

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 15(5), Dec 2024, 127-145. ISSN: 2007-1558.

https://doi.org/10.61467/2007.1558.2024.v15i5.571

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

A Review of Design Methodologies and Evaluation Techniques for FPGA-Based

Visual Object Tracking Systems

Víctor Alejandro Méndez López1, Carlos Soubervielle Montalvo1, Alberto Salvador Núñez Varela1, Oscar

Ernesto Pérez Cham2, Emilio Jorge González Galván1
1 Universidad Autónoma de San Luis Potosí, Facultad de Ingeniería, México.
2 Universidad del Mar Campus Puerto Escondido, Juquila, Oaxaca, México.

alejandromdzlpz.uaslp@gmail.com,carlos.soubervielle@uaslp.mx,alberto.nunez@uaslp.mx,

operezcham@zicatela.umar.mx,egonzale@uaslp.mx

Abstract. In recent years, computer vision algorithms have

improved from conventional image processing to deep

learning approaches. Meanwhile, complex but flexible

FPGA-based platforms have made possible the

development of challenging real-time heterogeneous

systems for visual object tracking (VOT). This study

presents a comprehensive review of design methodologies,

algorithms, and evaluation techniques of 21 FPGA-based

VOT systems reported in literature from 2017 to 2023. Five

design methodology categories are described: Region

matching, Feature matching, Machine learning, Deep

learning, and Hybrid systems. FPGA, SoC-FPGA and

MPSoC platforms for VOT system implementations are

considered. Relevant evaluation techniques and metrics are

reviewed as part of dataset benchmarks or toy datasets. In

order to propose an insight of the FPGA-based VOT

systems, each topic presents their comparative analysis and

discussion. Finally, main conclusions, recommendations

and perspectives are presented.

Keywords: Visual Object Tracking, FPGA-based platform,

Design Methodologies, Co-design, Evaluation techniques,

Datasets.

Article Info

Received May 10, 2024.

Accepted Nov 20, 2024.

1 Introduction

Visual Object Tracking (VOT) is a research field in computer vision aimed at monitoring moving objects within

sequences of video images. Although this is a challenging task, in recent years the general performance of VOT

systems has improved significantly due to the convergence of different image processing algorithms and

hardware platforms.

The design and implementation of FPGA-based VOT systems faces several challenges, including real-time

processing requirements, accuracy, robustness to variations in illumination and occlusion, changing appearance,

among others [1]. In most cases, this tends towards the development of complex VOT systems with latency,

area, and power restrictions that only can be compensated by using hardware and software co-design

methodologies [2].

The fundamental aspect of VOT systems lies in the computational approach used to determine the optimal

position and/or condition of the target in the latest frame [3]. For this, a typical VOT system [2] is composed of

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

128

five generic functional procedures (see Figure 1): a Visual Sensor or equivalent source of data to provide video

frames, a Preprocessing stage for image conversion and formatting, noise reduction, etc. (if required), an Object

detection stage to manual or automatic object localization in the first frame, and finally the Feature Extraction

and Object Tracking modules for the main VOT task [2].

Figure 1. Typical VOT system model [2].

VOT system platforms goes from conventional workstations based on Central Processing Units (CPU) and

Graphic Processing Units (GPU) to more specialized boards: Field Programmable Gate Array (FPGA), System-

on-Chip FPGA (SoC-FPGA), Multi-Processor System-on-Chip (MPSoC) and Application-Specific Integrated

Circuit (ASIC) [4]. In particular, an FPGA is a semiconductor device used for the development of highly

reconfigurable digital logic and VLSI circuits, SoC-FPGA is the integration of a conventional CPU and an

FPGA in the same silicon, and MPSoC is the result of multiple CPU cores, such as GPU and Reconfigurable

Processing Units (RPU), with at least one FPGA with other advanced modules on a single chip [5]. For these

FPGA-based heterogeneous architectures, Processing System (PS) and Programmable Logic (PL) refers to the

internal CPU-based and FPGA-based components respectively. This paper will focus on the analysis of VOT

implementations reported on these three FPGA-based platforms.

In this paper, a review of design methodologies, system implementations, and evaluation techniques for FPGA-

based VOT systems is reported. For this, the rest of this paper is organized as follows: first, a brief review of

related work is presented in section 2, followed by a description of the methodology applied for this review. In

sections 4, 5 and 6, three research questions are presented with their corresponding results and discussions

Finally, the conclusions and perspectives of this review are mentioned in section 7.

2 Related Work

The following literature offers a valuable insight into the field of VOT and reveals the dynamic landscape of

VOT systems and their applications, providing a comprehensive understanding of hardware acceleration in

computer vision applications.

El-Shafie et al. [2] conduct a thorough literature survey spanning two decades, primarily focusing on hardware

implementations of object trackers. Their categorization of VOT systems into Mean-Shift, Filtering techniques,

Feature matching, Optical flow, Template matching, and Bio-inspired based trackers underscores the diversity

of approaches in this domain. Li et al. [6] conducts an investigation into various methods for achieving high-

quality object tracking by examining the principles, evolutionary pathways, and recent advancements of these

approaches. These methods are organized into four distinct categories: Template matching, Filtering,

Classification and fusion Trackers. Fiaz et al. [7] offer a comprehensive comparative review of tracking

algorithms, with a specific emphasis on the robustness of different trackers concerning feature extraction

methods. They categorize trackers into Correlation Filter based Trackers (CFTs) and Non-CFTs and evaluate

their performance accuracy, further dissecting them based on architecture and tracking mechanisms. Zhang et

al. [8] provide a concise overview of single-object tracking algorithms developed over the past decade, and

provide a VOT algorithms categorization with focus on correlation filters and deep learning techniques. Their

comparative analysis evaluates the performance of these algorithms across OTB2015, VOT2016, and LaSOT

datasets, highlighting the challenges of single-object tracking in dynamic and complex environments. Tiwari et

al. [9] proposes a generic VOT architecture for detection and tracking methods, categorizing them into Point

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

129

tracking, Kernel tracking, and Silhouette tracking. This classification provides a structured framework for

understanding different tracking approaches and their applicability in diverse scenarios.

Regarding impact of deep learning technologies, Zeng et al. [10] introduces and compares existing hardware

accelerators, outlines typical deep learning-based object detectors, and elucidates the rationale behind selecting

FPGA as an accelerator platform. By discussing design goals and methods for FPGA accelerators, they offer

insights into optimizing performance and efficiency in object detection tasks. Feng et al. [11] highlight the

transformative impact of deep learning methodologies on tasks such as image classification, object detection,

and image segmentation. Their focus lies in optimizing these algorithms for real-time processing and energy

efficiency across diverse hardware accelerators like GPUs, FPGAs, and emerging technologies. Seng et al. [12]

emphasize the potential of FPGA technology in embedding intelligent decision-making algorithms into mobile

and embedded systems. They discuss the utilization of techniques like machine learning and neural networks

for applications such as object detection and surveillance monitoring.

A special mention deserves Molina et al. [5] work. They encompass models, methodologies, and frameworks

for metric estimation, design space exploration, and power consumption assessment on SoC-FPGA platforms.

Through a detailed analysis of features, limitations, and trade-offs, they underscore the integration of these

accelerators across various research domains.

Overall, although the cited papers differ in their emphases, methodologies, and categorizations, they all

underscore the importance of object detection and tracking in computer vision research, emphasizing the need

for robust performance measurement of trackers based on hardware to allow meaningful comparisons between

implementations. Moreover, they offer information on trends and future directions in this field of research.

Despite the potential of the VOT research field, previous literature suggests more articles are needed on the

aforementioned topics. This review is presented as an effort in this direction. The main contribution of this work

is to provide a comprehensive overview of the design methodologies, system implementations, and evaluation

techniques for FPGA-Based VOT systems. For this purpose, five categories of algorithm-based design

methodologies are presented: Region matching, Feature matching, Machine learning, Deep learning, and

Hybrid systems.

In addition, a comparative analysis of the 21 selected articles is carried out in terms of design methodologies,

hardware implementations and evaluation techniques to propose an insight of the main perspectives of this

research field. Finally, a series of conclusions and perspectives are presented.

3 Methodology

In order to provide insight into FPGA-based design methodologies for VOT and their implementations, 21

journal papers from ACM, IEEE, Web of Science, Springer, and MDPI databases between 2017 and 2023 were

selected, with 2021 as the most prolific year with 6 publications (see Figure 2). The authors of this study

consider that the relatively low number of publications found is explained by the complex and multidisciplinary

nature of the study topic as well as the availability of specialized human resources and materials to address this

type of research.

The paper selection process for this study is based on the following criteria:

a) Paper must report a fully functional FPGA-based single or multiple VOT system. This includes articles

reporting CPU/GPU/ASIC development as a complementary activity.

b) Paper must describe the VOT model and the algorithm-based design methodologies used.

c) Paper must describe the FPGA-based design and their implementation.

d) Paper must describe the evaluation techniques used.

e) System video input must be from a file or a conventional RGB camera. Due to substantial changes in

architecture, systems based on event cameras or similar were declined.

The 21 selected papers were used for a comparative analysis and discussion in order to answer the following

questions:

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

130

a) What are the main FPGA-based design methodologies used for VOT systems? This question explores the

various methodologies and strategies adopted to understand the fundamental approaches and techniques

employed in designing VOT systems utilizing FPGAs.

b) How are these design methodologies applied to implement FPGA-based VOT systems?

This question aims to delve into the processes and techniques commonly used to translate the selected

algorithm-based design methodologies into functional FPGA-based VOT systems.

c) What evaluation techniques are most used for object tracking assessment?

The purpose of this question is to identify the evaluation techniques commonly utilized to measure the

accuracy, robustness, efficiency, and other relevant characteristics of VOT systems, providing insight into

the criteria and methodologies for objectively evaluating their performance.

Figure 2. Reported publications per year for FPGA-based VOT systems (n=21).

4 What are the Main FPGA-based Design Methodologies Used for VOT Applications?

For the context of this question, an algorithm-based design methodology is the systematic development of a

VOT implementation given an algorithm (or a set of algorithms that needs to be supported) and its specific

targeted hardware platform [13]. In order to bring insight into this question, this review starts from Li et al. [6]

approach to propose the following categorization (see Figure 3):

a) Region matching-based design methodologies (RMs). These algorithms search for coincidences between

a template region and subsequent frames by measuring the similarity between pixel values. The new target

position is determined by the location with the highest correlation score [14]. RM algorithms are often used

in applications where features remain relatively stable across frames due to issues related with noise

sensibility and high computational cost.

b) Feature matching-based design methodologies (FMs). These algorithms focus on extracting and matching

specific features (color, shape, texture, or human features) that can be reliably detected and matched across

different instances of the object [15]. FM is more suitable for object detection tasks in dynamic

environments. Nevertheless, may face difficulties with complex scenes or objects with limited distinctive

features.

c) Machine learning-based design methodologies (MLMs). Machine learning is an artificial intelligence

paradigm in which programs learn from data to improve their performance with time when they perform

some specific tasks [16]. MLM algorithms excel at handling complex scenes due to its ability to

automatically learn relevant features from large amounts of data. However, the computational cost can be

significant in large-scale or real-time applications.

d) Deep learning-based design methodologies (DLMs). These methodologies are based on a variety of

architectures that use multiple layers of interconnected nodes, known as neurons. These architectures are

designed to learn and extract hierarchical representations of meaningful data [17]. Usually, DLM

implementations use lite versions of algorithms with high performance FPGA platforms due to

computational resource restrictions.

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

131

e) Hybrid design methodologies (HMs). Methodologies of this category, known also as Tracker Fusion or

Fusion-based trackers [6, 18], leverage the strengths of different algorithms to improve their performance.

They often combine feature extraction or template matching with deep learning algorithms, capitalizing on

the complementary characteristics of each technique. HM has great flexibility for leveraging characteristics

of different algorithms and thus overcoming their limitations. However, its development may take longer

than other design methodologies.

Figure 3. Proposed categorization for FPGA-based VOT design methodologies.

4.1 Results and Discussion

The following analysis is focused only on the algorithm-based design methodologies of the 21 selected papers

(Figure 2). Due to Hybrid systems, which use two or more algorithms, 34 algorithms were analyzed. Although

some of them are similar, we decided to preserve their original reported name. The complete list of algorithms

versus design methodologies is shown in Tables 1-4. In this scenario, from the 34 reported algorithms and its

variants, most reported algorithms belong to the MLM category with 12 cases (35.3%), followed by FM and

DLM with 10 (29.4%) and 8 (23.5%) cases respectively. The remaining 4 cases (11.8%) are categorized as RM

algorithms.

In order to analyze the use of these algorithms as part of an hybrid system, a ratio between algorithms used in

hybrid systems respect total algorithms of each category is indicated as follows: the categories with highest

comparative ratio are the RM and the FM category with 4/4 (100%) and 9/10 (90%) cases respectively, followed

MLM and DLM with 6/11 (54.5%), and 3/8 (37.5%) respectively. In other words, all RM algorithms and most

FM algorithms were implemented as part of hybrid implementations. This is explained because the algorithms

of those design methodologies only perform object detection or feature extraction tasks. These particular

limitations are faced and, in some cases, overcome by using two or more compatible algorithms as a part of a

hybrid system. For this study, 8 of 10 papers implemented two algorithms as part of an hybrid system in one of

the following methodology design combinations (number of papers in parenthesis): RM+FM (1), RM+MLM

(3), MLM+DLM (2), FM only (1), FM+MLM (1). The remaining two papers used three algorithms as

2xFM+DLM (1) and 3xFM (1).

Following algorithms were found as part of non-hybrid systems exclusively: Walid et al. [19] used

Discriminative scale space tracking algorithm (MLM category). It was designed carefully at core level to

improve its overall real-time performance. El-Shafie et al. [20] address the limitations of ILNET Convolutional

neural network algorithm (DLM category) by using interpolation schemes while facing their hardware

restrictions by using a fixed-point hardware acceleration. Huang et al. [21] propose a high-speed object tracking

system based on a hardware image compression circuit. They use the Self-organizing map neural network

(DLM category) for the on-chip learning of the codebook’s compression algorithm.

Table 1. Reported algorithms for the RM design methodology (the * symbol indicates it is used as HM)

Algorithm Authors

Background subtraction* Carrizosa-Corral et al. [34]

Fast background subtraction* Montero et al. [35]

Subpixel refinement* Aguilar-González et al. [36]

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

132

Sum of Absolute Differences (SAD)* Singh et al. [28]

Table 2. Reported algorithms for the FM design methodology (the * symbol indicates it is used as HM)

Algorithm Authors

Binary Robust Invariant Scalable Keypoints (BRISK)* Nam et al. [37]

Concurrent Zero Mean Normalized Cross-Correlation

(ZNCC)

Chen et al. [32]

Haar-like features* Wu et al. [31]

Harris corner detection* Nam et al. [37]

Local Binary Pattern Histogram (LBPH)* Wu et al. [31]

Non-textured corner filtering* Aguilar-González et al. [36]

Simple elliptic matching* He et al. [38]

Spatial 2-D difference of Gaussian (DoG) filtering* He et al. [38]

Temporal high-pass filtering* He et al. [38]

Zero Mean Normalized Cross-Correlation (ZNCC)* Soubervielle-Montalvo et al. [33]

Table 3. Reported algorithms for the MLM design methodology (the * symbol indicates it is used as HM)

Algorithm Authors

Adaptive Block Learning (FBS-ABL)* Montero et al. [35]

Discriminative scale space tracking (DSST) algorithm Walid et al. [19]

Honeybee search algorithm (HSA)* Soubervielle-Montalvo et al. [33]

Independent component analysis (ICA)* Carrizosa-Corral et al. [34]

Kalman filter* Iqbal et al. [23]

Kernelized correlation filters (KCF)* Ji et al. [39]

Mean shift algorithm Pandey et al. [24]

Mean shift algorithm Tehreem et al. [25]

Mean shift algorithm* Yang et al. [26]

Multidimensional Kalman filter Babu et al. [22]

Particle filter* Singh et al. [28]

Scalable particle filter Engineer et al. [27]

Table 4. Reported algorithms for the DLM design methodology (the * symbol indicates it is used as HM)

Algorithm Authors

Attractor neural network* Yang et al. [26]

Deep CNN single-shot multibox detector (SSD)* Ji et al. [39]

ILNET convolutional neural network El-Shafie et al. [20]

Neural network-based Efficient convolutional operators (ECO)* Iqbal et al. [23]

Self-organizing map (SOM) neural network Huang et al. [21]

You Only Look Once (YOLOv3) CNN Cittadini et al. [29],

Zhai et al. [30]

You Only Look Once (YOLOv4 tiny) CNN* Wu et al. [31]

Following algorithms were used for both non-hybrid and hybrid systems: Babu et al. [22] propose a

multidimensional Kalman filter (KF) for linear systems with updated state vector and covariance equations.

Pandey et al. [24] reports a Mean shift algorithm (MSA) implementation based on fixed-point binary

logarithmic and antilogarithmic units, Tehreem et al. [25] reports an optimized fast version of MSA based on

use of no fractional bits. Engineer et al. [27] propose a VOT improved parallel scalable implementation of a

Particle filter (PF) algorithm for a network-on-chip platform. Cittadini et al. [29] presents a hypervisor-based

VOT application to implement and evaluate a “You Only Look Once” convolutional neural network (known as

YOLOv3) algorithm as the main component of a cyber-physical system, Zhai et al. [30] uses compressed

YOLOv3 and YOLOv3-tiny models with fast convolution engines to implement a scalable vehicle detector.

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

133

Chen et al. [32] presents a non-hybrid concurrent Zero Mean Normalized Cross-Correlation (ZNCC) template

matching hardware core designed for eye-to-hand robotic visual tracking.

Finally, the following algorithms were reported only for hybrid systems (HM category exclusively): Iqbal et al.

[23] offers a comprehensive investigation into adaptive subsampling techniques with seven combinations of

object detectors with KF as ROI predictors. Yang et al. [26] implement a system with a MSA algorithm and an

Attractor neural network (ANN) architecture to address challenges related to occlusion and clutter in visual

environments. Singh et al. [28] implemented a Particle filter of 121 particles in addition with the Sum of

Absolute Differences (SAD) algorithm as a similarity computation tool to enhance the real time performance

requirements of its tracker. Wu et al. [31] implements a HM system based on Local Binary pattern histogram,

Haar-like features and YOLOv4-tiny algorithms to construct an intelligent security monitoring system.

Soubervielle-Montalvo et al. [33] proposes the design and implementation of an hybrid system based on the

Honeybee search algorithm (HSA) metaheuristic and the ZNCC similarity measure.

5 How are these Design Methodologies Applied to Implement High Performance

FPGA-based VOT Systems?

Implementing VOT systems on FPGA platforms requires a comprehensive approach to take advantage of the

limited hardware resources required for the implementation of sophisticated computer vision algorithms. To

address the hardware acceleration design and implementation stages, researchers propose different design

approaches based on one or more of the following system-level methodologies: hardware/software co-design,

top-down, and bottom-up. HW/SW co-design refers to a family of design methodologies utilized in complex

electronic systems to leverage and improve the mutual benefits of hardware and software design ([33, 40]).

Other conventional system-level methodologies are top-down and bottom-up approaches. The top-down

approach starts from a high-level perspective and ends with smallest specific details. On the other hand, bottom-

up starts from the design and integration of small components to obtain the complete system. These

methodologies can be used separately or combined for each of the developed modules of the system.

Most of the reviewed articles in this review present a research workflow consisting on the following stages:

a) A PC-based modeling and testing of the VOT algorithm. This stage involves following steps:

● Choose the appropriate VOT algorithm based on the requirements of the application, such as speed,

accuracy, robustness, etc.

● Implement the selected VOT algorithm in any high-level programming language.

● Run the implemented VOT algorithm on the dataset to track objects in the video sequences. Evaluate

the algorithm's performance metrics such as tracking accuracy, speed, robustness to occlusions and

appearance changes, etc.

● Fine-tune the algorithm parameters to improve its performance based on the testing results. This may

involve adjusting thresholds, feature selection, or optimization techniques.

● Evaluate the performance of the VOT algorithm using benchmark datasets or real-world scenarios to

ensure its effectiveness and reliability.

b) The design and implementation to match the model to the target FPGA platform. For this stage, the use of

HW/SW co-design methodology for the following procedure is recommended ([33, 40]):

● Select an FPGA-based platform based on the requirements of the VOT system, considering factors such

as processing power, available computing resources, power consumption, and cost.

● Analyze the VOT algorithm to identify modules suitable for hardware acceleration on the FPGA, and

modules that can remain in software running on the CPU

● Map the algorithm components identified for hardware acceleration that can be implemented using logic

cells, DSP blocks, and memory resources. This involves designing hardware modules (IP cores) for

implementing the algorithm efficiently on the FPGA.

● Design interfaces between the FPGA and the CPU to facilitate data exchange and control signals. This

may involve using communication protocols such as PCIe, Ethernet, or USB.

● Optimize the resource utilization (e.g., logic elements, memory blocks) of the FPGA for the designed

hardware modules to meet resource constraints.

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

134

● Perform power and timing analysis to ensure the designed system meets power consumption and timing

constraints.

c) The evaluation of the FPGA-based VOT system. This final stage addresses following actions:

● Verify that the FPGA-based system produces accurate and real-time object tracking results consistent

with the PC-based model.

● Fine-tune the FPGA design and system parameters to optimize performance metrics such as speed and

resource utilization.

● Evaluate the FPGA-based system using different datasets in terms of accuracy, speed and power

consumption to ensure its reliability and effectiveness.

Regarding FPGA development platforms, Xilinx (AMD) and Altera (Intel) are the main manufacturers in the

high-end FPGA market. Altera was acquired in 2015 by Intel and Xilinx was acquired in 2020 by AMD. Both

companies offer their customers a broad line of products including programmable devices, software design

tools, and Intellectual Property (IP) hardware functions to facilitate the design and implementation of FPGA-

based systems [41].

5.1 Results and Discussion

For the 21 reviewed papers of this study, different tailored hardware/software methodologies for FPGA-based

VOT systems, ranging from HW/SW co-design to exclusively top-down or bottom-up are reported. Following,

notable findings about use of HW/SW co-design methodology are described.

5.1.1 Reported Methodologies

He et al. [38] compare their VLSI system implementation with a HW/SW co-design based system, which yields

a lower frame rate (in comparison with other systems) of 30fps for a resolution of 640×480 pixels. While the

authors attribute this to the co-design implementation itself, it may not necessarily be the case, as evidenced by

the comparison indicating that this system operates at a frequency of 24MHz, the lowest among all systems

compared. On the other hand, Ji et al. [39] propose a co-design approach to enhance the real-time performance

of the SSD algorithm. Despite the SSD model being quantized as an 8-bit fixed-point model, co-design is crucial

in leveraging the advantages of ARM and FPGA fully, ensuring real-time performance without sacrificing

accuracy.

Montero et al. [35] conduct a comparison to demonstrate the advantages of utilizing a compute accelerator such

as an FPGA in implementing their FBS-ABL algorithm. They present two co-design-based implementations of

the FBS-ABL algorithm, one for ARM Cortex only and the other for ARM+FPGA platforms. For an image

resolution of 640x480, they report performance figures of 21 fps and 40 fps, respectively. Pandey et al. [24]

propose an approach based on HW/SW co-design and compare it with four conventional implementations

(without co-design). Their implementation achieves a frame rate of 60fps for a resolution of 640x380,

outperforming the 30fps achieved by other implementations in three out of four cases. Finally, Soubervielle-

Montalvo et al. [33] propose a workflow based on HW/SW co-design methodologies for designing,

implementing, and evaluating a low-power embedded system for real-time video tracking. This system

combines the HSA meta-heuristic with an SoC-FPGA platform, which was developed from scratch using co-

design methodology.

5.1.2 Pipelining and Parallelism

As mentioned earlier, a SoC-FPGA is a highly configurable hybrid architecture that combines an ARM CPU

(called processing system) and an FPGA (called programmable logic or logic fabric). For the 14 SoC-FPGA

and MPSoC implementations, 8 (38.1% of total) reported detailed information of both PS and PL

implementations, 3 (14.29% of total) just reported PL usage and the remaining 3 (14.29% of total) does not

mention PS neither PL information. Tables 5 and 6 show tasks implemented in Processing System (PS) and

Programmable Logic (PL) components.

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

135

Regarding the use of optimization techniques, this study findings reveal a diverse range of them including

pipelining, parallelism, resource sharing and specific algorithmic optimizations. Although for this particular

case there is not an evident difference between the use of optimization techniques for non-hybrid and hybrid

VOT design methodologies, following the relevant cases are shown in the same order for comparison purposes.

For the reviewed papers, pipelining and parallelism arises as the most relevant optimization techniques.

Following, the identified scenarios are identified: pipelining only, parallel only and pipelining with parallel (on

different modules).

For the pipelining optimization, Zhai et al. [30] implemented their DLM YOLOv3 algorithm by using a variety

of optimization techniques such as memory interlayer multiplexing, parameter rearrangement, and pipelining,

along with algorithmic optimizations like Im2col+GEMM and Winograd algorithms, to enhance both speed

and area efficiency in their FPGA-based VOT system. On the other hand, He et al. [38] introduce a 10-stage

pixel-level pipeline to facilitate pixel stream processing for his HM Simple elliptic matching algorithm,

emphasizing efficient data flow and processing for real-time object tracking applications.

The parallelization only optimization main objective is to achieve real-time performance and speed up the

overall tracking process. At this respect, Engineer et al. [27] focus on optimizing the execution of their MLM

scalable particle filter within the region of interest (ROI) by parallelizing the process, while Singh et al. [28]

adopt parallel processing elements to accelerate computation of his HM Sum of Absolute Differences (SAD),

utilizing three processing elements in parallel.

Regarding the use of pipeline and parallel architectures at the same time in different modules of the system,

some remarkable works focused on this efforts are Aguilar-González et al. [36] with his HM subpixel

refinement algorithm implementation, Carrizosa-Corral et al. [34] with their improved HM ICA algorithm and

Chen et al. [32] with his pipelining architecture for the FM Zero-Normalized Cross-Correlation (ZNCC)

algorithm, as well as pipelining multi-row buffering techniques.

Table 5. Tasks implemented in Processing System (PS) component (n=14)

Platform Task Category Description Authors

MPSoC Image processing Image acquisition, preprocessing, object tracking [29]

 Image processing Image capture, preprocessing, digital ROI, Kalman filter update and

prediction steps via Petalinux

[23]

 Image processing Reading and displaying of video frames, KCF tracking algorithm [39]

SoC-

FPGA

Application specific Image files manipulation [33]

 Image processing HSA algorithm tasks related to intelligent coordinated decision

making

[33]

 System

management

Process flow control, drivers for specific operations [34]

 System

management

Feeding of video streams to particle filter via Petalinux [27]

 System

management

Image acquisition, interrupt servicing from the programmable logic [26]

Not specified / not used PS component [19, 22,

32, 35, 37,

38]

5.1.3 Development Tools

Regarding the manufacturer’s development platforms usage, the most reported for this review are Xilinx with

16 items (76.2%) and Intel with the remaining 5 items (23.8%). Regarding FPGA-based platforms, 7 articles

are FPGA(33.33%), 11 are SoC-FPGA (52.38%), and the remaining 3 articles (14.29%) are MPSoC platforms.

Of the 21 articles, the most reported platform family is the Xilinx Zynq-7000 with 11 articles (52.38%). Tables

7-9 show the complete list of reported development boards sorted by FPGA family, boards, and algorithms.

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

136

Some authors report the use of additional hardware resources. In particular, Engineer et al. [27] reported the

implementation of the same particle filter algorithm in Zedboard and Virtex-4 FPGA boards. For this review,

only the Zedboard implementation of this author was considered. On the other hand, Zhai et al. [30] reported

an NVIDIA Tesla V100 platform was used for training and pruning quantization of their YOLOv3 model, while

the detection inference was implemented by the SoC-FPGA platform.

The use of programming languages is strongly dependent on manufacturer development tools and the

researchers technical preferences. For the Intel boards, 2 reported the use of VHDL while the remaining 3

authors do not mention any specific language. For the case of Xilinx boards, although 4 of 16 authors do not

report which language was used, the remaining 12 papers report the usage of VHDL, HLS, C, RTL and even

Python languages for the PS module of SoC-FPGA.

Table 6. Tasks implemented in Programmable Logic (PL) component (n=19)

Platform Task Category Description Authors

FPGA

only

Algorithm

acceleration

256 PE's for multiply and accumulate (MAC) operations [20]

 Algorithm

acceleration

LBP model [31]

 Application specific Top-level FSM, memory MUX and DRAM controller, FSMs for

DRAM RD and WR operations, softmax layer

[20]

 Application specific Camera interface, DDR2 external memory interface, camera

movement controller, DVI display controller, RS232 controller

[28]

 Application specific Controller, frequency counter, table of means, final cluster center

finder

[25]

 Application specific Linux-based hardware control logic for the servo, OV5640 camera

and HDMI modules, PID algorithm implementation

[31]

 Image processing Image preprocessing, subpixel refinement, corner detection, non-

textured filterion, output construction

[36]

 Image processing Video acquisition, image thresholding, object localization and

tracking (mean shift algorithm), video display

[24]

 Image processing Object tracking module [28]

 Image processing Processing entities (PEs) [25]

MPSoC Algorithm

acceleration

YOLOv3 inference [29]

 Algorithm

acceleration

The convolution and pooling layers in SSD model [39]

 Application specific IMU processing, motor mixer, LIDAR processing, radio acquisition,

flight controller

[29]

 Image processing DPU (deep learning unit): image capture, preprocessing, detection

and postprocessing, update and predict

[23]

SoC-

FPGA

Algorithm

acceleration

Reformulated FastICA expression [34]

 Algorithm

acceleration

ZNCC-based template matching module [32]

 Algorithm

acceleration

Fitness function (ZNCC) [33]

 Algorithm

acceleration

Dynamic neural network with standard floating-point arithmetic units [26]

 Application specific VGA display module, UART data transmission module [32]

 Application specific Frame buffer, particle filter implementation on a 4x4 NoC network [27]

 Application specific VGA controller [37]

 Image processing Image stream buffer module [32]

 Image processing Image integrator, spatiotemporal filter, feature map memory bank,

feature matching block

[38]

 Image processing Gaussian filter, the Harris corner detector module, the non-maxima

suppression module, the iteration process module

[37]

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

137

Not specified / not used PL component [19, 22,

35]

An interesting topic regarding FPGA implementation is related with the usage of MATLAB mathematical

software as a debugging and evaluation tool. For the reviewed papers of this study, MATLAB is used in

following scenarios:

a) As a numerical simulation analysis tool ([22, 34, 36]).

b) For development of each module, compared with different authors ([19]).

c) For the evaluation and comparison purposes of the applied metrics to the proposed algorithm ([20, 27]).

d) As a tool for the transition of the PC-based design to the FPGA implementation (using

MATLAB/Simulink) ([22]).

e) For comparison of the system model among PC and FPGA-SoC implementation ([19, 34]).

f) Other reported but no specified MATLAB usage scenarios ([25, 39]).

Table 7. Reported development platforms and algorithms for FPGA (n=7)

FPGA family

 Board

 Algorithm(s)

Design

methodology

Intel Cyclone IV

Not specified

Non-textured corner filtering FM* [36]

Subpixel refinement RM* [36]

Intel Stratix IV GX

Altera DE4 Development and Education Board

Self-organizing map (SOM) neural network DLM [21]

Xilinx Artix-7

Nexys-Video Artix-7 FPGA trainer board

Haar-like features FM* [31]

Local Binary Pattern Histogram (LBPH) FM* [31]

You Only Look Once (YOLO v4) CNN DLM* [31]

Xilinx Spartan-6

Not specified

Xilinx Virtex-5

AMD Virtex 5 FPGA ML510 embedded development platform

Particle filter MLM* [28]

Sum of Absolute Differences (SAD) RM* [28]

Xilinx ML-507 evaluation board

Mean shift algorithm MLM [24]

Xilinx Virtex-7

Xilinx VC709 evaluation board

ILNET Convolutional neural networks (CNN) DLM[20]

Table 8. Reported development platforms and algorithms for SoC-FPGA (n=11)

FPGA family

 Board

 Algorithm(s)

Design

methodology

Intel Cyclone V

Terasic DE1-SOC FPGA development board

Adaptive Block Learning (FBS-ABL) MLM* [35]

Binary Robust Invariant Scalable Keypoints (BRISK) FM* [37]

Concurrent Zero Mean Normalized Cross-Correlation (ZNCC) FM [32]

Fast Background Subtraction RM* [35]

Harris corner detection FM* [37]

Xilinx Artix-7

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

138

ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC

Multidimensional Kalman filter MLM [22]

Xilinx Zynq-7000

AMD Zynq 7000 SoC ZC702 Evaluation Kit

Attractor neural network (ANN) DLM* [26]

Mean shift algorithm MLM* [26]

AMD Zynq 7000 SoC ZC706 Evaluation Kit

Honeybee search algorithm (HSA) MLM* [33]

Simple elliptic matching FM* [38]

Spatial 2-D DoG filtering FM* [38]

Temporal high-pass filtering FM* [38]

Zero Mean Normalized Cross-Correlation (ZNCC) FM* [33]

No specified

You Only Look Once (YOLO v3) CNN DLM [30]

Xilinx Zedboard

Background subtraction RM* [34]

Discriminative scale space tracking (DSST) algorithm MLM [19]

Independent component analysis (ICA) MLM* [34]

Scalable particle filter MLM [27]

Table 9. Reported development platforms and algorithms for MPSoC (n=3)

FPGA family

 Board

 Algorithm(s)

Design

methodology

Xilinx Zynq Ultrascale+

AMD Zynq UltraScale+ ZCU102 Evaluation Kit

Efficent convolutional operators for tracking (ECO) DLM* [23]

Kalman filter MLM* [23]

AMD Zynq Ultrascale+ ZCU104 Evaluation kit

Deep CNN single-shot multibox detector (SSD) DLM* [39]

Kernelized correlation filters (KCF) MLM* [39]

You Only Look Once (YOLO v3) CNN DLM [29]

6 What Evaluation Techniques are Used for FPGA-based VOT Systems?

The effectiveness of FPGA-based VOT systems is influenced by various factors and design limitations.

Evaluation of these systems require robust evaluation techniques to ensure accuracy, speed, and resource

utilization under different circumstances. Moreover, incorporating VOT algorithms into FPGA-based platforms

requires meticulous testing based on the selection of evaluation metrics to meet high performance requirements.

Assessing and comparison of tracking algorithms relies on three key elements: the selection or proposal of a

dataset, the establishment of an evaluation protocol, and the use of performance evaluation metrics [42].

6.1 Selection or Proposal of a Dataset

Researchers of the VOT research field utilize a variety of datasets to evaluate the performance of their tracking

algorithms (see Table 10). Dataset benchmarks are useful tools for defining standardized evaluation criteria and

procedures to validate VOT systems under different conditions.

Other relevant datasets are toy datasets. They are a series of video sequences generated by system developers.

They play a crucial role in FPGA-based accelerated computer vision research, offering tailored data that

addresses specific requirements and challenges. By tailoring data to specific research objectives and providing

detailed annotations, these datasets facilitate rigorous experimentation and evaluation, ultimately contributing

to the development of robust and efficient vision systems for specific scenarios.

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

139

6.2 Establishment of an Evaluation Protocol.

Evaluation protocols for datasets often involve running tracking algorithms on the dataset sequences and

computing the specified metrics using ground truth annotations. The most commonly utilized assessment

techniques include one-pass evaluation (OPE), followed by the long-term oriented temporal resilience

evaluation (TRE), and spatial resilience assessment (SRE) [22].

For the previous mentioned datasets, two OPE evaluation protocols were described in detail:

Kristan et al. [42] realized three experiments. For the first experiment, they tested all trackers across all

sequences within the VOT2013 dataset. Initialization of the tracker was executed using the ground truth

bounding boxes. The second experiment replicated experiment 1 but with a variation in initialization: they used

perturbed bounding boxes instead of using precise ground truth bounding boxes. These perturbations were

randomly generated, constituting approximately ten percent of the size of the ground truth bounding boxes.

Finally, for the last experiment, the first experiment was repeated across all sequences, with a modification.

Color images were converted to grayscale before conducting the tracking evaluation.

Table 10. Relevant dataset benchmarks for FPGA-based systems

Dataset Year Video sequences Categories

ALOV++ [3] 2014 315 Light, Surface Cover, Specularity, Transparency, Shape, Motion

Smoothness, Motion Coherence, Clutter, Confusion, Low Contrast,

Occlusion, Moving Camera, Zooming Camera, Long Duration

Cdnet [43] 2014 53 Baseline, Camera Jitter, Dynamic background, Intermittent motion,

Shadow, Thermal, Bad Weather, Low Framerate, Night video, PTZ,

Turbulence

LaSOT [44] 2019 1,400 70 categories

OTB [1] 2015 100 Illumination Variation, Scale Variation, Occlusion, Deformation,

Motion Blur, Fast Motion, In-Plane Rotation, Out-of-Plane, Out-of-

View, Background Clutters, Low Resolution

VOT [42] 2013 60 Occlusion, Illumination change, Motion change, Size change,

Camera motion

For the LaSOT dataset, Fan et al. [44] realized two experiments recommended for machine-learning VOT

systems: In the first protocol, all 1,400 sequences are used for the assessment of tracking performance. The

primary objective of this protocol is to facilitate a comprehensive evaluation of trackers on a large scale. The

second protocol is designed to furnish a substantial collection of videos suitable for both training and evaluating

trackers concurrently according to the Pareto principle.

It's important to mention that some datasets consider more than one of the mentioned assessment techniques.

This is particularly relevant in the case of ALOV++ benchmark dataset, which includes the three assessment

techniques: OPE, TRE and SRE [3].

6.3 Evaluation Metrics.

The challenge in evaluating visual tracking lies in the diversity of performance measures used by various

researchers, leading to a lack of consensus on preferred metrics. As an effort to face this situation, Cehovin et

al. [45] realize an in-depth study of VOT performance measures and propose as main recommended

performance metrics the accuracy (using average overlap) and the robustness (using failure rate). At this point,

Babu et al. [22] considers the assessment of tracking performance relies on precision and success rates as key

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

140

evaluation parameters, besides tracking speed (frame rate) in frames per second. On the other hand, El-Shafie

and colleagues argue that establishing a distinct metric, such as OTB success AUC, across various designs is

crucial for ensuring a fair comparison [20]. Other important evaluation metrics reported are recall, F-score,

mean Average Precision (mAP), and area under curve (AUC).

Regarding FPGA-based platforms, the hardware resources consumption is reported as another comparison

criteria. Resolution, Frame rate, Power consumption, Area resources usage (LUTs or ALUTs, LEs, DSPs,

BRAM, FF's, I/O pins, etc.) are some related metrics for this topic.

By selecting and employing the right evaluation techniques, researchers and engineers can gain a

comprehensive understanding of the performance and capabilities of FPGA-based VOT systems and identify

areas for improvement.

6.4 Results and Discussion

For this study, a variety of evaluation techniques for FPGA-based VOT systems were reported, including toy

datasets and dataset benchmarks, as well as evaluation metrics and performance measures. Notable findings are

described below.

6.4.1 Datasets

For the 21 reviewed papers, the most reported dataset was OTB with 5 (24%) papers, featuring in several studies

across different architectures and methodologies (see Tables 10, 11 and 12). CDnet and ALOV++ datasets

appear with 2 (9.6%) and 1 (4.8%) papers respectively. Three papers (14.4%) reported toy datasets: in [36], a

set of eight different images of 166 x 150 pixels was reported, in [26] sequences of more than one dataset ([22,

27, 23]), use of video camera sequences instead of dataset sequences ([24, 28]) or even more not reported

datasets ([19, 31, 32]).

6.4.2 Evaluation Metrics

According to the findings of this study, although there are no standardized evaluation criteria for VOT systems,

following interesting observations can be mentioned when FPGA-based platforms are considered (see Tables

11, 12 and 13). For the FPGA platforms, some authors prioritize real-time processing capabilities ([24, 31])

while others concentrate on image quality preservation and algorithm robustness ([21, 25]). In the case of

MPSoC platforms, authors tend to focus on comprehensive performance evaluation encompassing precision

and success rates ([23, 39]), essential for applications requiring high accuracy and reliability. Finally, SoC-

FPGA platforms exhibit a wide range of evaluated metrics, from computation time to image quality metrics,

reflecting the multifaceted nature of integrated systems and the need for tailored optimizations to meet

application-specific requirements.

Table 11. Reported datasets for FPGA only platforms (n=7)

Datasets Evaluated Metrics Design

methodology

Dataset generated by authors Feature extraction algorithm robustness RM* [36]

Dataset of the Weizmann Institute of Science Structural similarity index metric (SSIM) MLM [25]

Not specified LBP algorithm detection time per frame FM* [31]

OTB-100 Average computation time, OTB precision,

OTB success AUC

DLM [20]

USC-SIPI image database Maximum peak signal-to-noise ratio (PSNR) DLM [21]

Video Camera used Computation time for real-time object tracking MLM [24]

Video Camera used Not specified RM* [28]

Table 12. Reported datasets for SoC-FPGA platforms (n=11)

Datasets Evaluated Metrics Design methodology

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

141

ALOV++ Average GPU-CPU seconds per frame,

Average SoC-FPGA seconds per frame, F-score

FM* [33]

AVSS-2007,

CAVIAR-2004,

PETS-2006

Root mean square error (RMSE) MLM [27]

CDnet 2014 Average precision, Average recall,

Total runtime per frame

RM* [34]

CDnet 2014 Average precision, Average recall, F-score RM* [35]

Dataset generated by authors Average computation time,

Average tracking performance

FM* [37]

Dataset generated by authors Computation time for Mean-shift method, Computation

time for Particle filter method

MLM* [26]

MOT-16, OTB-100, UAVDT Precision, Success rate (AUC) MLM [22]

Not specified Not specified FM [32]

Not specified Time results for SVD implementation in FPGA MLM [19]

OTB-100 Average precision FM* [38]

UADETRAC (modified) Mean average precision (mAP) DLM [30]

Table 13. Reported datasets for MPSoC platforms (n=3)

Datasets Evaluated Metrics Design

methodology

Cityscape dataset Not specified DLM [29]

LaSOT, OTB-100 AUC score, Mean average precision (mAP) MLM* [23]

OTB-100 Precision rate (PR), Success rate (SR) MLM* [39]

6.4.3 Performance Measures

Table 14 shows the analysis of performance measures across FPGA, MPSoC, and SoC-FPGA platforms for the

reviewed papers of this work. The selected performance measures show an elemental comparison between

reported VOT systems: tracking speed (in frames per second, fps), image resolution (in pixels) and power

consumption (in Watts, W). Notably, despite its relevance, eleven papers do not report one or more of these

measures. These FPGA implementations exhibit diverse tracking speeds and resolutions, ranging from 13.42

fps to 8771 fps and from 300x420 to 1920x1080, respectively. Regarding the reported maxima measure of 8771

fps, this paper ([25]) uses a parallelization with an approximate computing technique to reach this performance.

Finally, for power consumption measure, although this is the measure less reported with just 12 cases, its

reported range goes from 24mW to 12.51W, indicating a variance in the focus on power efficiency across

different research endeavors.

Table 14. Performance measures (n=21)

Platform Design

metho-dology

Authors Tracking speed

(frames per

second, fps)

Max. reported

resolution

(width)

Max. reported

resolution

(height)

Power

consumption

(W)

FPGA

only

RM* [36] 44 1920 1080 Not specified

RM* [28] 303 720 576 Not specified

FM* [31] 30 1024 768 Not specified

MLM [24] 60 640 480 3.15

MLM [25] 8771 300 420 Not specified

DLM [20] 44 Not specified Not specified Not specified

DLM [21] 434 640 480 Not specified

MPSoC MLM* [23] 13.42 1920 1080 4

 MLM* [39] 36.2 Not specified Not specified Not specified

 DLM [29] 27 320 240 8.39

SoC-

FPGA

RM* [34] Not specified 320 200 4.2

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

142

 RM* [35] 83 320 240 Not specified

 FM [32] Not specified 640 480 Not specified

 FM* [38] 600 320 240 0.768

 FM* [37] 60 640 480 0.024

 FM* [33] 27 480 360 5

 MLM [22] 91 Not specified Not specified 0.78

 MLM [27] 348 320 240 0.6

 MLM [19] 25.38 320 240 1.92

 MLM* [26] 30 1024 768 0.03

 DLM [30] 91.65 416 416 12.51

7 Conclusions and Perspectives

In recent years, there has been a rise in the prominence of FPGA technologies, showing promising potential

and capabilities for implementing a variety of systems, from autonomous systems to edge computing

applications ([12, 46]). In this review, an analysis of the 21 selected articles regarding design methodologies,

hardware implementations and evaluation techniques was performed, in order to propose an insight of the major

perspectives of the FPGA-based VOT systems. According to our research, replication of some approaches may

be difficult due to the lack of detailed information.

The analysis focused on algorithm-based design methodologies from the selected papers reveals a significant

trend towards hybrid systems, particularly in utilizing two or more algorithms to overcome limitations inherent

non-hybrid methodologies In particular, most of the reported algorithms belong to the MLM categories, closely

followed by the FM and DLM categories, with the RM and FM algorithms being mostly part of hybrid systems.

In particular, a variety of algorithms for VOT were reported, including Kalman filter, Mean shift, and YOLO-

based CNNs with offline training. It is worth mentioning that selecting algorithms based on object

characteristics would be a challenging design and implementation task, due to the computational resources

available in FPGA platforms.

Regarding the implementation of high-performance FPGA-based VOT systems, the choice of FPGA-based

platform would heavily depend on the specific requirements of the application, considering factors such as real-

time performance, precision, computational efficiency, and power constraints. HW/SW co-design approach is

used to optimize the performance of these systems, although this is not detailed in several works. VHDL is

commonly used for Intel boards and a mix of VHDL, HLS, C, RTL, and Python for Xilinx boards. In addition,

MATLAB is frequently utilized for numerical simulation, algorithm evaluation, and transition from PC-based

to FPGA implementation.

FPGA components from different platforms are mainly used for computing-intensive tasks, such as pixel-level

operations and high data transfer between different architectures. Moreover, optimization techniques such as

pipelining and parallelism are widely employed to enhance speed and efficiency.

Evaluation techniques are crucial in the VOT systems development. OTB dataset was the most commonly used,

followed by CDnet and ALOV++ datasets. Some papers reported datasets generated by the authors (toy

datasets). Relevant metrics reported hierarchically are precision, recall, frames per second, among others.

Regarding FPGA performance measures such as speed, image resolution, and power consumption are reported.

Overall, this review generates the following recommendations and perspectives to provide an overview in

different aspects to the community interested in the development of FPGA-based VOT systems.

Careful selection of algorithms based on criteria such as characteristics of the objects being tracked, available

computational resources, and environmental conditions is recommended to address the complexity of VOT

problems. It is important to leverage the complementary strengths of various algorithms as part of a hybrid

methodologies to achieve superior performance and adaptability in real-world scenarios.

Generally speaking, the SoC-FPGA platforms are more suitable for developing FPGA-based VOT system

proposals compared to FPGA and MPSoC platforms, due to their HW flexibility and scalability, software

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

143

development alternatives at different levels of abstraction or approaches, technical support, and affordable cost.

However, it is important to mention that limited computing resources, power consumption, learning curve, and

financial constraints might present issues in VOT implementation. For perspective, an in-depth analysis of

different FPGA-based VOT systems will provide additional insights into the advantages and disadvantages of

using different FPGA-based platforms.

Dataset benchmarks and toy datasets have specific evaluation purposes at different stages of VOT development.

Nevertheless, dataset benchmarks provide additional efficient tools for VOT system validation against relevant

state-of-the-art trackers. Therefore, the recommendation is to select specific video sequences included in dataset

benchmarks to evaluate the performance of novel FPGA-based VOT systems considering the constraints of

custom design. In perspective, future research should focus on emphasizing the standardization of datasets,

metrics and measurements to refine the evaluation techniques of FPGA-based VOT systems.

8 Acknowledgements

This research was supported by a CONACYT Grant scholarship: 2022-2026, for the doctoral studies of the first

author, and was funded by CONACYT through the grant "Convocatoria de Ciencia Básica y/o Ciencia de

Frontera 2022", project ID 320036.

References

1. Wu, Y., Lim, J., & Yang, M.-H. (2013). Online object tracking: A benchmark. En 2013 IEEE Conference on

Computer Vision and Pattern Recognition (pp. 2411–2418). Portland, OR, USA: IEEE.

https://doi.org/10.1109/CVPR.2013.312

2. El-Shafie, A.-H. A., & Habib, S. E. D. (2019). Survey on hardware implementations of visual object trackers. IET

Image Processing, 13(6), 863–876. https://doi.org/10.1049/iet-ipr.2018.5952

3. Smeulders, A. W. M., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan, A., & Shah, M. (2014). Visual tracking:

An experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7), 1442–1468.

https://doi.org/10.1109/TPAMI.2013.230

4. Bhowmik, D., & Appiah, K. (2018). Embedded vision systems: A review of the literature. En Applied Reconfigurable

Computing. Architectures, Tools, and Applications (pp. 204–216). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-319-78890-6_17

5. Molina, R. S., Gil-Costa, V., Crespo, M. L., & Ramponi, G. (2022). High-level synthesis hardware design for FPGA-

based accelerators: Models, methodologies, and frameworks. IEEE Access, 10, 90429–90455.

https://doi.org/10.1109/ACCESS.2022.3201107

6. Li, M., Cai, Z., Wei, C., & Yuan, Y. (2015). A survey of video object tracking. International Journal of Control and

Automation, 8(9), 303–312. https://doi.org/10.14257/ijca.2015.8.9.29

7. Fiaz, M., Mahmood, A., Javed, S., & Jung, S. K. (2019). Handcrafted and deep trackers: Recent visual object tracking

approaches and trends. arXiv. https://doi.org/10.48550/arXiv.1812.07368

8. Zhang, Y., Wang, T., Liu, K., Zhang, B., & Chen, L. (2021). Recent advances of single-object tracking methods: A

brief survey. Neurocomputing, 455, 1–11. https://doi.org/10.1016/j.neucom.2021.05.011

9. Tiwari, M. (2017). A review of detection and tracking of object from image and video sequences. Recuperado de

https://www.semanticscholar.org/paper/A-Review-of-Detection-and-Tracking-of-Object-from-

Tiwari/b746d35a4b8b4f57dcc030043dd329ff79285b19 [Accedido el 3 de julio de 2023].

10. Zeng, K., Ma, Q., Wu, J. W., Chen, Z., Shen, T., & Yan, C. (2022). FPGA-based accelerator for object detection:

A comprehensive survey. Journal of Supercomputing, 78(12), 14096–14136. https://doi.org/10.1007/s11227-022-

04415-5

11. Feng, X., Jiang, Y., Yang, X., Du, M., & Li, X. (2019). Computer vision algorithms and hardware

implementations: A survey. Integration, 69, 309–320. https://doi.org/10.1016/j.vlsi.2019.07.005

12. Seng, K. P., Lee, P. J., & Ang, L. M. (2021). Embedded intelligence on FPGA: Survey, applications, and

challenges. Electronics, 10(8). https://doi.org/10.3390/electronics10080895

13. Saha, S., & Bhattacharyya, S. S. (2009). Design methodology for embedded computer vision systems. En

Embedded Computer Vision (pp. 27–47). London: Springer. https://doi.org/10.1007/978-1-84800-304-0_2

14. Ali, A., et al. (2016). Visual object tracking—Classical and contemporary approaches. Frontiers of Computer

Science, 10(1), 167–188. https://doi.org/10.1007/s11704-015-4246-3

15. Salau, A. O., & Jain, S. (2019). Feature extraction: A survey of the types, techniques, applications. En 2019

International Conference on Signal Processing and Communication (ICSC) (pp. 158–164).

https://doi.org/10.1109/ICSC45622.2019.8938371

https://doi.org/10.1049/iet-ipr.2018.5952
https://doi.org/10.1109/TPAMI.2013.230
https://doi.org/10.1007/978-3-319-78890-6_17
https://doi.org/10.1109/ACCESS.2022.3201107
https://doi.org/10.14257/ijca.2015.8.9.29
https://doi.org/10.48550/arXiv.1812.07368
https://doi.org/10.1016/j.neucom.2021.05.011
https://www.semanticscholar.org/paper/A-Review-of-Detection-and-Tracking-of-Object-from-Tiwari/b746d35a4b8b4f57dcc030043dd329ff79285b19
https://www.semanticscholar.org/paper/A-Review-of-Detection-and-Tracking-of-Object-from-Tiwari/b746d35a4b8b4f57dcc030043dd329ff79285b19
https://doi.org/10.1007/s11227-022-04415-5
https://doi.org/10.1007/s11227-022-04415-5
https://doi.org/10.1016/j.vlsi.2019.07.005
https://doi.org/10.3390/electronics10080895
https://doi.org/10.1007/978-1-84800-304-0_2
https://doi.org/10.1007/s11704-015-4246-3
https://doi.org/10.1109/ICSC45622.2019.8938371

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

144

16. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A. M., & Talbi, E.-G. (2022). Machine

learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art.

European Journal of Operational Research, 296(2), 393–422. https://doi.org/10.1016/j.ejor.2021.04.032

17. Sarker, I. H. (2021). Deep learning: A comprehensive overview on techniques, taxonomy, applications and

research directions. SN Computer Science, 2(6), 420. https://doi.org/10.1007/s42979-021-00815-1

18. Bailer, C., & Stricker, D. (2015). Tracker fusion on VOT challenge: How does it perform and what can we learn

about single trackers? En 2015 IEEE International Conference on Computer Vision Workshop (ICCVW) (pp. 630–

638). https://doi.org/10.1109/ICCVW.2015.85

19. Walid, W., Awais, M., Ahmed, A., Masera, G., & Martina, M. (2021). Real-time implementation of fast

discriminative scale space tracking algorithm. Journal of Real-Time Image Processing, 18(6), 2347–2360.

https://doi.org/10.1007/s11554-021-01119-6

20. El-Shafie, A.-H. A., Zaki, M., & Habib, S. E. D. (2022). An efficient hardware implementation of CNN-based

object trackers for real-time applications. Neural Computing and Applications, 34(22), 19937–19952.

https://doi.org/10.1007/s00521-022-07538-1

21. Huang, Z., et al. (2017). A vector-quantization compression circuit with on-chip learning ability for high-speed

image sensor. IEEE Access, 5, 22132–22143. https://doi.org/10.1109/ACCESS.2017.2762399

22. Babu, P., & Parthasarathy, E. (2022). FPGA implementation of multi-dimensional Kalman filter for object

tracking and motion detection. Engineering Science and Technology, an International Journal, 33, 101084.

https://doi.org/10.1016/j.jestch.2021.101084

23. Iqbal, O., Muro, V. I. T., Katoch, S., Spanias, A., & Jayasuriya, S. (2022). Adaptive subsampling for ROI-based

visual tracking: Algorithms and FPGA implementation. IEEE Access, 10, 90507–90522.

https://doi.org/10.1109/ACCESS.2022.3200755

24. Pandey, J. G. (2021). An embedded FPGA-SoC framework and its usage in moving object tracking application.

Design Automation for Embedded Systems, 25(3), 213–236. https://doi.org/10.1007/s10617-021-09252-y

25. Tehreem, A., Khawaja, S. G., Khan, A. M., Akram, M. U., & Khan, S. A. (2019). Multiprocessor architecture for

real-time applications using mean shift clustering. Journal of Real-Time Image Processing, 16(6), 2233–2246.

https://doi.org/10.1007/s11554-017-0733-0

26. Yang, S., Wong-Lin, K., Andrew, J., Mak, T., & McGinnity, T. M. (2018). A neuro-inspired visual tracking

method based on programmable system-on-chip platform. Neural Computing and Applications, 30(9), 2697–

2708. https://doi.org/10.1007/s00521-017-2847-5

27. Engineer, P., Velmurugan, R., & Patkar, S. (2020). Scalable implementation of particle filter-based visual object

tracking on network-on-chip (NoC). Journal of Real-Time Image Processing, 17(5), 1117–1134.

https://doi.org/10.1007/s11554-018-0841-5

28. Singh, S., Shekhar, C., & Vohra, A. (2017). Real-time FPGA-based object tracker with automatic pan-tilt features

for smart video surveillance systems. Journal of Imaging, 3(2). https://doi.org/10.3390/jimaging3020018

29. Cittadini, E., Marinoni, M., Biondi, A., Cicero, G., & Buttazzo, G. (2023). Supporting AI-powered real-time

cyber-physical systems on heterogeneous platforms via hypervisor technology. Real-Time Systems, 59(4), 609–

635. https://doi.org/10.1007/s11241-023-09402-4

30. Zhai, J., Li, B., Lv, S., & Zhou, Q. (2023). FPGA-based vehicle detection and tracking accelerator. Sensors, 23(4).

https://doi.org/10.3390/s23042208

31. Wu, W., Su, D., Yuan, B., & Li, Y. (2021). Intelligent security monitoring system based on RISC-V SoC.

Electronics, 10(11), 1366. https://doi.org/10.3390/electronics10111366

32. Chen, Z., Li, S., Zhang, N., Hao, Y., & Zhang, X. (2019). Eye-to-hand robotic visual tracking based on template

matching on FPGAs. IEEE Access, 7, 88870–88880. https://doi.org/10.1109/ACCESS.2019.2926807

33. Soubervielle-Montalvo, C., et al. (2022). Design of a low-power embedded system based on a SoC-FPGA and

the Honeybee search algorithm for real-time video tracking. Sensors, 22(3), 1280.

https://doi.org/10.3390/s22031280

34. Carrizosa-Corral, F., et al. (2018). FPGA-SoC implementation of an ICA-based background subtraction method.

International Journal of Circuit Theory and Applications, 46(9), 1703–1722. https://doi.org/10.1002/cta.2544

35. Montero, V. J., Jung, W.-Y., & Jeong, Y.-J. (2021). Fast background subtraction with adaptive block learning

using expectation value suitable for real-time moving object detection. Journal of Real-Time Image Processing,

18(3), 967–981. https://doi.org/10.1007/s11554-020-01058-8

36. Aguilar-González, A., Arias-Estrada, M., & Berry, F. (2018). Robust feature extraction algorithm suitable for

real-time embedded applications. Journal of Real-Time Image Processing, 14(3), 647–665.

https://doi.org/10.1007/s11554-017-0701-8

37. Nam, T., Kim, S., & Jung, D. (2019). Hardware implementation of KLT tracker for real-time intruder detection

and tracking using on-board camera. International Journal of Aeronautical and Space Sciences, 20(1), 300–314.

https://doi.org/10.1007/s42405-018-0131-2

38. He, W., et al. (2021). A low-cost high-speed object tracking VLSI system based on unified textural and dynamic

compressive features. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(3), 1013–1017.

https://doi.org/10.1109/TCSII.2020.3020883

https://doi.org/10.1016/j.ejor.2021.04.032
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1109/ICCVW.2015.85
https://doi.org/10.1007/s11554-021-01119-6
https://doi.org/10.1007/s00521-022-07538-1
https://doi.org/10.1109/ACCESS.2017.2762399
https://doi.org/10.1016/j.jestch.2021.101084
https://doi.org/10.1109/ACCESS.2022.3200755
https://doi.org/10.1007/s10617-021-09252-y
https://doi.org/10.1007/s11554-017-0733-0
https://doi.org/10.1007/s00521-017-2847-5
https://doi.org/10.1007/s11554-018-0841-5
https://doi.org/10.3390/jimaging3020018
https://doi.org/10.1007/s11241-023-09402-4
https://doi.org/10.3390/s23042208
https://doi.org/10.3390/electronics10111366
https://doi.org/10.1109/ACCESS.2019.2926807
https://doi.org/10.3390/s22031280
https://doi.org/10.1002/cta.2544
https://doi.org/10.1007/s11554-020-01058-8
https://doi.org/10.1007/s11554-017-0701-8
https://doi.org/10.1007/s42405-018-0131-2
https://doi.org/10.1109/TCSII.2020.3020883

Méndez López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145.

145

39. Ji, Q., Dai, C., Hou, C., & Li, X. (2021). Real-time embedded object detection and tracking system in Zynq SoC.

Journal of Image and Video Processing, 2021(1), 21. https://doi.org/10.1186/s13640-021-00561-7

40. Ha, S., & Teich, J. (2017). Introduction to hardware/software codesign. En Handbook of Hardware/Software

Codesign (pp. 3–26). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-7267-9_41

41. Ahmad, A., Al Busaidi, S. S., Al-Maashri, A., Awadallah, M., & Hussain, S. (2021). FPGAs – Chronological

developments and challenges. International Journal of Electrical Engineering and Technology, 12(11).

42. Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., & Porikli, F. (2013). The Visual Object Tracking VOT2013

challenge results.

43. Wang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth, Y., & Ishwar, P. (2014). CDnet 2014: An expanded

change detection benchmark dataset. En 2014 IEEE Conference on Computer Vision and Pattern Recognition

Workshops (pp. 393–400). Columbus, OH, USA: IEEE. https://doi.org/10.1109/CVPRW.2014.126

44. Fan, H., et al. (2019). LaSOT: A high-quality benchmark for large-scale single object tracking. En 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5369–5378). Long Beach, CA,

USA: IEEE. https://doi.org/10.1109/CVPR.2019.00552

45. Čehovin, L., Kristan, M., & Leonardis, A. (2014). Is my new tracker really better than yours? En IEEE Winter

Conference on Applications of Computer Vision (pp. 540–547). https://doi.org/10.1109/WACV.2014.6836055

46. Xu, C., et al. (2022). The case for FPGA-based edge computing. IEEE Transactions on Mobile Computing, 21(7),

2610–2619. https://doi.org/10.1109/TMC.2020.3041781

https://doi.org/10.1186/s13640-021-00561-7
https://doi.org/10.1007/978-94-017-7267-9_41
https://doi.org/10.1109/CVPRW.2014.126
https://doi.org/10.1109/CVPR.2019.00552
https://doi.org/10.1109/WACV.2014.6836055

