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1 Introduction 
 

Constraint Satisfaction Problems (CSPs) consist of finitely many variables with a finite domain and finitely many constraints 

about the values variables can take simultaneously. These problems are important because several relevant problems from 

Artificial Intelligence, Operations Research, and Data Base Queries are CSPs.  

 

Generally, CSPs are NP-complete problems and there are many search methods and heuristics to solve them (Tsang, 2014). 

It is known that graph acyclicity often guarantees tractability for problems involving graphs. For this reason, several measures of 

acyclicity have been introduced. From those measures, the tree width is the optimal parameter (Downey & Fellows, 2013). Several 

problems that are not related to graphs can be modeled with graphs. 

 

For problems modeled with graphs, it is known that having bounded tree width is equivalent to being tractable (Downey & 

Fellows, 2013). However, most CSPs are better modeled with hypergraphs. Many hypertree widths have been defined to find 

parameters to make CSPs fixed parameter tractable (Gottlob et al., 2014; Grohe & Marx, 2014). 

 

SAT is a very important problem in computer science. This problem has been studied deeply because the solutions of SAT can be 

transformed into solutions for other important problems in areas such as real-time verification systems and planning in artificial 

intelligence. Although SAT is NP-complete, many tractable subclasses have been found by using Parametrized Complexity 

Theory (Szeider, 2003; Haan & Szeider, 2014).  

 

In this work, we will present some non-trivial tractable subclasses of SAT, and we will analyze their generalized hypertree width 

to guarantee the tractability of all CSP problems modeled by those hypergraphs. In Section 2 we present preliminar concepts about 

hypergraphs, the sat problem and hypertree width. In Section 3 we present several hypergraphs and their hypertreewidth. In 

Subsection 3.1 we include several hypergraphs that were found with the software SageMath, we include their tree width that was 

computed with SageMath. In Subsection 3.2 we present different methods to define infinite classes of hypergraphs with bounded 

hypertree width. In Subsection 3.3 we define recursively the class of hypergraphs ℬ. To define the class ℬ, we introduce the 

operation ⊕ on hypergraphs and prove that 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) = 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)} for 1-boundaried hypergraphs 𝐻1 and 

𝐻2. This result is interesting because it allows us to produce infinite classes of hypergraphs with bounded hypertree width by 

gluing hypergraphs with bounded hypertree widths. We also prove that if 𝐻1 and 𝐻2 are 2-boundaried hypergraphs,  

𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}  ≤ 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2)  ≤ 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)} + 1. This result has many potential applications to 

produce either infinite classes of hypergraphs with bounded hypertree width or infinite classes of hypergraphs with unbounded 

hypertree width. 
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2 Preliminaries 
 

In this section, we present all the necessary concepts to follow the subsequent sections. We include relevant concepts about 

Hypergraphs, Constraint Satisfaction Problems, the SAT problem and Hypertree widths.  

 

2.1 Hypergraphs 

 

In this Subsection, we present basic definitions of hypergraphs and hypertree decompositions that are crucial to follow the work. 

The reader interested in knowing more about hypergraphs can see (Bretto, 2013). 

 

Definition 1. A hypergraph is a pair H = (V(H), E(H)) where V(H) is the set of vertices and E(H) includes non-empty subsets of 

V(H) called edges. Also, every vertex must belong to some edge.  

 

From now on, we identify hypergraphs with the set of its edges. Given a hypergraph H, the primal graph of H is the graph G that 

satisfies that V(G)= V(H) and a pair of vertices u, v are adjacent in G if and only if there is an edge e in H such that both u and v 

belong to e. Finally, the size of a hypergraph |H|=|V(H)|+|E(H)|*|V(H)|. 

 

Example 1. Let H be the hypergraph satisfying that V(H)={0, 1, 2, 3, 4, 5, 6, 7, 8} and E(H)={{0, 1, 2}, {0, 3, 4}, {5, 6, 7}, {1, 

5, 8}, {2, 3, 6}, {4, 7, 8}}. The primal graph of H is determined by the set of edges {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 5}, 

{1, 8}, {2, 3}, {3, 4}, {3, 6}, {4, 7}, {4, 8}, {5, 6}, {5, 7}, {5, 8}, {6, 7}, {7, 8}}. Now we present visualizations of H (see Fig. 

1) and its primal graph (see Fig. 2). 

 

                                                               
                                           Fig. 1. Hypergraph H.                          Fig. 2. Primal graph of H. 

 

Definition 2. Let H = (V, E) be a hypergraph, a path P in H from x to y, is a sequence 𝑥1𝑒1𝑥1𝑒2 … 𝑒𝑛𝑥𝑛+1 

such that: 

• 𝑥1 = 𝑥 and 𝑥𝑛+1 = 𝑦, 

• 𝑥1, 𝑥2, … , 𝑥𝑛+1 are distinct vertices, 

• 𝑒1, 𝑒2, … , 𝑒𝑛 are distinct edges, 

• for every 𝑖 ∈ {1, … , 𝑛}, 𝑥𝑖 , 𝑥𝑖+1 ∈ 𝑒𝑖.  

 

Definition 3. A t-boundaried hypergraph is a hypergraph H with t distinguished vertices labeled by 1,...,t. The vertices labeled by 

1,...,t are called the boundary, and we denote by ∂(H) the set of boundary vertices of H. 

 

Definition 4. Let H1 and H2 t-boundaried graphs. We denote by 𝐻1 ⊕ 𝐻2 the hypergraph obtained by taking the disjoint union of 

H1 and H2, and identifying each vertex of ∂(H1) with the vertex of ∂(H2) with the same label. 

 

2.2 Constraint Satisfaction Problems 
Constrain Satisfaction Problems consist of finitely many variables 𝑥1, 𝑥2, … , 𝑥𝑛 where each variable 𝑥𝑖 has a finite domain, and a 

set of constraints {𝐶𝑥𝑖,…,𝑥𝑘
|𝑖, … , 𝑘 ∈ 1,2, … , 𝑛} where 𝐶𝑥𝑖,…,𝑥𝑘

 is the set of all allowed assignments for variables 𝑥𝑖 , … , 𝑥𝑘. To solve 

the problem we must find an assignment for all variables satisfying all constraints. Generally, CSPs are NP-complete (Tsang, 

2014). 

 

Every CSP has an associated hypergraph, the nodes of the hypergraph are the variables of the CSP, and a set of variables is an 

edge if there is a constraint over that set of variables. 𝐶𝑆𝑃(𝐻) denotes the class of all CSP problems modeled by H. 
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We borrow the following example from (Gottlob et al., 2014). Solving a crossword puzzle is a CSP if we take every possible letter 

as a variable, the domain of each variable as the alphabet, and all horizontal or vertical columns correspond to a constraint.   

 

 
Fig. 3. Crossword puzzle. 

 

In the crossword shown in Fig.3, the variables are 𝑥1, 𝑥2, … , 𝑥26. The domain of each variable is the alphabet {a, b, c,…,z}. The 

constraints of the problem are all vertical and horizontal words. Knowing the variables and constraints, we can obtain the 

hypergraph associated with the CSP. 

 

 
Fig. 4. The hypergraph associated with the crossword puzzle. 

 

2.3 SAT problem 
 

Now, we present some definitions of boolean formulas to define the SAT problem. 

A boolean variable is a symbol that can be associated with the values 0 and 1. Boolean formulas are built recursively as follows: 

• constants 0 and 1 are Boolean formulas,  

• boolean variables are Boolean formulas,  

• and conjunctions, disjunctions, and negations of Boolean formulas are Boolean formulas.  

 

We say a boolean formula is satisfiable if an assignation for its variables makes the formula true. The SAT problem consists in 

deciding whether a quantifier-free boolean formula is satisfiable or not. A literal is whether a boolean variable or a negated Boolean 

variable. A clause is a disjunction of literals. A clause looks like this 𝐶 =l1˅l2˅…˅ln. 

 

Finally, we say that a formula F is in conjunctive normal form (CNF) if it is the conjunction of a finite set of clauses. Those 

formulas take the form 𝐹 = 𝐶1˄𝐶2˄ … ˄𝐶𝑚. Every free-quantifier Boolean formula can be expressed as a formula in CNF. We 

consider all formulas in CNF to state the SAT problem. To do this, given a free-quantifier boolean formula, we consider the 

variables of the formula as the variables of the problem and the clauses of the formula as the constraints of the problem. The 

domain of each variable is the set {0,1}. 

 

A given formula belongs to the class 2µ-3MON if in its FNC each clause has at most 3 variables, none of them are negated, and 

every variable appears at most in two clauses. The following formula belongs to the class 2µ-3MON, 𝐹 =
(𝑥1˅𝑥2˅𝑥4)˄(𝑥2˅𝑥3˅𝑥5). Therefore, hypergraphs associated to this syntactic class satisfy that every edge contains at most 3 

vertices and every vertex belongs at most to 2 edges. 

 

2.4 Some widths for hypergraphs 

 
In this Subsection, we present some hypertree widths that have been defined to measure the acyclicity of hypergraphs. To avoid 

confusion, if T is a tree (decomposition), we will write N(T) to denote the set of vertices of T. 

 



Navarro Flores and Guillén Galván  / International Journal of Combinatorial Optimization Problems and Informatics, 16(4) 2025, 459-472. 

462 

 

Definition 5. A tree decomposition of a hypergraph H is a pair ⟨𝑇, (𝐵𝑢)𝑢∈𝑁(𝑇)⟩ where T=(N(T), E(T)) is a tree and every node 

u ∈ N(T) has associated a set of vertices Bu ⊆ V satisfying the following conditions: 

1) for every e ∈ E(H) there exists u ∈ N(T) such that e ⊆ Bu, 

2) for every v ∈ V(H), the set {u ∈ N(T) | v ∈ Bu} is connected in T. 

Sets Bu are called bags, and from now on we will identify u with Bu.  

 

The width of a tree decomposition ⟨𝑇, (𝐵𝑢)𝑢∈𝑁(𝑇)⟩ is the cardinality of the bigger bar minus one, that is, max{|Bu|-1 : u ∈ 𝑁(𝑇)}. 

The tree width of H is the minimum of the widths of all the tree decompositions of H. 

  

Example 2. The following tree (see Fig. 5) is a tree decomposition of H. We obtained the tree using SageMath. The tree consists 

of a path with 5 nodes, the bags of T are the sets {0, 2, 3, 4, 6}, {0, 1, 2, 4, 6}, {0, 1, 4, 6, 8}, {1, 4, 5, 6, 8} and {4, 5, 6, 7, 8}. 

 

 
Fig. 5. Tree decomposition of H. 

 
The tree width for hypergraphs is the immediate generalization of the tree width for graphs. For classes of hypergraphs with 

bounded size, having bounded tree width is the optimal parameter that guarantees tractability (Grohe, 2007). 

 

Though there are classes of hypergraphs with unbounded size satisfying that they have unbounded tree width, but they are 

tractable. Therefore, the tree width does not capture the acyclicity of hypergraphs precisely. Trying to find better parameters to 

capture the acyclicity of hypergraphs, other widths for hypergraphs have been defined (Gottlob et al., 1999; Gottlob et al., 2014; 

Grohe and Marx, 2014). 

 

Now we are going to introduce the concepts of edges cover and hypertree decompositions.  

 

Definition 6. Given a hypergraph H and a set of vertices A ⊆ V(H), an edges cover of A in H is a function 𝑐 : E(H) →{0,1} such 

that for every v ∈ A, there exists an edge e containing v such that 𝑐(e)=1.  

 

The weight of 𝑐 is the sum of all the values assigned to all edges by c, that is to say ∑ 𝑐(𝑒).𝑒 ∈ 𝐸(𝐻)  

 

Definition 7. A generalized hypertree decomposition of a hypergraph H is a triple ⟨𝑇, (𝐵𝑢)𝑢∈𝑁(𝑇), (𝑐u)𝑢∈𝑁(𝑇)⟩ where: 

1) ⟨𝑇, (𝐵𝑢)𝑢∈𝑁(𝑇)⟩ is a tree decomposition of H, 

2) For every  u ∈ N(T), cu is an edges cover for Bu in H. 

 

Example 3. For this example, we enumerate the edges of H, the hypergraph mentioned in the previous examples. e1={0, 1, 2}, 

e2={0, 3, 4}, e3={5, 6, 7}, e4={1, 5, 8}, e5={2, 3, 6}, e6={4, 7, 8}. A generalized hypertree decomposition for H consists of a path 

with two bags {0, 2, 3, 4, 5, 6, 7},{0, 1, 2, 4, 5, 7, 8}, and the edge covers for those bags {e2, e3, e5}, {e1, e4, e6}. In Figure 6, we 

present a hypertree decomposition for H. 

 

 
Fig. 6. Hypertree decomposition for H. 
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The width of a generalized hypertree decomposition is the maximum weight of all the edge covers cu included in the 

decomposition. The generalized hypertree width of a hypergraph H is the minimum width of all generalized hypertree 

decompositions. Grohe and Marx proved that if a class of hypergraphs has bounded (Grohe & Marx, 2014). 

 

It is known that determining the generalized hypertree decomposition of a given hypergraph is an NP-complete problem. Also, 

given a fixed k, it is NP-complete to determine if ghw(H)≤ 𝑘 (Gottlob et al., 2021). It follows from different works (Grohe, 2001, 

2017; Grohe et al., 2011; Gottlob et al., 1999, 2000) that if a hypergraph H has bounded generalized hypertree width, the problems 

in CSP(H) are tractable. We are interested in finding tractable subclasses of the syntactic class 2µ-3MON, and for that reason, in 

this work, we analyze the generalized hypertree width of several hypergraphs and classes of hypergraphs. 

 

3 Hypergraphs and their widths 
 

In this section, we present some hypergraphs and their hypertree widths. Since we are interested in studying the syntactic class 

2µ-3MON, all our hypergraphs satisfy the condition that their edges have at most 3 vertices, and each vertex is incident to at most 

2 hyperedges.  

 

To calculate the tree width of a hypergraph, we use the function treewidth from SageMath; it's worth mentioning that the algorithm 

used by this program is not optimal, and for hypergraphs with more than 30 vertices, the computation takes much time. To compute 

the hypertree width, we use the program provided in the following repository: https://github.com/daajoe/detkdecomp. 

 

We want to determine whether the class 2µ-3MON is fixed-parameter tractable, taking the hypertree width as a parameter. Since 

we are dealing with a subclass of an NP-complete problem, and for each k ≥ 2, determining whether the fractional width of a 

hypergraph is bounded by k is also an NP-complete problem (Gottlob et al., 2021), we have defined some hypergraphs to analyze 

the behavior of different widths on them. Despite being highly restrictive, the hypertree width (even the tree-width) of this class 

of hypergraphs is still unknown. The known software for determining tree-width for graphs experiences combinatorial explosion 

for a small number of vertices and edges. With the objective of contributing to a better understanding of the hypertree width, we 

include a visualization of the primal graph of each hypergraph. Even though these graphs do not have more than 30 vertices, their 

visualization becomes confusing. 

 

3.1 Hypergraphs found using SageMath 
 

The hypergraphs presented below were constructed to achieve the maximum possible width with that number of vertices and 

hyperedges. As we can observe, the maximum tree width we have achieved is 8, and the maximum hypertree width we have 

reached is 6. We aim to find hypergraphs with a tree width of 9 and a hypertree width of 7. For this purpose, we have defined 

several hypergraphs with 33 vertices and 22 hyperedges, but so far, we have not achieved the desired widths. 

 

The hypergraph H1 determined for the set of edges {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {3, 7, 8 }, {5, 9, 10}, {7, 9, 14}, {11, 12, 13 }, 

{9, 7, 14}, {6, 8, 11}, {4, 10, 12}}. There is no other hypergraph with 15 vertices, 10 edges, and greater tree width than H1. The 

treewidth of H1 is 6, and the hypertree width of H1 is 3. In Figure 7, we present a visualization of the primal graph of H1. 

 

 
Fig. 7. Primal graph of H1. 

 

The hypergraph H2 determined for the set of edges {{0, 1, 2}, {0, 3, 4}, {5, 6, 7}, {5, 8, 9}, {1, 10, 11}, {3, 12, 13}, {14, 15, 16 

}, {17, 18, 19}, {20, 10, 14}, {12, 15, 17}, {6, 11, 13}, {2, 8, 18}, {4, 9, 16}, {19, 20, 7}}. There is no other hypergraph with 21 

vertices, 14 edges, and greater tree width than H2. The tree width of H2 is 7, and the hypertree width of H2 is 4. In Figure 8, we 

present a visualization of the primal graph of H2. 
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Fig. 8. Primal graph of H2. 

 

The hypergraph H3 determined for the set of edges {{0, 1, 2}, {0, 3, 6}, {1, 4, 7}, {2, 5, 8}, {6, 9, 15}, {3, 10, 16}, {4, 12, 18 }, 

{7, 11, 17}, {5, 13, 20}, {8, 14, 19}, {9, 12, 19}, {11, 15, 20}, {10, 13, 18}, {14, 16, 17}}. H3 has 21 vertices and 14 edges. The 

tree width of H3 is 7, and the hypertree width of H3 is 5. In Figure 9, we present a visualization of the primal graph of H3. 

 

 
Fig. 9. Primal graph of H3. 

 

The hypergraph H4 determined for the set of edges {{0, 1, 2}, {0, 3, 4}, {1, 3, 5}, {6, 7, 8}, {6, 9, 10}, {7, 11, 12}, {9, 13, 14}, 

{11, 15, 16}, {17, 18, 19}, {20, 21, 22}, {23, 24, 25}, {17, 20, 26}, {13, 18, 23}, {2, 8, 21}, {4, 12, 14}, {10, 15, 24}, {16, 19, 

22}, {5, 25, 26}}. There is no other hypergraph with 27 vertices, 18 edges, and greater tree width than H4. The tree width of H4 is 

8, and the hypertree width of H4 is 5. In Figure 10, we present a visualization of the primal graph of H4. 

 

 
Fig. 10. Primal graph of H4. 

 

The hypergraph H5 determined for the set of edges {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {2, 7, 8}, {3, 11, 12}, {4, 9, 10}, {5, 13, 14}, 

{6, 15, 16}, {7, 17, 18}, {8, 19, 20}, {9, 21, 22}, {15, 23, 24}, {19, 25, 26}, {16, 18, 22}, {10, 23, 26}, {14, 21, 25}, {11, 13, 

20}, {12, 14, 17}}. H5 has 27 vertices and 18 edges. The tree width of H5 is 7, and the hypertree width of H5 is 5. In Figure 11, we 

present a visualization of the primal graph of H5. 
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Fig. 11. Primal graph of H5. 

 

The hypergraph H6 determined for the set of edges {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {2, 7, 8}, {3, 11, 12}, {4, 9, 10}, {5, 13, 14}, 

{6, 15, 16}, {7, 17, 18}, {8, 19, 20}, {9, 21, 22}, {15, 23, 24}, {19, 25, 26}, {10, 27, 28}, {14, 29, 80}, {20, 31, 32}, {16, 21, 

32}, {22, 26, 30}, {11, 29, 31}, {12, 13, 25}, {17, 23, 27}, {18, 24, 28}}. H6 has 33 vertices and 22 edges. The tree width of H6 

is 6, and the hypertree width of H6 is 5. In Figure 12, we present a visualization of the primal graph of H6. 

 

 
Fig. 12. Primal graph of H6. 

 

The hypergraph H7 determined for the set of edges {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {2, 7, 8}, {3, 11, 12}, {4, 9, 10}, {5, 13, 14}, 

{6, 15, 16}, {7, 17, 18}, {8, 19, 20}, {9, 21, 22}, {15, 23, 24}, {19, 25, 26}, {10, 27, 28}, {14, 29, 80}, {20, 31, 32}, {16, 21, 

32}, {22, 26, 30}, {11, 29, 31}, {12, 13, 25}, {17, 23, 27}, {18, 24, 28}}. H7 has 33 vertices and 22 edges. The tree width of H7 

is 8, and the hypertree width of H7 is 5. In Figure 13, we present a visualization of the primal graph of H7. 

 

 
Fig. 13. Primal graph of H7. 

 

The hypergraph H8 determined for the set of edges {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {2, 7, 8}, {3, 11, 12}, {4, 9, 10}, {5, 13, 14}, 

{6, 15, 16}, {7, 17, 18}, {8, 19, 20}, {10, 21, 22}, {12, 23, 24}, {14, 25, 26}, {16, 27, 28}, {18, 29, 80}, {20, 31, 32}, {9, 27, 

17}, {11, 13, 29}, {15, 19, 21}, {22, 25, 30}, {23, 26, 31}, {24, 28, 32}}. H8 has 33 vertices and 22 edges. The tree width of H8 

is 8, and the hypertree width of H8 is 6. In Figure 14, we present a visualization of the primal graph of H8. 

 

 
Fig. 14. Primal graph of H8. 
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The hypergraph H9 determined for the set of edges {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {2, 7, 8}, {3, 11, 12}, {4, 9, 10}, {5, 13, 14}, 

{6, 15, 16}, {7, 17, 18}, {8, 19, 20}, {10, 21, 22}, {12, 23, 24}, {13, 23, 31}, {14, 25, 26}, {22, 27, 28}, {24, 29, 80}, {26, 31, 

32}, {9, 15, 29}, {18, 21, 32}, {16, 19, 27}, {20, 28, 30}, {11, 17, 25}}. H9 has 33 vertices and 22 edges. The tree width of H9 is 

7, and the hypertree width of H9 is 5. In Figure 15, we present a visualization of the primal graph of H9. 

 

 
Fig. 15. Primal graph of H9. 

 

3.2 Classes of hypergraphs  

 
Studying different hypergraphs, we found it difficult to define huge hypergraphs by writing all their hyperedges. This is why we 

found ways to define arbitrary large hypergraphs using an analytic description. In this Subsection, we present some countable 

families of hypergraphs and prove their tractability. We will start defining the class ℋℬ. 

 

For every 𝑛 ≥ 2, let 𝐻𝑛 be the hypergraph satisfying that 𝑉(𝐻𝑛) = {1,2, … ,6𝑛} and 𝐸(𝐻𝑛) consists of all sets 𝑒𝑘 = {2𝑘 + 1,2𝑘 +
2,2𝑘 + 3} with 𝑘 < 3𝑛 − 1, also all sets 𝑓𝑘 = {2𝑘 + 1,2𝑘 + 2𝑛 + 1,2𝑘 + 4𝑛 + 1} with 𝑘 < 𝑛 − 1. Notice that every hypergraph 

𝐻𝑛 has 6𝑛 vertices and 4𝑛 edges. Let ℋℬ the family of all the hypergraphs 𝐻𝑛. In Figure 16, we present a visualization of the 

hypergraph H8. 

 

 
Fig. 16. 𝐻8. 

 

Proposition 1. The family of hypergraphs ℋℬ has bounded generalized hypertree width. 

 

Proof. Fix some 𝑛 ≥ 3. We will build a tree decomposition for 𝐻𝑛.  Let 𝐵0 be the bag {0, 1, 2, 2𝑛, 1 + 2𝑛, 2 + 2𝑛, 4𝑛, 1 + 4𝑛, 2 +
4𝑛}. For every 0 < 𝑖 < 𝑛, let  

 

𝐴𝑖={2𝑖, 2𝑖 + 1, 2𝑖 + 2,2𝑖 + 2𝑛, 2𝑖 + 1 + 2𝑛, 2𝑖 + 2 + 2𝑛, 2𝑖 + 4𝑛, 2𝑖 + 1 + 4𝑛, 2𝑖 + 2 + 4𝑛},  
 

𝐶𝑖= {2(𝑛 − 𝑖), 2(𝑛 − 𝑖) + 1,2(𝑛 − 𝑖) + 2,2(𝑛 − 𝑖) + 2𝑛, 2(𝑛 − 𝑖) + 1 + 2𝑛, 2(𝑛 − 𝑖) + 2 + 2𝑛, 2(𝑛 − 𝑖) + 4𝑛, 2(𝑛 − 𝑖) + 1 +
4𝑛, 2(𝑛 − 𝑖) + 2 + 4𝑛}. Define  𝐵𝑢𝑖

= 𝐴𝑖 ∪ 𝐶𝑖. Notice that for every 𝑖 < 𝑛, 𝐵𝑢𝑖
 meets 𝐵𝑢𝑖+1

. We define the tree T as the path with 

nodes 𝑢𝑖 satisfying that for every 𝑖 < 𝑛, 𝑢𝑖 is adjacent to 𝑢𝑖+1. Notice that edges 𝑒𝑘, 𝑒𝑘+𝑛, 𝑒𝑘+2𝑛, 𝑓𝑘 ⊆ 𝐴𝑖 and 

𝑒𝑛−𝑘 , 𝑒(𝑛−𝑘)+𝑛, 𝑒(𝑛−𝑘)+2𝑛, 𝑓𝑛−𝑘 ⊆ 𝐶𝑖. Therefore, T is a three decomposition of 𝐻𝑛, and its tree width is 6. Therefore 𝑔ℎ𝑤(𝐻𝑛) ≤

6. 
 

Theorem 1. For every 𝐻 ∈ ℋℬ, 𝐶𝑆𝑃(𝐻) are tractable. 

 

Proof. It follows from the fact that the family ℋℬ has bounded generalized hypertree width. 
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Now, we will define another countable class of hypergraphs with bounded generalized hypertree width.  

 

If Σ is an alphabet, Σ* is the set of all finite strings of elements of Σ. Let Σ1={0,1,2}, Σ2 ={0,1} and define Σ= Σ1Σ2
* the 

concatenation of the sets Σ1 and Σ2
*.  

 

For every natural number n with n ≥ 2, we define 𝑉𝑛 = {𝑤: |𝑤| ≤ 𝑛}. Notice that   
 

|Vn|=∑ |{ 𝑤 ∈  𝛴 ∶  |𝑤| = 𝑖}| 𝑛
𝑖=1  = ∑ 3(2𝑖−1) 𝑛

𝑖=1  = 3( ∑ 2𝑗𝑛−1
𝑗=0  ) = 3(

1−2𝑛

1−2
) = 3(2𝑛 − 1).                           (1) 

 

Now fix some 𝑛 ≥ 2. We define the edges for our hypergraph as follows. Recall that ϵ denotes the empty string, let 𝑒 𝜖 ={0,1,2}. 

For every 𝑣 ∈ 𝑉𝑛 with |𝑣| < 𝑛 let 𝑒𝑣 = {𝑣, 𝑣0, 𝑣1}. Notice that there are 3(2𝑛−1-1) many different sets 𝑒𝑤. Now, for every 𝑤 ∈
Σ2

𝑛−1, let 𝑓𝑤 = {0𝑤, 1𝑤, 2𝑤}. Notice that there are 2𝑛−1 many different sets 𝑓𝑤. 

 

Let 𝐸𝑛 be the collection of all edges {𝑒ϵ} ∪ {𝑒𝑣: 𝑣 ∈ 𝑉𝑛 , |𝑣| < 𝑛} ∪ {𝑓𝑤: 𝑤 ∈ Σ2
𝑛−1}. 

 

Notice that there are 1 + 3(2𝑛−1 − 1) + 2𝑛−1 edges, and 

 

1 + 3(2𝑛−1 − 1) + 2𝑛−1 = 1 − 3 + 3(2𝑛−1) + 2𝑛−1 = 4(2𝑛−1) − 2 = 2(2𝑛 − 1).                          (2) 

  

So we define 𝐻𝑇𝑛 = (𝑉𝑛 , 𝐸𝑛). First, we will see that every vertex belongs to exactly two edges. Take 𝑣 ∈ 𝑉𝑛. If |𝑣| = 1, 𝑣 ∈
{0,1,2} and 𝑣 ∈ 𝑒𝑣. If 1 < |𝑣| < 𝑛, we can write 𝑣 = 𝑤𝑖 with 𝑖 ∈ Σ2. Then 𝑣 ∈ 𝑒𝑣 and 𝑣 ∈ 𝑒𝑤. If  |𝑣| = 𝑛 , we can write 𝑣 =
𝑤𝑖 = 𝑗𝑡 with 𝑖 ∈ Σ2 and 𝑗 ∈ Σ1. Then 𝑣 ∈ 𝑒𝑤 and 𝑣 ∈ 𝑓𝑡. 

 

Let ℋ𝒯 be the family of all hypergraphs 𝐻𝑇𝑛 where 𝑛 is a natural number greater than 2. 

 

Proposition 2. The family ℋ𝒯 has bounded hypertree width. Furthermore, for every 𝐻𝑇𝑛 ∈ ℋ𝒯, the respective generalized 

hypertree width is at most 3.  

 

Proof. We will build an hypertree decomposition for 𝐻𝑇𝑛. Let 𝐵ϵ = {𝑣 ∈ 𝑉𝑛: |𝑣| ≤ 2} and notice that 𝐵ϵ = 𝑒ϵ ∪ 𝑒0 ∪ 𝑒1 ∪ 𝑒2 =
𝑒0 ∪ 𝑒1 ∪ 𝑒2. Therefore we define 𝑐ϵ = {𝑒0, 𝑒1, 𝑒2}. Now, for every 𝑖 ∈ {1, … , 𝑛 − 2} and for every 𝑡 ∈ Σ2

𝑖 ,    

 

𝐵𝑡 = {0𝑡, 0𝑡0, 0𝑡1, 1𝑡, 1𝑡0, 1𝑡1, 2𝑡, 2𝑡0, 2𝑡1} = 𝑒0𝑡 ∪ 𝑒1𝑡 ∪ 𝑒2𝑡. 

 

Therefore we define λ𝑡 = {𝑒0𝑡 , 𝑒1𝑡 , 𝑒2𝑡}. We must verify that every hyperedge 𝑓𝑤 is contained in some bag. To do this, fix some 

𝑤 ∈ Σ2
𝑛−1. So, 𝑓𝑤 = {0𝑤, 1𝑤, 2𝑤} ⊂ 𝐵𝑤. Then we define T as the tree with nodes 𝑁 = Σ2

≤𝑛 satisfying that 𝑠, 𝑡 ∈ 𝑁 are adjacent 

in T if 𝑠 is a prefix of 𝑡 or 𝑡 is a prefix of 𝑠. 

 

To see that ⟨𝑇, (𝐵𝑢)𝑢∈𝑁(𝑇)⟩ is a tree decomposition of 𝐻𝑇𝑛 we must prove that for every 𝑣 ∈ 𝑉𝑛, {𝑡 ∈ 𝑁: 𝑣 ∈ 𝐵𝑡} is connected in 

T. To do this, fix 𝑣 ∈ 𝑉𝑛. 

• If |𝑣| = 1, 𝑣 only belongs to the bag 𝐵𝜖 and 𝑣 does not belong to other 𝐵𝑡 . 

• If |𝑣| = 2, we can write 𝑣 = 𝑖𝑗 with 𝑖 ∈ Σ1, 𝑗 ∈ Σ2. Then 𝑣 only belongs to the bags 𝐵ϵ and 𝐵𝑗 . 

• If 2 < |𝑣| < 𝑛, 𝑣 = 𝑖𝑡 = 𝑖𝑠𝑗 with 𝑖 ∈ Σ1 and 𝑗 ∈ Σ2. Then 𝑣 ∈ 𝐵𝑡  and 𝑣 ∈ 𝐵𝑠. Since s is a prefix of t, s and t are 

adjacent. 

• If |𝑣| = 𝑛, we can write 𝑣 = 𝑖𝑡𝑗 with 𝑖 ∈ Σ1, 𝑡 ∈ Σ2
𝑛−2 and 𝑗 ∈ Σ2. Then 𝑣 only belongs to the bag 𝐵𝑡 . 

 

Therefore, the triple ⟨𝑇, (𝐵𝑡)𝑡∈𝑁(𝑇), (λ𝑡)𝑡∈𝑁(𝑇)⟩ is a generalized hypertree decomposition and its hypertree width is equal to 3. So, 

for every 𝑛 > 2, 𝑔ℎ𝑤(𝐻𝑇𝑛) ≤ 3. 

 

Theorem 2. For every 𝐻 ∈ ℋ𝒯, CSP(H) are tractable. 

Proof. It follows from the fact that the family ℋ𝒯 has bounded generalized hypertree width. 

 

3.3 Building a class of hypergraphs recursively 

  



Navarro Flores and Guillén Galván  / International Journal of Combinatorial Optimization Problems and Informatics, 16(4) 2025, 459-472. 

468 

 

Now, we will present another family of hypergraphs. These hypergraphs are built by gluing some basic hypergraphswith the 

operation ⊕, and with this procedure, we can obtain countably many different hypergraphs with bounded hypertree width. First 

we prove some connections between the hypertreewidth of 𝐻1 ⊕ 𝐻2 and hypertree widths of 𝐻1 and 𝐻2. 

 

Theorem 3. Given 𝐻1 and 𝐻2 1-boundaried hypergraphs, 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) = 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}. 

 

Proof. Let 𝐻1 and 𝐻2 1-boundaried hypergraphs with 𝜕(𝐻1) = {𝑢} and 𝜕(𝐻2) = {𝑣}. Let 𝑇1, 𝑇2 the disjoint hypertree 

decompositions of hypegraphs 𝐻1 and 𝐻2 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑛𝑔 𝑡ℎ𝑎𝑡 the width of 𝑇1 is 𝑔ℎ𝑤(𝐻1) and the width of 𝑇2 is 𝑔ℎ𝑤(𝐻2). There 

exist 𝑠 ∈ 𝑇1 and 𝑡 ∈ 𝑇2 satisfying that 𝑢 ∈ 𝐵𝑠 and 𝑣 ∈ 𝐵𝑡 . 
 

Define 𝑇 as follows, 𝑁(𝑇) = 𝑁(𝑇1) ∪ 𝑁(𝑇2) and 𝐸(𝑇) = 𝐸(𝑇1) ∪ 𝐸(𝑇2) ∪ {𝑠𝑡}. Notice that vertices s and t are adjacent in T, we 

add this edge to guarantee that in T, all the bags containing 𝑢 ∼ 𝑣 are connected. Since ⟨𝑇1, (𝐵𝑢)𝑢∈𝑁(𝑇1)⟩  and ⟨𝑇2, (𝐵𝑢)𝑢∈𝑁(𝑇2)⟩  

are tree decomposicions for 𝐻1 and 𝐻2 respectively, ⟨𝑇, (𝐵𝑢)𝑢∈𝑁(𝑇1) ⋃ 𝑁(𝑇2)⟩  is a tree decomposition of  𝐻1 ⊕ 𝐻2. Hence, 

⟨𝑇, (𝐵𝑢)𝑢∈𝑁(𝑇1) ⋃ 𝑁(𝑇2), (𝑐u)𝑢∈𝑁(𝑇1) ⋃ 𝑁(𝑇2)⟩ is a generalized hypertree decomposition for  𝐻1 ⊕ 𝐻2. Since all the bags for T are bags 

in 𝑇1 or 𝑇2, the width of T is 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}. Therefore 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) ≤ 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}. 

 

Finally, since 𝐻1 ⊕ 𝐻2 contains the hypergraphs 𝐻1 and 𝐻2, 𝑔ℎ𝑤(𝐻1)  ≤ 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) and 𝑔ℎ𝑤(𝐻2)  ≤ 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2). 
Therefore, 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) = 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}. 

 

Theorem 4. Given 𝐻1 and 𝐻2 2-boundaried hypergraphs, it holds that 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}  ≤ 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) ≤
𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)} + 1. 

 

Proof. Let 𝐻1 and 𝐻2 2-boundaried hypergraphs with 𝜕(𝐻1) = {𝑢, 𝑣} and 𝜕(𝐻2) = {𝑤, 𝑧}. Let 𝑇1, 𝑇2 the disjoint hypertree 

decompositions of hypegraphs 𝐻1 and 𝐻2 satisfying that the width of 𝑇1 is 𝑔ℎ𝑤(𝐻1) and the width of 𝑇2 is 𝑔ℎ𝑤(𝐻2). There exist 

𝑠 ∈ 𝑇1 and 𝑡 ∈ 𝑇2 satisfying that 𝑢 ∈ 𝐵𝑠 and 𝑤 ∈ 𝐵𝑡 . 
 

Define 𝑇 as follows, 𝑁(𝑇) = 𝑁(𝑇1) ∪ 𝑁(𝑇2) and 𝐸(𝑇) = 𝐸(𝑇1) ∪ 𝐸(𝑇2) ∪ {𝑠𝑡}. Notice that t is a tree. Now take 𝑝 ∈ 𝑇1 and 𝑞 ∈
𝑇2 satisfying that 𝑣 ∈ 𝐵𝑝 and 𝑧 ∈ 𝐵𝑞 . Since T is a tree, there exists a path 𝑣𝑒1𝑣1 … 𝑣𝑛−1𝑒𝑛𝑧 in T. Every edge 𝑒𝑖 is contained in a 

bag 𝐵𝑟𝑖
 with 𝑟𝑖 ∈ 𝑁(𝑇1) ∪ 𝑁(𝑇2). Define 𝐵𝑟𝑖

′ = 𝐵𝑟𝑖
∪ {𝑣}. We do this to guarantee that all the bags is T that contains  𝑣 ∼ 𝑧 are 

connected. For every 𝑟 ∈ (𝑁(𝑇1) ∪ 𝑁(𝑇2)) ∖ {𝑟𝑖: 1 ≤ 𝑖 ≤ 𝑛} define 𝐵𝑟
′ = 𝐵𝑟 . 

  

Notice that vertices s and t are adjacent in T, we add this edge to guarantee that in T, all the bags containing 𝑢 ∼ 𝑤 are connected. 

Since ⟨𝑇1, (𝐵𝑢)𝑢∈𝑁(𝑇1)⟩  and ⟨𝑇2, (𝐵𝑢)𝑢∈𝑁(𝑇2)⟩  are tree decomposicions for 𝐻1 and 𝐻2 respectively, ⟨𝑇, (𝐵′𝑢)𝑢∈𝑁(𝑇1) ⋃ 𝑁(𝑇2)⟩  is a 

tree decomposition of  𝐻1 ⊕ 𝐻2. Now, for every 1 ≤ 𝑖 ≤ 𝑛, let 𝑐𝑟𝑖
′ = 𝑐𝑟𝑖

∪ {𝑒1} and notice that 𝑐𝑟𝑖
′  is an edge cover for  𝐵𝑟𝑖

. Also, 

for 𝑟 ∈ (𝑁(𝑇1) ∪ 𝑁(𝑇2)) ∖ {𝑟𝑖: 1 ≤ 𝑖 ≤ 𝑛} define 𝑐𝑟
′ = 𝑐𝑟 . Hence, ⟨𝑇, (𝐵′𝑢)𝑢∈𝑁(𝑇1) ⋃ 𝑁(𝑇2), (𝑐′u)𝑢∈𝑁(𝑇1) ⋃ 𝑁(𝑇2)⟩ is a generalized 

hypertree decomposition for  𝐻1 ⊕ 𝐻2. Since all the bags for T are bags in 𝑇1 or 𝑇2 that could have an additional edge, the width 

of T is 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1) + 1, 𝑔ℎ𝑤(𝐻2) + 1}. Therefore 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) ≤ 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1) + 1, 𝑔ℎ𝑤(𝐻2) + 1}. 

 

Finally, since 𝐻1 ⊕ 𝐻2 contains the hypergraphs 𝐻1 and 𝐻2, 𝑔ℎ𝑤(𝐻1)  ≤ 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) and 𝑔ℎ𝑤(𝐻2)  ≤ 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2). 
Therefore, 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}  ≤ 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2)  ≤ 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)} + 1. 

 

It follows from Theorem 4 that 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) could be either 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)} or 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)} + 1. 

This is very interesting because we could use the operation ⊕ to produce bigger hypergraphs with either bounded hypertree width 

or unbounded hypertree width. Hence, it is desirable to know which properties on 𝐻1 and 𝐻2 guarantee that 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) is 

equal to 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)} and wich conditions guarantee that 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) is equal to 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)} +
1. The following theorems give us conditions to gruarantee that 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) = 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}. 

 

Theorem 5. Given 𝐻1 and 𝐻2 2-boundaried hypergraphs such that 𝜕(𝐻1) = {𝑢, 𝑣} ⊆ 𝑒1 and 𝜕(𝐻2) = {𝑤, 𝑧} ⊆ 𝑒2 with 𝑒1 ∈
𝐸(𝐻1) and 𝑒2 ∈ 𝐸(𝐻2).  Then 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) = 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}. 

 

Proof. Let 𝐻1 and 𝐻2 2-boundaried hypergraphs with 𝜕(𝐻1) = {𝑢, 𝑣} and 𝜕(𝐻2) = {𝑤, 𝑧} 𝑎𝑠 𝑎𝑏𝑜𝑣𝑒. Let 𝑇1, 𝑇2 the disjoint 

hypertree decompositions of hypegraphs 𝐻1 and 𝐻2 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑛𝑔 𝑡ℎ𝑎𝑡 the width of 𝑇1 is 𝑔ℎ𝑤(𝐻1) and the width of 𝑇2 is 𝑔ℎ𝑤(𝐻2). 

There exist 𝑠 ∈ 𝑇1 and 𝑡 ∈ 𝑇2 satisfying that 𝑒1 ⊆ 𝐵𝑠 and 𝑒2  ⊆ 𝐵𝑡 . 
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Define 𝑇 as follows, 𝑁(𝑇) = 𝑁(𝑇1) ∪ 𝑁(𝑇2) and 𝐸(𝑇) = 𝐸(𝑇1) ∪ 𝐸(𝑇2) ∪ {𝑠𝑡}. Notice that vertices s and t are adjacent in T, we 

add this edge to guarantee that in T, all the bags containing 𝑢 ∼ 𝑤 are connected, the same for all the bags containing 𝑣 ∼ 𝑧. 

Since ⟨𝑇1, (𝐵𝑢)𝑢∈𝑁(𝑇1)⟩  and ⟨𝑇2, (𝐵𝑢)𝑢∈𝑁(𝑇2)⟩  are tree decomposicions for 𝐻1 and 𝐻2 respectively, ⟨𝑇, (𝐵𝑢)𝑢∈𝑁(𝑇1) ⋃ 𝑁(𝑇2)⟩  is a 

tree decomposition of  𝐻1 ⊕ 𝐻2. Hence, ⟨𝑇, (𝐵𝑢)𝑢∈𝑁(𝑇1) ⋃ 𝑁(𝑇2), (𝑐u)𝑢∈𝑁(𝑇1) ⋃ 𝑁(𝑇2)⟩ is a generalized hypertree decomposition for  

𝐻1 ⊕ 𝐻2. Since all the bags for T are bags in 𝑇1 or 𝑇2, the width of T is 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}. Therefore 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) ≤
𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}. 

 

Finally, since 𝐻1 ⊕ 𝐻2 contains the hypergraphs 𝐻1 and 𝐻2, 𝑔ℎ𝑤(𝐻1)  ≤ 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) and 𝑔ℎ𝑤(𝐻2)  ≤ 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2). 
Therefore, 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) = 𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)}. 

 

Now we define the following hypergraphs. 

 

Let I be the hypergraph satisfying that 𝑉(𝐼) = {1,2,3,4,5,6,7,8} and 𝐸(𝐼) = {{1,2,3}, {2,4,6}, {3,5,7}, {4,5,8}, {6,7,8}}. Notice that 

I has order 8, 𝑑𝐼(1) = 1 and for 𝑖 > 1, 𝑑𝐼(𝑖) = 2. In Figure 17, we present a visualization of the hypergraph I. 

 

 
Fig. 17. Hypergraph I. 

 

Let us denote 𝑒1 = {1,2,3}, 𝑒2 = {2,4,6}, 𝑒3 = {3,5,7}, 𝑒4 = {4,5,8}, 𝑒5 = {6,7,8}. Let 𝑇𝐼  be the tree with nodes 𝑠1, 𝑠2, 𝑠3, and 

𝐵𝑠1
= {1,2,3} = 𝑒1, 𝐵𝑠2

= {2,3,4,5,6,7}  = 𝑒2 ∪ 𝑒3, and 𝐵𝑠3
= {4,5,6,7,8} = 𝑒4 ∪ 𝑒5.  

 

Notice that 𝐵𝑠1
 𝑎𝑛𝑑  𝐵𝑠3

𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝐵𝑠2
 so 𝑇𝐼  is a path. Also, 𝑇𝐼  is a hypertree decomposition of 𝐼 and since every bag 

contains at most two edges,  𝑔ℎ𝑤(𝐼) ≤ 2. Furthermore, since I contains cycles, 𝑔ℎ𝑤(𝐼) = 2. 
 

Let J be the hypergraph satisfying that 𝑉(𝐽) = {1,2,3,4,5,6,7,8,9,10,11}, and 𝐸(𝐽) =
{{1,2,3}, {2,4,5}, {3,4,6}, {5,7,9}, {6,8,10}, {7,8,11}, {9,10,11}}. Notice that J has order 11, 𝑑𝐽(1) = 1 and for 𝑖 > 1, 𝑑𝐽(𝑖) = 2. In 

Figure 18, we present a visualization of the hypergraph J. 

 

 
Fig. 18. Hypergraph J. 

 

Let us denote 𝑒1 = {1,2,3}, 𝑒2 = {2,4,5}, 𝑒3 = {3,4,6}, 𝑒4 = {5,7,9}, 𝑒5 = {6,8,10}, 𝑒6 = {7,9,11}, 𝑒7 = {9,10,11}. Let 𝑇𝐽 be a 

path with nodes 𝑡1, 𝑡2, 𝑡3, 𝑡4 which is a path and 𝐵𝑡1
= {1,2,3} = 𝑒1, 𝐵𝑡1

= {1,2,3} = 𝑒1, 𝐵𝑡2
= {2,3,4,5,6} = 𝑒2 ∪ 𝑒3, 𝐵𝑡3

=

{5,6,7,8,9,10} = 𝑒4 ∪ 𝑒5, 𝐵𝑡3
= {5,6,7,8,9,10} = 𝑒4 ∪ 𝑒5, 𝐵𝑡4

= {7,8,9,10,11} = 𝑒6 ∪ 𝑒7.  

 

Notice that 𝑇𝐽 is a hypertree decomposition of J and since every bag contains at most two edges, 𝑔ℎ𝑤(𝐽) ≤ 2. Furthermore, since 

J contains cycles, 𝑔ℎ𝑤(𝐽) = 2. 

 

Let K be the hypergraph satisfying that 𝑉(𝐾) = {1,2,3,4,5,6,7} and 𝐸(𝐾) = {{1,2,3}, {2,4,5}, {3,4,6}, {5,6,7}}. Notice that K has 

order 7, 𝑑𝐾(1) = 1, 𝑑𝐾(7) = 1 and for 1 < 𝑖 < 7, 𝑑𝐾(𝑖) = 2. In Figure 19, we present a visualization of the hypergraph K. 
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Fig. 19. Hypergraph K. 

 

Let us denote 𝑒1 = {1,2,3}, 𝑒2 = {2,4,5}, 𝑒3 = {3,4,6}, 𝑒4 = {5,6,7}. Let 𝑇𝐾  be a path with nodes 𝑢1, 𝑢2, 𝑢3 and define 𝐵𝑢1
=

{1,2,3} = 𝑒1, 𝐵𝑡2
= {2,3,4,5,6} = 𝑒2 ∪ 𝑒3, and 𝐵𝑡3

= {5,6,7} = 𝑒4. Notice that 𝑇𝐾  is a hypertree decomposition of K and since 

every bag contains at most two edges, 𝑔ℎ𝑤(𝐾) ≤ 2. Furthermore, since K contains cycles, 𝑔ℎ𝑤(𝐾) = 2. 

 

Let L be the hypergraph satisfying that 𝑉(𝐿) = {1,2,3,4,5,6,7,8,9,10} and  

 

𝐸(𝐿) = {{1,2,3}, {2,4,7}, {3,5,6}, {4,5,8}, {6,7,9}, {8,9,10}}. 
 

Notice that L has order 10, 𝑑𝐿(1) = 1,  𝑑𝐿(10) = 1, and for 1 < 𝑖 < 10, 𝑑𝐿(𝑖) = 2. In Figure 20, we present a visualization of 

the hypergraph L. 

 

 
Fig. 20. Hypergraph L. 

 

Let us denote 𝑒1 = {1,2,3}, 𝑒2 = {2,4,7}, 𝑒3 = {3,5,6}, 𝑒4 = {4,5,8}, 𝑒5 = {6,7,9}, 𝑒6 = {8,9,10}. Let 𝑇𝐿  be a path with nodes 

𝑣1, 𝑣2, 𝑣3, 𝑣4 and define 𝐵𝑣1
= {1,2,3} = 𝑒1, 𝐵𝑣2

= {2,3,4,5,6,7} = 𝑒2 ∪ 𝑒3, 𝐵𝑣3
= {4,5,6,7,8,9} = 𝑒4 ∪ 𝑒5, 𝐵𝑣4

= {8,9,10} = 𝑒6. 

Notice that 𝑇𝐿  is a hypertree decomposition of L and since every bag contains at most two edges, 𝑔ℎ𝑤(𝐿) ≤ 2. Furthermore, since 

L contains cycles, 𝑔ℎ𝑤(𝐿) = 2. 

 

Let M be the hypergraph satisfying that 𝑉(𝑀) = {1,2,3,4,5,6,7,8,9,10} and 𝐸(𝑀) =
{{1,2,3}, {2,4,5}, {3,5,6}, {4,7,8}, {6,7,9}, {8,9,10}}. Notice that M has order 10, 𝑑𝑀(1) = 1, 𝑑𝑀(10) = 1 and for 1 < 𝑖 < 10, 

𝑑𝑀(𝑖) = 2. In Figure 21, we present a visualization of the hypergraph M. 

 

 
Fig. 21. Hypergraph M. 

 

Let us denote 𝑒1 = {1,2,3}, 𝑒2 = {2,4,5}, 𝑒3 = {3,5,6}, 𝑒4 = {4,7,8}, 𝑒5 = {6,7,9}, 𝑒6 = {8,9,10}. Let 𝑇𝑀 be the tree with nodes 

𝑤1, 𝑤2, 𝑤3, 𝑤4 which is a path and 𝐵𝑤1
= {1,2,3} = 𝑒1, 𝐵𝑤2

= {2,3,4,5,6,7} = 𝑒2 ∪ 𝑒3, 𝐵𝑤3
= {4,5,6,7,8,9} = 𝑒4 ∪ 𝑒5, 𝐵𝑤4

=

{8,9,10} = 𝑒6. 

 

Notice that 𝑇𝑀 is a hypertree decomposition of M and since every bag contains at most two edges, 𝑔ℎ𝑤(𝑀) ≤ 2. Furthermore, 

since M contains cycles, 𝑔ℎ𝑤(𝑀) = 2. 

 

We will use hypergraphs I, J, K, L, M to build countable many hypergraphs with bounded hypertree width. We will consider 

hypergraphs I, J, K, L, M as 1-boundary hypergraphs where 𝜕(𝐼) = {1},  𝜕(𝐽) = {1}, 𝜕(𝐾) = {1}, 𝜕(𝐿) = {1}, 𝜕(𝑀) = {1}. When 

we glue two hypergraphs 𝐻1 ⊕ 𝐻2 where 𝐻1 ∈ {𝐼, 𝐽}  we identify 1𝐻1 and 1𝐻2 so 1 has degree 2 in 𝐻1 ⊕ 𝐻2. Hence, if 𝐻2 ∈ {𝐼, 𝐽} 

all the vertices in  𝐻1 ⊕ 𝐻2 have degree 2. Otherwise, there exists exactly one vertex in 𝐻1 ⊕ 𝐻2 with degree 1. In the last case 

we enumerate the vertices such that the only vertex with degree 1 is labeled with numer 1 and take 𝜕(𝐻1 ⊕ 𝐻2) = {1}. 
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Let ℬ the class of all hypergraphs 𝐻 = 𝐻1 ⊕. . .⊕ 𝐻𝑛 where 𝐻1 ∈ {𝐼, 𝐽} and and 𝐻𝑖 ∈ {𝐼, 𝐽, 𝐾, 𝐿, 𝑀} for 1 < 𝑖. Notice that every 

𝐻 ∈ ℬ contains zero or one vertex with degree 1 and all other vertices has degree 2. 

 

Proposition 3. For every 𝐻 ∈ ℬ, it holds that 𝑔ℎ𝑤(𝐻) = 2.  

 

Proof. We will prove it for induction on the length of 𝐻. Since 𝐻 ∈ ℬ, 𝐻 = 𝐻1 ⊕. . .⊕ 𝐻𝑛.  

 

If n =2. Since 𝐻1 and 𝐻2 are 1-boundaried hypergraphs, it follows from Theorem 3 that 𝑔ℎ𝑤(𝐻) =  𝑚𝑎𝑥{ 𝑔ℎ𝑤(𝐻1),
𝑔ℎ𝑤(𝐻2)} = 2. 

 

Now we assume that the conclusion holds for n and we will prove that the conclusion holds for n+1. Let 𝐻 = 𝐻1 ⊕. . .⊕ 𝐻𝑛 ⊕
𝐻𝑛+1. By inductive hypothesis 𝜕(𝐻1 ⊕. . .⊕ 𝐻𝑛) = {1},  and 𝑔ℎ𝑤(𝐻1 ⊕. . .⊕ 𝐻𝑛)  = 2. Since 𝐻1 ⊕. . .⊕ 𝐻𝑛 and 𝐻𝑛+1 are 1-

boundaried hypergraphs, if follows from Theorem 3 that 𝑔ℎ𝑤(𝐻) =  𝑚𝑎𝑥{ 𝑔ℎ𝑤(𝐻1 ⊕. . .⊕ 𝐻𝑛), 𝑔ℎ𝑤(𝐻𝑛+1)} = 2. 

 

Theorem 6. For every 𝐻 ∈ ℋ𝒯, CSP(H) are tractable. 

 

Proof. It follows from the fact that the family ℋ𝒯 has bounded generalized hypertree width. 

 

Figure 22 illustrates a member of ℬ. 

 
Fig. 22. Hypergraph 𝐿 ⨁ 𝐾 ⨁ 𝐿. 

 

 

4 Conclusions 
 

Observing the behavior of tree width in the analyzed examples, we conjecture that none of the widths are bounded on the class of 

2µ-3MON. As we have dealt with NP-complete problems, the known algorithms that calculate tree-width and hyper-tree-width 

are not useful when dealing with very large hypergraphs. For this reason, the hypergraphs for which we can compute their tree 

width with software have at most 33 vertices. Since it is very difficult to define large hypergraphs by listing all their hyper-edges, 

in this work, we present different ways to define infinite classes of hypergraphs. To build the class of hypergraphs ℬ, we use the 

operation ⊕ to build new hypergraphs, gluing other hypergraphs. This technique is very useful to produce classes of hypergraphs 

with unbounded size.  We do not know yet conditions on hypergraphs  𝐻1 and 𝐻2 guarantee that 𝑔ℎ𝑤(𝐻1 ⊕ 𝐻2) is equal to 

𝑚𝑎𝑥{𝑔ℎ𝑤(𝐻1), 𝑔ℎ𝑤(𝐻2)} + 1. We are interested in finding those conditions because that information will allow us to build 

tractable classes of hypergraphs. 
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