Reject Accept --    

    ID 1633 LrdB1 LrdB2 LrdB3 LrdB4  

B LrdB1 0.0448 2.48 Reject -- Accept Accept Accept  

 ID 1633 0.0453 2.58 -- Reject Accept Accept Accept  

 LrdB2 0.0510 2.77 Accept Accept -- Accept Accept  

 LrdB3 0.0609 3.48 Accept Accept Accept -- Accept  

 LrdB4 0.0635 3.68 Accept Accept Accept Accept --  

    ID 851 ID 1791 LrdC1 LrdC2 LrdC3 LrdC4 
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C LrdC1 0.0387 2.45 Reject Accept -- Accept Accept Reject 

 ID 1791 0.0393 2.71 Reject -- Accept Accept Accept Reject 

 ID 851 0.0399 2.9 -- Reject Reject Reject Reject Accept 

 LrdC2 0.0443 3.16 Reject Accept Accept -- Accept Reject 

 LrdC4 0.0602 4.77 Accept Reject Reject Reject Reject -- 

 LrdC3 0.0654 5 Reject Accept Accept Accept -- Reject 

    ID 1633 LrdD1 LrdD2    

D ID 1633 0.0344 1.61 -- Accept Accept    

 LrdD1 0.0491 2 Accept -- Accept    

 LrdD2 0.0554 2.39 Accept Accept --    

    ID 1633 LrdE1     

E ID 1633 0.0407 1.4 -- Reject     

 LrdE1 0.0458 1.6 Reject --     

 
 

Examining the agents’ configurations across contexts reveals recurring patterns. In contexts A, B, D, and E, the agents' 

configurations did not include variable estimation or record reduction procedures (see Table 4). This suggests that the natural 

structure of the data for these specific problems is sufficient, and preprocessing techniques may introduce unnecessary 

complexity or degrade model performance. In all four contexts, the agents consistently selected K=3, an odd value 

recommended in the literature to avoid ties during class assignment. The relationship between K and the class assignment policy 

is particularly significant. Using the simple majority policy, at least two out of three neighbors must belong to the same class for 

a successful classification. This strategy is especially effective when the dataset excludes at least one class, as observed in 

Datasets A and B, simplifying the classification task. For Datasets D and E, using K=3 mitigates the sensitivity to noise, a 

common issue when relying on a single nearest neighbor (K=1). 

Table 9. Time in seconds configuration evaluation, grouped by dataset. In each group, the configurations are ordered 

according to their Friedman rank.  Columns marked with Holm comparison H0 (column five onwards) present the VS 

between configurations 

Dataset Algorithm Time in 

seconds 

Friedman 

rank 

Holm comparison 

H0 

    ID 928 LrdA1 LrdA2    

A LrdA1 1.8741 1.68 Reject -- Accept    

 LrdA2 1.8800 1.77 Reject Accept --    

 ID 928 1.9097 2.55 -- Reject Reject    

    ID 1633 LrdB1 LrdB2 LrdB3 LrdB4  

B ID 1633 2.3339 2.77 -- Accept Accept Accept Accept  

 LrdB2 2.3366 2.87 Accept Accept Accept Accept --  

 LrdB4 2.3398 2.9 Accept Accept -- Accept Accept  

 LrdB3 2.3351 2.97 Accept Accept Accept -- Accept  

 LrdB1 2.3450 3.48 Accept -- Accept Accept Accept  

    ID 851 ID 1791 LrdC1 LrdC2 LrdC3 LrdC4 

C ID 851 2.3358 2.32 -- Reject Accept Reject Reject Accept 

 LrdC4 2.3786 2.35 Accept Reject Accept Reject Reject -- 
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 LrdC1 2.3962 3.52 Accept Accept -- Accept Accept Accept 

 ID 1791 2.3919 4.23 Reject -- Accept Accept Accept Reject 

 LrdC2 2.4100 4.29 Reject Accept Accept -- Accept Reject 

 LrdC3 2.4266 4.29 Reject Accept Accept Accept -- Reject 

    ID 1633 LrdD1 LrdD2    

D LrdD2 2.2402 1.9 Accept Accept --    

 LrdD1 2.2473 1.94 Accept -- Accept    

 ID 1633 2.2433 2.16 -- Accept Accept    

    ID 1633 LrdE1     

E LrdE1 2.4975 1.45 Accept --     

 ID 1633 2.5078 1.55 -- Accept     

 
 

Dataset C presented a unique challenge, where the agents’ configurations yielded the lowest ratings compared to other contexts. 

Two notable differences were observed: 

1. Multiple Configuration Proposals: unlike other contexts, agents proposed more than one configuration for the 

prediction task in Dataset C. 

2. Inclusion of variable estimation and record reduction: unlike contexts A, B, D, and E, the agents included 

variable estimation and record reduction options in Dataset C. This involved the centroid reduction method 

combined with K=1 and the direct assignment policy. 

 

Configuration ID 851, which utilized One-Hot Encoding for variable estimation, received the lowest precision and deviation 

scores. This result suggests that the One-Hot Encoding technique may not be suitable for Dataset C. Upon analyzing Dataset C’s 

characteristics (see Table 5), it is evident that it contains four distinct classes and 11 variables, a reduction compared to other 

datasets. The poor performance of ID 851 appears to stem from its reliance on One-Hot Encoding, which is the main difference 

between it and the superior ID 1791 configuration. 

 

The configurator agents demonstrated robust performance across most contexts, particularly when they avoided variable 

estimation and record reduction, allowing the natural structure of the data to guide predictions. The consistent selection of K=3 

aligns with established literature and further validates its efficacy in reducing noise sensitivity and improving classification 

accuracy. However, Dataset C highlighted the limitations of including preprocessing techniques such as One-Hot Encoding, 

emphasizing the importance of tailoring configurations to the dataset’s specific characteristics. 

 

This analysis underscores the adaptability and effectiveness of the configurator agents, while revealing opportunities for 

refinement in cases where the dataset complexity or preprocessing steps may undermine predictive performance. 

 

 

5 Discussion 

 

The architecture for parameter configuration has been designed to facilitate the continuous incorporation of new datasets and 

algorithms. While integrating entire families of algorithms is optimal for conducting reuse studies, the proposed methodology 

for generating and storing experiential data supports the inclusion of isolated algorithms as well. 

 

Dataset Selection Approaches 

The selection of seed datasets represents a critical aspect of the architecture's capabilities and can be addressed through various 

methodologies. One approach involves leveraging datasets specific to the chemical domain, enabling the extraction of relevant 

descriptors that capture the strategies historically used to solve similar problems. Alternatively, datasets from other scientific 

domains may be employed, provided their descriptors are sufficiently diverse to broaden the system’s perspective and enrich its 

parametric configuration capabilities. A further method entails the use of synthetic dataset generation techniques, which may be 

linked to real-world problems or entirely artificial. This approach offers the dual advantages of statistical control over dataset 

composition and the opportunity to explore parameter configurations under systematically defined conditions. 
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Capturing User Queries 

A significant challenge lies in capturing end-user queries, as formulating a prediction problem in logical and computable terms 

is inherently complex. The definition of the prediction task can directly influence the difficulty of identifying optimal parametric 

configurations. This is because predictive algorithms are associated with computational complexities that often depend on their 

parameter settings, which, in turn, may include elements derived from the problem description. 

 

To address this, the architecture can incorporate a wizard interface that assists users in constructing a simplified representation 

of their prediction problem. This interface ensures that the problem remains compatible with the configurator agents, avoiding 

scenarios where overly exotic problem definitions impede effective parameter configuration. 

 

Adaptability of the Multi-Agent Negotiation Framework 

The multi-agent negotiation framework within the architecture is designed to accommodate the incorporation of new knowledge 

dynamically. Adding examples to the experience corpus requires only the extraction of their descriptors, eliminating the strict 

dependency on the experiment generator for data generation. 

 

The preference-generation method ensures that for any input within the experience corpus, it is possible to compute the utility of 

each commitment. Furthermore, the interest relationships schema introduces a layer of abstraction between commitments and 

specific descriptor variables. This abstraction facilitates: modifications to descriptor variables without affecting the overall 

structure; and addition of new descriptors or commitments stemming from subsequent studies. This design ensures the 

architecture remains flexible and scalable, capable of integrating new descriptors, algorithms, and datasets as the field evolves. 

 

 

6 Conclusions and Future Work 

 

The proposed architecture facilitates the exploration of diverse configuration options for predictive algorithms. By leveraging 

the multi-agent paradigm, it enables the evaluation of algorithmic configurations from multiple perspectives, achieving a 

balanced assessment through consensus mechanisms. Data mining and machine learning algorithms have demonstrated 

remarkable success in predicting data trends and have been applied extensively to solve complex challenges in chemical and 

material processes (Goh et al., 2017).  Expanding the capabilities of the configuration agents within this framework promises 

faster and more efficient deployment of these computational techniques. 

 

This architecture is built upon a lazy learning paradigm that supports the incremental inclusion of algorithmic options and 

dataset types, thereby enhancing the cumulative experience of the agents. While the architecture incorporates an experiment 

generator that requires algorithm implementation, the experience corpus can be enriched with algorithmic configurations 

derived from existing literature. The inclusion of additional agent roles can be achieved by defining new interest relationships, 

commitments, or descriptors, thereby broadening the scope of configuration strategies. Experimental variations may include 

generating experience corpora using alternative seed datasets to diversify the agents' perspectives. Furthermore, adjustments to 

the differentiation rate—a parameter reflecting the magnitude of interest differences among variables—can influence the rigidity 

of negotiation strategies, potentially altering consensus outcomes. 

 

Despite the variety of techniques and methodologies addressing parameter optimization challenges, a review of the state-of-the-

art reveals a lack of applications of the intelligent agent paradigm to this problem within the context of computational chemistry. 

This positions the integration of intelligent agent methodologies as a novel approach in this domain. 

 

The application of parameter optimization to computational chemistry techniques has the potential to elucidate the relationships 

between algorithmic parameters and the investigated chemical phenomena. Understanding these relationships can lead to 

significant improvements in the accuracy of classifications and predictions, as well as reductions in energy consumption and 

time requirements in chemical research and experimentation. 
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