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Abstract. In recent years, computer vision algorithms have 

improved from conventional image processing to deep 

learning approaches. Meanwhile, complex but flexible 

FPGA-based platforms have made possible the 

development of challenging real-time heterogeneous 

systems for visual object tracking (VOT). This study 

presents a comprehensive review of design methodologies, 

algorithms, and evaluation techniques of 21 FPGA-based 

VOT systems reported in literature from 2017 to 2023. Five 

design methodology categories are described: Region 

matching, Feature matching, Machine learning, Deep 

learning, and Hybrid systems. FPGA, SoC-FPGA and 

MPSoC platforms for VOT system implementations are 

considered. Relevant evaluation techniques and metrics are 

reviewed as part of dataset benchmarks or toy datasets. In 

order to propose an insight of the FPGA-based VOT 

systems, each topic presents their comparative analysis and 

discussion. Finally, main conclusions, recommendations 

and perspectives are presented. 
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1 Introduction 

 
Visual Object Tracking (VOT) is a research field in computer vision aimed at monitoring moving objects within 

sequences of video images. Although this is a challenging task, in recent years the general performance of VOT 

systems has improved significantly due to the convergence of different image processing algorithms and 

hardware platforms.  

 

The design and implementation of FPGA-based VOT systems faces several challenges, including real-time 

processing requirements, accuracy, robustness to variations in illumination and occlusion, changing appearance, 

among others [1]. In most cases, this tends towards the development of complex VOT systems with latency, 

area, and power restrictions that only can be compensated by using hardware and software co-design 

methodologies [2]. 

 

The fundamental aspect of VOT systems lies in the computational approach used to determine the optimal 

position and/or condition of the target in the latest frame [3]. For this, a typical VOT system [2] is composed of 
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five generic functional procedures (see Figure 1): a Visual Sensor or equivalent source of data to provide video 

frames, a Preprocessing stage for image conversion and formatting, noise reduction, etc. (if required), an Object 

detection stage to manual or automatic object localization in the first frame, and finally the Feature Extraction 

and Object Tracking modules for the main VOT task [2]. 

 

 
Figure 1. Typical VOT system model [2]. 

 

VOT system platforms goes from conventional workstations based on Central Processing Units (CPU) and 

Graphic Processing Units (GPU) to more specialized boards: Field Programmable Gate Array (FPGA), System-

on-Chip FPGA (SoC-FPGA), Multi-Processor System-on-Chip (MPSoC) and Application-Specific Integrated 

Circuit (ASIC) [4]. In particular, an FPGA is a semiconductor device used for the development of highly 

reconfigurable digital logic and VLSI circuits, SoC-FPGA is the integration of a conventional CPU and an 

FPGA in the same silicon, and MPSoC is the result of multiple CPU cores, such as GPU and Reconfigurable 

Processing Units (RPU), with at least one FPGA with other advanced modules on a single chip [5]. For these 

FPGA-based heterogeneous architectures, Processing System (PS) and Programmable Logic (PL) refers to the 

internal CPU-based and FPGA-based components respectively. This paper will focus on the analysis of VOT 

implementations reported on these three FPGA-based platforms. 

 

In this paper, a review of design methodologies, system implementations, and evaluation techniques for FPGA-

based VOT systems is reported. For this, the rest of this paper is organized as follows: first, a brief review of 

related work is presented in section 2, followed by a description of the methodology applied for this review. In 

sections 4, 5 and 6, three research questions are presented with their corresponding results and discussions 

Finally, the conclusions and perspectives of this review are mentioned in section 7.  

 

2 Related Work 

 
The following literature offers a valuable insight into the field of VOT and reveals the dynamic landscape of 

VOT systems and their applications, providing a comprehensive understanding of hardware acceleration in 

computer vision applications. 

 

El-Shafie et al. [2] conduct a thorough literature survey spanning two decades, primarily focusing on hardware 

implementations of object trackers. Their categorization of VOT systems into Mean-Shift, Filtering techniques, 

Feature matching, Optical flow, Template matching, and Bio-inspired based trackers underscores the diversity 

of approaches in this domain. Li et al. [6] conducts an investigation into various methods for achieving high-

quality object tracking by examining the principles, evolutionary pathways, and recent advancements of these 

approaches. These methods are organized into four distinct categories: Template matching, Filtering, 

Classification and fusion Trackers. Fiaz et al. [7] offer a comprehensive comparative review of tracking 

algorithms, with a specific emphasis on the robustness of different trackers concerning feature extraction 

methods. They categorize trackers into Correlation Filter based Trackers (CFTs) and Non-CFTs and evaluate 

their performance accuracy, further dissecting them based on architecture and tracking mechanisms. Zhang et 

al. [8] provide a concise overview of single-object tracking algorithms developed over the past decade, and 

provide a VOT algorithms categorization with focus on correlation filters and deep learning techniques. Their 

comparative analysis evaluates the performance of these algorithms across OTB2015, VOT2016, and LaSOT 

datasets, highlighting the challenges of single-object tracking in dynamic and complex environments. Tiwari et 

al. [9] proposes a generic VOT architecture for detection and tracking methods, categorizing them into Point 
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tracking, Kernel tracking, and Silhouette tracking. This classification provides a structured framework for 

understanding different tracking approaches and their applicability in diverse scenarios. 

 

Regarding impact of deep learning technologies, Zeng et al. [10] introduces and compares existing hardware 

accelerators, outlines typical deep learning-based object detectors, and elucidates the rationale behind selecting 

FPGA as an accelerator platform. By discussing design goals and methods for FPGA accelerators, they offer 

insights into optimizing performance and efficiency in object detection tasks. Feng et al. [11] highlight the 

transformative impact of deep learning methodologies on tasks such as image classification, object detection, 

and image segmentation. Their focus lies in optimizing these algorithms for real-time processing and energy 

efficiency across diverse hardware accelerators like GPUs, FPGAs, and emerging technologies. Seng et al. [12] 

emphasize the potential of FPGA technology in embedding intelligent decision-making algorithms into mobile 

and embedded systems. They discuss the utilization of techniques like machine learning and neural networks 

for applications such as object detection and surveillance monitoring.  

 

A special mention deserves Molina et al. [5] work. They encompass models, methodologies, and frameworks 

for metric estimation, design space exploration, and power consumption assessment on SoC-FPGA platforms. 

Through a detailed analysis of features, limitations, and trade-offs, they underscore the integration of these 

accelerators across various research domains. 

 

Overall, although the cited papers differ in their emphases, methodologies, and categorizations, they all 

underscore the importance of object detection and tracking in computer vision research, emphasizing the need 

for robust performance measurement of trackers based on hardware to allow meaningful comparisons between 

implementations. Moreover, they offer information on trends and future directions in this field of research. 

 

Despite the potential of the VOT research field, previous literature suggests more articles are needed on the 

aforementioned topics. This review is presented as an effort in this direction. The main contribution of this work 

is to provide a comprehensive overview of the design methodologies, system implementations, and evaluation 

techniques for FPGA-Based VOT systems. For this purpose, five categories of algorithm-based design 

methodologies are presented: Region matching, Feature matching, Machine learning, Deep learning, and 

Hybrid systems.  

 

In addition, a comparative analysis of the 21 selected articles is carried out in terms of design methodologies, 

hardware implementations and evaluation techniques to propose an insight of the main perspectives of this 

research field. Finally, a series of conclusions and perspectives are presented. 

 

3 Methodology 

 
In order to provide insight into FPGA-based design methodologies for VOT and their implementations, 21 

journal papers from ACM, IEEE, Web of Science, Springer, and MDPI databases between 2017 and 2023 were 

selected, with 2021 as the most prolific year with 6 publications (see Figure 2). The authors of this study 

consider that the relatively low number of publications found is explained by the complex and multidisciplinary 

nature of the study topic as well as the availability of specialized human resources and materials to address this 

type of research. 

 

The paper selection process for this study is based on the following criteria:  

a) Paper must report a fully functional FPGA-based single or multiple VOT system. This includes articles 

reporting CPU/GPU/ASIC development as a complementary activity. 

b) Paper must describe the VOT model and the algorithm-based design methodologies used. 

c) Paper must describe the FPGA-based design and their implementation. 

d) Paper must describe the evaluation techniques used. 

e) System video input must be from a file or a conventional RGB camera. Due to substantial changes in 

architecture, systems based on event cameras or similar were declined. 

The 21 selected papers were used for a comparative analysis and discussion in order to answer the following 

questions:  
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a) What are the main FPGA-based design methodologies used for VOT systems? This question explores the 

various methodologies and strategies adopted to understand the fundamental approaches and techniques 

employed in designing VOT systems utilizing FPGAs.  

b) How are these design methodologies applied to implement FPGA-based VOT systems?  

This question aims to delve into the processes and techniques commonly used to translate the selected 

algorithm-based design methodologies into functional FPGA-based VOT systems. 

c) What evaluation techniques are most used for object tracking assessment? 

The purpose of this question is to identify the evaluation techniques commonly utilized to measure the 

accuracy, robustness, efficiency, and other relevant characteristics of VOT systems, providing insight into 

the criteria and methodologies for objectively evaluating their performance. 

 

 
Figure 2. Reported publications per year for FPGA-based VOT systems (n=21). 

 

4 What are the Main FPGA-based Design Methodologies Used for VOT Applications? 

 
For the context of this question, an algorithm-based design methodology is the systematic development of a 

VOT implementation given an algorithm (or a set of algorithms that needs to be supported) and its specific 

targeted hardware platform [13]. In order to bring insight into this question, this review starts from Li et al. [6] 

approach to propose the following categorization (see Figure 3):  

a) Region matching-based design methodologies (RMs). These algorithms search for coincidences between 

a template region and subsequent frames by measuring the similarity between pixel values. The new target 

position is determined by the location with the highest correlation score [14]. RM algorithms are often used 

in applications where features remain relatively stable across frames due to issues related with noise 

sensibility and high computational cost. 

b) Feature matching-based design methodologies (FMs). These algorithms focus on extracting and matching 

specific features (color, shape, texture, or human features) that can be reliably detected and matched across 

different instances of the object [15]. FM is more suitable for object detection tasks in dynamic 

environments. Nevertheless, may face difficulties with complex scenes or objects with limited distinctive 

features. 

c) Machine learning-based design methodologies (MLMs). Machine learning is an artificial intelligence 

paradigm in which programs learn from data to improve their performance with time when they perform 

some specific tasks [16]. MLM algorithms excel at handling complex scenes due to its ability to 

automatically learn relevant features from large amounts of data. However, the computational cost can be 

significant in large-scale or real-time applications. 

d) Deep learning-based design methodologies (DLMs). These methodologies are based on a variety of 

architectures that use multiple layers of interconnected nodes, known as neurons. These architectures are 

designed to learn and extract hierarchical representations of meaningful data [17]. Usually, DLM 

implementations use lite versions of algorithms with high performance FPGA platforms due to 

computational resource restrictions. 



Méndez López et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 127-145. 

 

131 

 

e) Hybrid design methodologies (HMs). Methodologies of this category, known also as Tracker Fusion or 

Fusion-based trackers [6, 18], leverage the strengths of different algorithms to improve their performance. 

They often combine feature extraction or template matching with deep learning algorithms, capitalizing on 

the complementary characteristics of each technique. HM has great flexibility for leveraging characteristics 

of different algorithms and thus overcoming their limitations. However, its development may take longer 

than other design methodologies. 

 

 
Figure 3. Proposed categorization for FPGA-based VOT design methodologies. 

 

4.1 Results and Discussion 
 

The following analysis is focused only on the algorithm-based design methodologies of the 21 selected papers 

(Figure 2). Due to Hybrid systems, which use two or more algorithms, 34 algorithms were analyzed. Although 

some of them are similar, we decided to preserve their original reported name. The complete list of algorithms 

versus design methodologies is shown in Tables 1-4. In this scenario, from the 34 reported algorithms and its 

variants, most reported algorithms belong to the MLM category with 12 cases (35.3%), followed by FM and 

DLM with 10 (29.4%) and 8 (23.5%) cases respectively. The remaining 4 cases (11.8%) are categorized as RM 

algorithms.  

 

In order to analyze the use of these algorithms as part of an hybrid system, a ratio between algorithms used in 

hybrid systems respect total algorithms of each category is indicated as follows: the categories with highest 

comparative ratio are the RM and the FM category with 4/4 (100%) and 9/10 (90%) cases respectively, followed 

MLM and DLM with 6/11 (54.5%), and 3/8 (37.5%) respectively. In other words, all RM algorithms and most 

FM algorithms were implemented as part of hybrid implementations. This is explained because the algorithms 

of those design methodologies only perform object detection or feature extraction tasks. These particular 

limitations are faced and, in some cases, overcome by using two or more compatible algorithms as a part of a 

hybrid system. For this study, 8 of 10 papers implemented two algorithms as part of an hybrid system in one of 

the following methodology design combinations (number of papers in parenthesis): RM+FM (1), RM+MLM 

(3), MLM+DLM (2), FM only (1), FM+MLM (1). The remaining two papers used three algorithms as 

2xFM+DLM (1) and 3xFM (1). 

 

Following algorithms were found as part of non-hybrid systems exclusively: Walid et al. [19] used 

Discriminative scale space tracking algorithm (MLM category). It was designed carefully at core level to 

improve its overall real-time performance. El-Shafie et al. [20] address the limitations of ILNET Convolutional 

neural network algorithm (DLM category) by using interpolation schemes while facing their hardware 

restrictions by using a fixed-point hardware acceleration. Huang et al. [21] propose a high-speed object tracking 

system based on a hardware image compression circuit. They use the Self-organizing map neural network 

(DLM category) for the on-chip learning of the codebook’s compression algorithm. 

 

Table 1. Reported algorithms for the RM design methodology (the * symbol indicates it is used as HM) 

 

Algorithm Authors 

Background subtraction* Carrizosa-Corral et al. [34] 

Fast background subtraction* Montero et al. [35] 

Subpixel refinement* Aguilar-González et al. [36] 
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Sum of Absolute Differences (SAD)* Singh et al. [28] 

 

 

Table 2. Reported algorithms for the FM design methodology (the * symbol indicates it is used as HM) 

 

Algorithm Authors 

Binary Robust Invariant Scalable Keypoints (BRISK)* Nam et al. [37] 

Concurrent Zero Mean Normalized Cross-Correlation 

(ZNCC) 

Chen et al. [32] 

Haar-like features* Wu et al. [31] 

Harris corner detection* Nam et al. [37] 

Local Binary Pattern Histogram (LBPH)* Wu et al. [31] 

Non-textured corner filtering* Aguilar-González et al. [36] 

Simple elliptic matching* He et al. [38] 

Spatial 2-D difference of Gaussian (DoG) filtering* He et al. [38] 

Temporal high-pass filtering* He et al. [38] 

Zero Mean Normalized Cross-Correlation (ZNCC)* Soubervielle-Montalvo et al. [33] 

 

Table 3. Reported algorithms for the MLM design methodology (the * symbol indicates it is used as HM) 

 

Algorithm Authors 

Adaptive Block Learning (FBS-ABL)* Montero et al. [35] 

Discriminative scale space tracking (DSST) algorithm Walid et al. [19] 

Honeybee search algorithm (HSA)* Soubervielle-Montalvo et al. [33] 

Independent component analysis (ICA)* Carrizosa-Corral et al. [34] 

Kalman filter* Iqbal et al. [23] 

Kernelized correlation filters (KCF)* Ji et al. [39] 

Mean shift algorithm Pandey et al. [24] 

Mean shift algorithm Tehreem et al. [25] 

Mean shift algorithm* Yang et al. [26] 

Multidimensional Kalman filter Babu et al. [22] 

Particle filter*  Singh et al. [28]  

Scalable particle filter Engineer et al. [27] 

 

Table 4. Reported algorithms for the DLM design methodology (the * symbol indicates it is used as HM) 

 

Algorithm Authors 

Attractor neural network* Yang et al. [26] 

Deep CNN single-shot multibox detector (SSD)* Ji et al. [39] 

ILNET convolutional neural network El-Shafie et al. [20] 

Neural network-based Efficient convolutional operators (ECO)* Iqbal et al. [23] 

Self-organizing map (SOM) neural network Huang et al. [21] 

You Only Look Once (YOLOv3) CNN Cittadini et al. [29],  

Zhai et al. [30] 

You Only Look Once (YOLOv4 tiny) CNN* Wu et al. [31] 

 

Following algorithms were used for both non-hybrid and hybrid systems: Babu et al. [22] propose a 

multidimensional Kalman filter (KF) for linear systems with updated state vector and covariance equations. 

Pandey et al. [24] reports a Mean shift algorithm (MSA) implementation based on fixed-point binary 

logarithmic and antilogarithmic units, Tehreem et al. [25] reports an optimized fast version of MSA based on 

use of no fractional bits. Engineer et al. [27] propose a VOT improved parallel scalable implementation of a 

Particle filter (PF) algorithm for a network-on-chip platform. Cittadini et al. [29] presents a hypervisor-based 

VOT application to implement and evaluate a “You Only Look Once” convolutional neural network (known as 

YOLOv3) algorithm as the main component of a cyber-physical system, Zhai et al. [30] uses compressed 

YOLOv3 and YOLOv3-tiny models with fast convolution engines to implement a scalable vehicle detector. 
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Chen et al. [32] presents a non-hybrid concurrent Zero Mean Normalized Cross-Correlation (ZNCC) template 

matching hardware core designed for eye-to-hand robotic visual tracking. 

 

Finally, the following algorithms were reported only for hybrid systems (HM category exclusively): Iqbal et al. 

[23] offers a comprehensive investigation into adaptive subsampling techniques with seven combinations of 

object detectors with KF as ROI predictors. Yang et al. [26] implement a system with a MSA algorithm and an 

Attractor neural network (ANN) architecture to address challenges related to occlusion and clutter in visual 

environments. Singh et al. [28] implemented a Particle filter of 121 particles in addition with the Sum of 

Absolute Differences (SAD) algorithm as a similarity computation tool to enhance the real time performance 

requirements of its tracker. Wu et al. [31] implements a HM system based on Local Binary pattern histogram, 

Haar-like features and YOLOv4-tiny algorithms to construct an intelligent security monitoring system. 

Soubervielle-Montalvo et al. [33] proposes the design and implementation of an hybrid system based on the 

Honeybee search algorithm (HSA) metaheuristic and the ZNCC similarity measure. 

 

5 How are these Design Methodologies Applied to Implement High Performance 

FPGA-based VOT Systems? 
 

Implementing VOT systems on FPGA platforms requires a comprehensive approach to take advantage of the 

limited hardware resources required for the implementation of sophisticated computer vision algorithms. To 

address the hardware acceleration design and implementation stages, researchers propose different design 

approaches based on one or more of the following system-level methodologies: hardware/software co-design, 

top-down, and bottom-up. HW/SW co-design refers to a family of design methodologies utilized in complex 

electronic systems to leverage and improve the mutual benefits of hardware and software design ([33, 40]). 

Other conventional system-level methodologies are top-down and bottom-up approaches. The top-down 

approach starts from a high-level perspective and ends with smallest specific details. On the other hand, bottom-

up starts from the design and integration of small components to obtain the complete system. These 

methodologies can be used separately or combined for each of the developed modules of the system. 

 

Most of the reviewed articles in this review present a research workflow consisting on the following stages:  

a) A PC-based modeling and testing of the VOT algorithm. This stage involves following steps: 

● Choose the appropriate VOT algorithm based on the requirements of the application, such as speed, 

accuracy, robustness, etc. 

● Implement the selected VOT algorithm in any high-level programming language. 

● Run the implemented VOT algorithm on the dataset to track objects in the video sequences. Evaluate 

the algorithm's performance metrics such as tracking accuracy, speed, robustness to occlusions and 

appearance changes, etc. 

● Fine-tune the algorithm parameters to improve its performance based on the testing results. This may 

involve adjusting thresholds, feature selection, or optimization techniques. 

● Evaluate the performance of the VOT algorithm using benchmark datasets or real-world scenarios to 

ensure its effectiveness and reliability. 

 

b) The design and implementation to match the model to the target FPGA platform. For this stage, the use of 

HW/SW co-design methodology for the following procedure is recommended ([33, 40]):  

● Select an FPGA-based platform based on the requirements of the VOT system, considering factors such 

as processing power, available computing resources, power consumption, and cost. 

● Analyze the VOT algorithm to identify modules suitable for hardware acceleration on the FPGA, and 

modules that can remain in software running on the CPU  

● Map the algorithm components identified for hardware acceleration that can be implemented using logic 

cells, DSP blocks, and memory resources. This involves designing hardware modules (IP cores) for 

implementing the algorithm efficiently on the FPGA. 

● Design interfaces between the FPGA and the CPU to facilitate data exchange and control signals. This 

may involve using communication protocols such as PCIe, Ethernet, or USB. 

● Optimize the resource utilization (e.g., logic elements, memory blocks) of the FPGA for the designed 

hardware modules to meet resource constraints. 
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● Perform power and timing analysis to ensure the designed system meets power consumption and timing 

constraints. 

 

c) The evaluation of the FPGA-based VOT system. This final stage addresses following actions:  

● Verify that the FPGA-based system produces accurate and real-time object tracking results consistent 

with the PC-based model. 

● Fine-tune the FPGA design and system parameters to optimize performance metrics such as speed and 

resource utilization. 

● Evaluate the FPGA-based system using different datasets in terms of accuracy, speed and power 

consumption to ensure its reliability and effectiveness. 

 

Regarding FPGA development platforms, Xilinx (AMD) and Altera (Intel) are the main manufacturers in the 

high-end FPGA market. Altera was acquired in 2015 by Intel and Xilinx was acquired in 2020 by AMD. Both 

companies offer their customers a broad line of products including programmable devices, software design 

tools, and Intellectual Property (IP) hardware functions to facilitate the design and implementation of FPGA-

based systems [41].  

 

5.1 Results and Discussion 
 

For the 21 reviewed papers of this study, different tailored hardware/software methodologies for FPGA-based 

VOT systems, ranging from HW/SW co-design to exclusively top-down or bottom-up are reported. Following, 

notable findings about use of HW/SW co-design methodology are described. 

 

5.1.1 Reported Methodologies 
 

He et al. [38] compare their VLSI system implementation with a HW/SW co-design based system, which yields 

a lower frame rate (in comparison with other systems) of 30fps for a resolution of 640×480 pixels. While the 

authors attribute this to the co-design implementation itself, it may not necessarily be the case, as evidenced by 

the comparison indicating that this system operates at a frequency of 24MHz, the lowest among all systems 

compared. On the other hand, Ji et al. [39] propose a co-design approach to enhance the real-time performance 

of the SSD algorithm. Despite the SSD model being quantized as an 8-bit fixed-point model, co-design is crucial 

in leveraging the advantages of ARM and FPGA fully, ensuring real-time performance without sacrificing 

accuracy. 

 

Montero et al. [35] conduct a comparison to demonstrate the advantages of utilizing a compute accelerator such 

as an FPGA in implementing their FBS-ABL algorithm. They present two co-design-based implementations of 

the FBS-ABL algorithm, one for ARM Cortex only and the other for ARM+FPGA platforms. For an image 

resolution of 640x480, they report performance figures of 21 fps and 40 fps, respectively. Pandey et al. [24] 

propose an approach based on HW/SW co-design and compare it with four conventional implementations 

(without co-design). Their implementation achieves a frame rate of 60fps for a resolution of 640x380, 

outperforming the 30fps achieved by other implementations in three out of four cases. Finally, Soubervielle-

Montalvo et al. [33] propose a workflow based on HW/SW co-design methodologies for designing, 

implementing, and evaluating a low-power embedded system for real-time video tracking. This system 

combines the HSA meta-heuristic with an SoC-FPGA platform, which was developed from scratch using co-

design methodology. 

 

5.1.2 Pipelining and Parallelism 
 

As mentioned earlier, a SoC-FPGA is a highly configurable hybrid architecture that combines an ARM CPU 

(called processing system) and an FPGA (called programmable logic or logic fabric). For the 14 SoC-FPGA 

and MPSoC implementations, 8 (38.1% of total) reported detailed information of both PS and PL 

implementations, 3 (14.29% of total) just reported PL usage and the remaining 3 (14.29% of total) does not 

mention PS neither PL information. Tables 5 and 6 show tasks implemented in Processing System (PS) and 

Programmable Logic (PL) components. 
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Regarding the use of optimization techniques, this study findings reveal a diverse range of them including 

pipelining, parallelism, resource sharing and specific algorithmic optimizations. Although for this particular 

case there is not an evident difference between the use of optimization techniques for non-hybrid and hybrid 

VOT design methodologies, following the relevant cases are shown in the same order for comparison purposes. 

For the reviewed papers, pipelining and parallelism arises as the most relevant optimization techniques. 

Following, the identified scenarios are identified: pipelining only, parallel only and pipelining with parallel (on 

different modules). 

 

For the pipelining optimization, Zhai et al. [30] implemented their DLM YOLOv3 algorithm by using a variety 

of optimization techniques such as memory interlayer multiplexing, parameter rearrangement, and pipelining, 

along with algorithmic optimizations like Im2col+GEMM and Winograd algorithms, to enhance both speed 

and area efficiency in their FPGA-based VOT system. On the other hand, He et al. [38] introduce a 10-stage 

pixel-level pipeline to facilitate pixel stream processing for his HM Simple elliptic matching algorithm, 

emphasizing efficient data flow and processing for real-time object tracking applications. 

 

The parallelization only optimization main objective is to achieve real-time performance and speed up the 

overall tracking process. At this respect, Engineer et al. [27] focus on optimizing the execution of their MLM 

scalable particle filter within the region of interest (ROI) by parallelizing the process, while Singh et al. [28] 

adopt parallel processing elements to accelerate computation of his HM Sum of Absolute Differences (SAD), 

utilizing three processing elements in parallel. 

 

Regarding the use of pipeline and parallel architectures at the same time in different modules of the system, 

some remarkable works focused on this efforts are Aguilar-González et al. [36] with his HM subpixel 

refinement algorithm implementation, Carrizosa-Corral et al. [34] with their improved HM ICA algorithm and 

Chen et al. [32] with his pipelining architecture for the FM Zero-Normalized Cross-Correlation (ZNCC) 

algorithm, as well as pipelining multi-row buffering techniques. 

 

Table 5. Tasks implemented in Processing System (PS) component (n=14) 

 

Platform Task Category Description Authors 

MPSoC Image processing Image acquisition, preprocessing, object tracking [29] 

 Image processing Image capture, preprocessing, digital ROI, Kalman filter update and 

prediction steps via Petalinux 

[23] 

 Image processing Reading and displaying of video frames, KCF tracking algorithm [39] 

SoC-

FPGA 

Application specific Image files manipulation [33] 

 Image processing HSA algorithm tasks related to intelligent coordinated decision 

making 

[33] 

 System 

management 

Process flow control, drivers for specific operations  [34] 

 System 

management 

Feeding of video streams to particle filter via Petalinux [27] 

 System 

management 

Image acquisition, interrupt servicing from the programmable logic [26] 

Not specified / not used PS component [19, 22, 

32, 35, 37, 

38] 

 

5.1.3 Development Tools 
 

Regarding the manufacturer’s development platforms usage, the most reported for this review are Xilinx with 

16 items (76.2%) and Intel with the remaining 5 items (23.8%). Regarding FPGA-based platforms, 7 articles 

are FPGA(33.33%), 11 are SoC-FPGA (52.38%), and the remaining 3 articles (14.29%) are MPSoC platforms. 

Of the 21 articles, the most reported platform family is the Xilinx Zynq-7000 with 11 articles (52.38%). Tables 

7-9 show the complete list of reported development boards sorted by FPGA family, boards, and algorithms. 
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Some authors report the use of additional hardware resources. In particular, Engineer et al. [27] reported the 

implementation of the same particle filter algorithm in Zedboard and Virtex-4 FPGA boards. For this review, 

only the Zedboard implementation of this author was considered. On the other hand, Zhai et al. [30] reported 

an NVIDIA Tesla V100 platform was used for training and pruning quantization of their YOLOv3 model, while 

the detection inference was implemented by the SoC-FPGA platform.  

 

The use of programming languages is strongly dependent on manufacturer development tools and the 

researchers technical preferences. For the Intel boards, 2 reported the use of VHDL while the remaining 3 

authors do not mention any specific language. For the case of Xilinx boards, although 4 of 16 authors do not 

report which language was used, the remaining 12 papers report the usage of VHDL, HLS, C, RTL and even 

Python languages for the PS module of SoC-FPGA. 

 

Table 6. Tasks implemented in Programmable Logic (PL) component (n=19) 

 

Platform Task Category Description Authors 

FPGA 

only 

Algorithm 

acceleration 

256 PE's for multiply and accumulate (MAC) operations [20] 

 Algorithm 

acceleration 

LBP model [31] 

 Application specific Top-level FSM, memory MUX and DRAM controller, FSMs for 

DRAM RD and WR operations, softmax layer 

[20] 

 Application specific Camera interface, DDR2 external memory interface, camera 

movement controller, DVI display controller, RS232 controller 

[28] 

 Application specific Controller, frequency counter, table of means, final cluster center 

finder 

[25] 

 Application specific Linux-based hardware control logic for the servo, OV5640 camera 

and HDMI modules, PID algorithm implementation 

[31] 

 Image processing Image preprocessing, subpixel refinement, corner detection, non-

textured filterion, output construction 

[36] 

 Image processing Video acquisition, image thresholding, object localization and 

tracking (mean shift algorithm), video display 

[24] 

 Image processing Object tracking module [28] 

 Image processing Processing entities (PEs) [25] 

MPSoC Algorithm 

acceleration 

YOLOv3 inference [29] 

 Algorithm 

acceleration 

The convolution and pooling layers in SSD model [39] 

 Application specific IMU processing, motor mixer, LIDAR processing, radio acquisition, 

flight controller  

[29] 

 Image processing DPU (deep learning unit): image capture, preprocessing, detection 

and postprocessing, update and predict 

[23] 

SoC-

FPGA 

Algorithm 

acceleration 

Reformulated FastICA expression [34] 

 Algorithm 

acceleration 

ZNCC-based template matching module [32] 

 Algorithm 

acceleration 

Fitness function (ZNCC) [33] 

 Algorithm 

acceleration 

Dynamic neural network with standard floating-point arithmetic units [26] 

 Application specific VGA display module, UART data transmission module [32] 

 Application specific Frame buffer, particle filter implementation on a 4x4 NoC network [27] 

 Application specific VGA controller [37] 

 Image processing Image stream buffer module [32] 

 Image processing Image integrator, spatiotemporal filter, feature map memory bank, 

feature matching block 

[38] 

 Image processing Gaussian filter, the Harris corner detector module, the non-maxima 

suppression module, the iteration process module 

[37] 
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Not specified / not used PL component [19, 22, 

35]  

 

An interesting topic regarding FPGA implementation is related with the usage of MATLAB mathematical 

software as a debugging and evaluation tool. For the reviewed papers of this study, MATLAB is used in 

following scenarios: 

a) As a numerical simulation analysis tool ([22, 34, 36]). 

b) For development of each module, compared with different authors ([19]). 

c) For the evaluation and comparison purposes of the applied metrics to the proposed algorithm ([20, 27]). 

d) As a tool for the transition of the PC-based design to the FPGA implementation (using 

MATLAB/Simulink) ([22]). 

e) For comparison of the system model among PC and FPGA-SoC implementation ([19, 34]). 

f) Other reported but no specified MATLAB usage scenarios ([25, 39]). 

 

 

 

 

Table 7. Reported development platforms and algorithms for FPGA (n=7) 
 

FPGA family 

    Board 

         Algorithm(s) 

Design 

methodology 

Intel Cyclone IV  

Not specified  

Non-textured corner filtering FM* [36] 

Subpixel refinement RM* [36] 

Intel Stratix IV GX  

Altera DE4 Development and Education Board  

Self-organizing map (SOM) neural network DLM [21] 

Xilinx Artix-7  

Nexys-Video Artix-7 FPGA trainer board  

Haar-like features FM* [31] 

Local Binary Pattern Histogram (LBPH) FM* [31] 

You Only Look Once (YOLO v4) CNN DLM* [31] 

Xilinx Spartan-6  

Not specified  

Xilinx Virtex-5  

AMD Virtex 5 FPGA ML510 embedded development platform  

Particle filter MLM* [28] 

Sum of Absolute Differences (SAD) RM* [28] 

Xilinx ML-507 evaluation board  

Mean shift algorithm MLM [24] 

Xilinx Virtex-7  

Xilinx VC709 evaluation board  

ILNET Convolutional neural networks (CNN) DLM[20] 
 

Table 8. Reported development platforms and algorithms for SoC-FPGA (n=11) 
 

FPGA family 

    Board 

         Algorithm(s) 

Design 

methodology 

Intel Cyclone V  

Terasic DE1-SOC FPGA development board  

Adaptive Block Learning (FBS-ABL) MLM* [35] 

Binary Robust Invariant Scalable Keypoints (BRISK) FM* [37] 

Concurrent Zero Mean Normalized Cross-Correlation (ZNCC) FM [32] 

Fast Background Subtraction RM* [35] 

Harris corner detection FM* [37] 

Xilinx Artix-7  
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ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC  

Multidimensional Kalman filter MLM [22] 

Xilinx Zynq-7000  

AMD Zynq 7000 SoC ZC702 Evaluation Kit  

Attractor neural network (ANN) DLM* [26] 

Mean shift algorithm MLM* [26] 

AMD Zynq 7000 SoC ZC706 Evaluation Kit  

Honeybee search algorithm (HSA) MLM* [33] 

Simple elliptic matching FM* [38] 

Spatial 2-D DoG filtering FM* [38] 

Temporal high-pass filtering FM* [38] 

Zero Mean Normalized Cross-Correlation (ZNCC) FM* [33] 

No specified  

You Only Look Once (YOLO v3) CNN DLM [30] 

Xilinx Zedboard  

Background subtraction RM* [34] 

Discriminative scale space tracking (DSST) algorithm MLM [19] 

Independent component analysis (ICA) MLM* [34] 

Scalable particle filter MLM [27] 

 

Table 9. Reported development platforms and algorithms for MPSoC (n=3) 

 

FPGA family 

    Board 

         Algorithm(s) 

Design 

methodology 

Xilinx Zynq Ultrascale+  

AMD Zynq UltraScale+ ZCU102 Evaluation Kit  

Efficent convolutional operators for tracking (ECO) DLM* [23] 

Kalman filter MLM* [23] 

AMD Zynq Ultrascale+ ZCU104 Evaluation kit  

Deep CNN single-shot multibox detector (SSD)  DLM* [39] 

Kernelized correlation filters (KCF) MLM* [39] 

You Only Look Once (YOLO v3) CNN DLM [29] 

 

 

6 What Evaluation Techniques are Used for FPGA-based VOT Systems? 
 

The effectiveness of FPGA-based VOT systems is influenced by various factors and design limitations. 

Evaluation of these systems require robust evaluation techniques to ensure accuracy, speed, and resource 

utilization under different circumstances. Moreover, incorporating VOT algorithms into FPGA-based platforms 

requires meticulous testing based on the selection of evaluation metrics to meet high performance requirements. 

 

Assessing and comparison of tracking algorithms relies on three key elements: the selection or proposal of a 

dataset, the establishment of an evaluation protocol, and the use of performance evaluation metrics [42]. 

 

6.1 Selection or Proposal of a Dataset 

Researchers of the VOT research field utilize a variety of datasets to evaluate the performance of their tracking 

algorithms (see Table 10). Dataset benchmarks are useful tools for defining standardized evaluation criteria and 

procedures to validate VOT systems under different conditions.  

Other relevant datasets are toy datasets. They are a series of video sequences generated by system developers. 

They play a crucial role in FPGA-based accelerated computer vision research, offering tailored data that 

addresses specific requirements and challenges. By tailoring data to specific research objectives and providing 

detailed annotations, these datasets facilitate rigorous experimentation and evaluation, ultimately contributing 

to the development of robust and efficient vision systems for specific scenarios. 
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6.2 Establishment of an Evaluation Protocol. 
 

Evaluation protocols for datasets often involve running tracking algorithms on the dataset sequences and 

computing the specified metrics using ground truth annotations. The most commonly utilized assessment 

techniques include one-pass evaluation (OPE), followed by the long-term oriented temporal resilience 

evaluation (TRE), and spatial resilience assessment (SRE) [22]. 

 

For the previous mentioned datasets, two OPE evaluation protocols were described in detail:  

Kristan et al. [42] realized three experiments. For the first experiment, they tested all trackers across all 

sequences within the VOT2013 dataset. Initialization of the tracker was executed using the ground truth 

bounding boxes. The second experiment replicated experiment 1 but with a variation in initialization: they used 

perturbed bounding boxes instead of using precise ground truth bounding boxes. These perturbations were 

randomly generated, constituting approximately ten percent of the size of the ground truth bounding boxes. 

Finally, for the last experiment, the first experiment was repeated across all sequences, with a modification. 

Color images were converted to grayscale before conducting the tracking evaluation. 

 

Table 10. Relevant dataset benchmarks for FPGA-based systems 

Dataset Year Video sequences Categories 

ALOV++ [3] 2014 315 Light, Surface Cover, Specularity, Transparency, Shape, Motion 

Smoothness, Motion Coherence, Clutter, Confusion, Low Contrast, 

Occlusion, Moving Camera, Zooming Camera, Long Duration 

Cdnet [43] 2014 53 Baseline, Camera Jitter, Dynamic background, Intermittent motion, 

Shadow, Thermal, Bad Weather, Low Framerate, Night video, PTZ, 

Turbulence 

LaSOT [44] 2019 1,400 70 categories 

OTB [1] 2015 100 Illumination Variation, Scale Variation, Occlusion, Deformation, 

Motion Blur, Fast Motion, In-Plane Rotation, Out-of-Plane, Out-of-

View, Background Clutters, Low Resolution 

VOT [42] 2013 60 Occlusion, Illumination change, Motion change, Size change, 

Camera motion 

 

 

For the LaSOT dataset, Fan et al. [44] realized two experiments recommended for machine-learning VOT 

systems: In the first protocol, all 1,400 sequences are used for the assessment of tracking performance. The 

primary objective of this protocol is to facilitate a comprehensive evaluation of trackers on a large scale. The 

second protocol is designed to furnish a substantial collection of videos suitable for both training and evaluating 

trackers concurrently according to the Pareto principle. 

 

It's important to mention that some datasets consider more than one of the mentioned assessment techniques. 

This is particularly relevant in the case of ALOV++ benchmark dataset, which includes the three assessment 

techniques: OPE, TRE and SRE [3]. 

 

6.3 Evaluation Metrics. 
 

The challenge in evaluating visual tracking lies in the diversity of performance measures used by various 

researchers, leading to a lack of consensus on preferred metrics. As an effort to face this situation, Cehovin et 

al. [45] realize an in-depth study of VOT performance measures and propose as main recommended 

performance metrics the accuracy (using average overlap) and the robustness (using failure rate). At this point, 

Babu et al. [22] considers the assessment of tracking performance relies on precision and success rates as key 
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evaluation parameters, besides tracking speed (frame rate) in frames per second. On the other hand, El-Shafie 

and colleagues argue that establishing a distinct metric, such as OTB success AUC, across various designs is 

crucial for ensuring a fair comparison [20]. Other important evaluation metrics reported are recall, F-score, 

mean Average Precision (mAP), and area under curve (AUC). 

 

Regarding FPGA-based platforms, the hardware resources consumption is reported as another comparison 

criteria. Resolution, Frame rate, Power consumption, Area resources usage (LUTs or ALUTs, LEs, DSPs, 

BRAM, FF's, I/O pins, etc.) are some related metrics for this topic. 

 

By selecting and employing the right evaluation techniques, researchers and engineers can gain a 

comprehensive understanding of the performance and capabilities of FPGA-based VOT systems and identify 

areas for improvement. 
 

6.4 Results and Discussion 
 

For this study, a variety of evaluation techniques for FPGA-based VOT systems were reported, including toy 

datasets and dataset benchmarks, as well as evaluation metrics and performance measures. Notable findings are 

described below. 

 

6.4.1 Datasets 
 

For the 21 reviewed papers, the most reported dataset was OTB with 5 (24%) papers, featuring in several studies 

across different architectures and methodologies (see Tables 10, 11 and 12). CDnet and ALOV++ datasets 

appear with 2 (9.6%) and 1 (4.8%) papers respectively. Three papers (14.4%) reported toy datasets: in [36], a 

set of eight different images of 166 x 150 pixels was reported, in [26] sequences of more than one dataset ([22, 

27, 23]), use of video camera sequences instead of dataset sequences ([24, 28]) or even more not reported 

datasets ([19, 31, 32]).  

 

6.4.2 Evaluation Metrics 
 

According to the findings of this study, although there are no standardized evaluation criteria for VOT systems, 

following interesting observations can be mentioned when FPGA-based platforms are considered (see Tables 

11, 12 and 13). For the FPGA platforms, some authors prioritize real-time processing capabilities ([24, 31]) 

while others concentrate on image quality preservation and algorithm robustness ([21, 25]). In the case of 

MPSoC platforms, authors tend to focus on comprehensive performance evaluation encompassing precision 

and success rates ([23, 39]), essential for applications requiring high accuracy and reliability. Finally, SoC-

FPGA platforms exhibit a wide range of evaluated metrics, from computation time to image quality metrics, 

reflecting the multifaceted nature of integrated systems and the need for tailored optimizations to meet 

application-specific requirements. 

 

Table 11. Reported datasets for FPGA only platforms (n=7) 
 

Datasets Evaluated Metrics Design 

methodology 

Dataset generated by authors Feature extraction algorithm robustness RM* [36] 

Dataset of the Weizmann Institute of Science Structural similarity index metric (SSIM) MLM [25] 

Not specified LBP algorithm detection time per frame FM* [31] 

OTB-100 Average computation time, OTB precision,  

OTB success AUC 

DLM [20] 

USC-SIPI image database Maximum peak signal-to-noise ratio (PSNR) DLM [21] 

Video Camera used Computation time for real-time object tracking MLM [24] 

Video Camera used Not specified RM* [28] 

 

Table 12. Reported datasets for SoC-FPGA platforms (n=11) 
 

Datasets Evaluated Metrics Design methodology 
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ALOV++ Average GPU-CPU seconds per frame,  

Average SoC-FPGA seconds per frame, F-score 

FM* [33] 

AVSS-2007, 

CAVIAR-2004,  

PETS-2006 

Root mean square error (RMSE) MLM [27] 

CDnet 2014 Average precision, Average recall,  

Total runtime per frame 

RM* [34] 

 

CDnet 2014 Average precision, Average recall, F-score RM* [35] 

Dataset generated by authors Average computation time,  

Average tracking performance 

FM* [37] 

Dataset generated by authors Computation time for Mean-shift method, Computation 

time for Particle filter method 

MLM* [26] 

MOT-16, OTB-100, UAVDT Precision, Success rate (AUC) MLM [22] 

Not specified Not specified FM [32] 

Not specified Time results for SVD implementation in FPGA MLM [19] 

OTB-100 Average precision FM* [38] 

UADETRAC (modified) Mean average precision (mAP) DLM [30] 

 

Table 13. Reported datasets for MPSoC platforms (n=3) 

 

Datasets Evaluated Metrics Design 

methodology 

Cityscape dataset Not specified DLM [29] 

LaSOT, OTB-100 AUC score, Mean average precision (mAP) MLM* [23] 

OTB-100 Precision rate (PR), Success rate (SR) MLM* [39] 

 

6.4.3 Performance Measures 
 

Table 14 shows the analysis of performance measures across FPGA, MPSoC, and SoC-FPGA platforms for the 

reviewed papers of this work. The selected performance measures show an elemental comparison between 

reported VOT systems: tracking speed (in frames per second, fps), image resolution (in pixels) and power 

consumption (in Watts, W). Notably, despite its relevance, eleven papers do not report one or more of these 

measures. These FPGA implementations exhibit diverse tracking speeds and resolutions, ranging from 13.42 

fps to 8771 fps and from 300x420 to 1920x1080, respectively. Regarding the reported maxima measure of 8771 

fps, this paper ([25]) uses a parallelization with an approximate computing technique to reach this performance. 

Finally, for power consumption measure, although this is the measure less reported with just 12 cases, its 

reported range goes from 24mW to 12.51W, indicating a variance in the focus on power efficiency across 

different research endeavors. 

 

Table 14. Performance measures (n=21) 

 

Platform Design 

metho-dology 

Authors Tracking speed 

(frames per 

second, fps) 

Max. reported 

resolution 

(width) 

Max. reported 

resolution 

(height) 

Power 

consumption 

(W) 

FPGA 

only 

RM* [36] 44 1920 1080 Not specified 

RM* [28] 303 720 576 Not specified 

FM* [31] 30 1024 768 Not specified 

MLM [24] 60 640 480 3.15 

MLM [25] 8771 300 420 Not specified 

DLM [20] 44 Not specified Not specified Not specified 

DLM [21] 434 640 480 Not specified 

MPSoC MLM* [23] 13.42 1920 1080 4 

 MLM* [39] 36.2 Not specified Not specified Not specified 

 DLM [29] 27 320 240 8.39 

SoC-

FPGA 

RM* [34] Not specified 320 200 4.2 
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 RM* [35] 83 320 240 Not specified 

 FM [32] Not specified 640 480 Not specified 

 FM* [38] 600 320 240 0.768 

 FM* [37] 60 640 480 0.024 

 FM* [33] 27 480 360 5 

 MLM [22] 91 Not specified Not specified 0.78 

 MLM [27] 348 320 240 0.6 

 MLM [19] 25.38 320 240 1.92 

 MLM* [26] 30 1024 768 0.03 

 DLM [30] 91.65 416 416 12.51 

 

7 Conclusions and Perspectives 
 

In recent years, there has been a rise in the prominence of FPGA technologies, showing promising potential 

and capabilities for implementing a variety of systems, from autonomous systems to edge computing 

applications ([12, 46]). In this review, an analysis of the 21 selected articles regarding design methodologies, 

hardware implementations and evaluation techniques was performed, in order to propose an insight of the major 

perspectives of the FPGA-based VOT systems. According to our research, replication of some approaches may 

be difficult due to the lack of detailed information. 

 

The analysis focused on algorithm-based design methodologies from the selected papers reveals a significant 

trend towards hybrid systems, particularly in utilizing two or more algorithms to overcome limitations inherent 

non-hybrid methodologies In particular, most of the reported algorithms belong to the MLM categories, closely 

followed by the FM and DLM categories, with the RM and FM algorithms being mostly part of hybrid systems. 

In particular, a variety of algorithms for VOT were reported, including Kalman filter, Mean shift, and YOLO-

based CNNs with offline training. It is worth mentioning that selecting algorithms based on object 

characteristics would be a challenging design and implementation task, due to the computational resources 

available in FPGA platforms. 

 

Regarding the implementation of high-performance FPGA-based VOT systems, the choice of FPGA-based 

platform would heavily depend on the specific requirements of the application, considering factors such as real-

time performance, precision, computational efficiency, and power constraints. HW/SW co-design approach is 

used to optimize the performance of these systems, although this is not detailed in several works. VHDL is 

commonly used for Intel boards and a mix of VHDL, HLS, C, RTL, and Python for Xilinx boards. In addition, 

MATLAB is frequently utilized for numerical simulation, algorithm evaluation, and transition from PC-based 

to FPGA implementation.  

 

FPGA components from different platforms are mainly used for computing-intensive tasks, such as pixel-level 

operations and high data transfer between different architectures. Moreover, optimization techniques such as 

pipelining and parallelism are widely employed to enhance speed and efficiency.  

Evaluation techniques are crucial in the VOT systems development. OTB dataset was the most commonly used, 

followed by CDnet and ALOV++ datasets. Some papers reported datasets generated by the authors (toy 

datasets). Relevant metrics reported hierarchically are precision, recall, frames per second, among others. 

Regarding FPGA performance measures such as speed, image resolution, and power consumption are reported.  

 

Overall, this review generates the following recommendations and perspectives to provide an overview in 

different aspects to the community interested in the development of FPGA-based VOT systems. 

 

Careful selection of algorithms based on criteria such as characteristics of the objects being tracked, available 

computational resources, and environmental conditions is recommended to address the complexity of VOT 

problems. It is important to leverage the complementary strengths of various algorithms as part of a hybrid 

methodologies to achieve superior performance and adaptability in real-world scenarios.  

 

Generally speaking, the SoC-FPGA platforms are more suitable for developing FPGA-based VOT system 

proposals compared to FPGA and MPSoC platforms, due to their HW flexibility and scalability, software 
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development alternatives at different levels of abstraction or approaches, technical support, and affordable cost. 

However, it is important to mention that limited computing resources, power consumption, learning curve, and 

financial constraints might present issues in VOT implementation. For perspective, an in-depth analysis of 

different FPGA-based VOT systems will provide additional insights into the advantages and disadvantages of 

using different FPGA-based platforms.  

 

Dataset benchmarks and toy datasets have specific evaluation purposes at different stages of VOT development. 

Nevertheless, dataset benchmarks provide additional efficient tools for VOT system validation against relevant 

state-of-the-art trackers. Therefore, the recommendation is to select specific video sequences included in dataset 

benchmarks to evaluate the performance of novel FPGA-based VOT systems considering the constraints of 

custom design. In perspective, future research should focus on emphasizing the standardization of datasets, 

metrics and measurements to refine the evaluation techniques of FPGA-based VOT systems. 
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