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Abstract. The classic combinatorial optimization problems 

belonging to the NP-hard class is the quadratic assignment 

problem. The interest in solving the problem lies in its high 
computational complexity, as well as its applications in logistics, 

gate assignment in airports, among others. In this work, the 

Greedy Random Adaptive Search Procedure metaheuristic was 
implemented to find its solutions. The main contribution of this 

work is the adaptation of a neighborhood structure contained in k-

exchanges in the post-processing phase. The tests were performed 
for 29 large-scale instances whose dimensions range from 64 to 

254 taken from the QAPLIB. The approximate solutions were 

found through a metaheuristic that bases its search on 
neighborhoods and local search algorithms. Java was the 

programming language used for the implementation of 

metaheuristics; its execution allowed balancing the parameters to 
obtain competitive results with respect to the values known in 

literature. The results reported achieved the proposed objectives.  
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1 Introduction 
 

Within the literature there are algorithms proposed to solve various problems, whether for industrial sectors within their daily 

operations or for science and research, whatever the application of the algorithms, they allow the efficiency of operations. in 

different areas. Algorithms, also called heuristic or metaheuristic methods, are basically elements that consist of finding or 

discovering an appropriate algorithm to solve optimization problems. Currently the word optimization is constantly used to refer 

to the fact of finding an improvement in a process, on the other hand, in contexts such as science and research go beyond the 

simple fact of improving, since it focuses on finding the best solution for a specific problem. 

 

Optimization problems can present diverse solutions, but a criterion must be established to eliminate possibilities and find the best 

possible solution. In this way, optimization problems are formulated to find the value of decision variables subject to restrictions 

that determine their value, in addition to an objective function to determine a maximum or minimum value within the operation. 

The most general case of the optimization problem can be written as: 

 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒     𝑧 = 𝑓(𝑥) 

 

(1) 

𝑠𝑢𝑏𝑗𝑒𝑡𝑐 𝑡𝑜  𝑥 ∈ Ω. 

 
 

 

Where 𝑧 is the objective function in equation 1, Ω is the set of feasible solutions and f is a real function called the objective 

function that associates each feasible solution 𝑥 ∈ Ω with a cost 𝑓(𝑥). 
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The word optimize can be changed to minimize or maximize. In the case of the minimization problem, a global minimum is 

sought, that is, a solution 𝑥∗ ∈ Ω such that 𝑓(𝑥∗) ≤ 𝑓(𝑥), ∀𝑥 ∈ Ω and in the case of the maximization problem, searches for a 

global maximum, that is, a solution 𝑥∗ ∈ Ω such that 𝑓(𝑥∗) ≥ 𝑓(𝑥), ∀𝑥 ∈ Ω. 

 
Optimization problems are commonly classified into two classes, one when the mathematical model has continuous variables that 

take real values, and its feasibility space is infinite and the other has discrete variables that take integer values, and its feasibility 

space can be of finite cardinality.  

 

It is mentioned that it is a combinatorial optimization problem (COP), if the decision variables only admit integer values and its 

solution space is formed by permutations or subsets of natural numbers. Therefore, a COP is a discrete optimization problem. 

Various combinatorial optimization problems can be stated as integer programming problems and solved using exact integer 

programming methods such as Branch and Bound. However, such formulations sometimes involve endless variables and 

constraints, and although several of these methods have demonstrated their theoretical convergence, they cannot cope with very 

large problems, which are generally those that arise in real-life practice. One of the main problems with integer programming is 

that the feasibility region is not convex, so there is no guarantee that an integer problem can be solved in a reasonable time for a 

computer. 

 

Within the combinatorial optimization problems there is a class of problems of high computational complexity known as NP-hard 

(Sahni and González, 1976) for which there is no known efficient algorithm that can solve it in polynomial time and given the 

inefficiency of the methods. To solve this type of problem, approximation methods called Metaheuristics (MH) are used. In 

general, MHs are general-purpose algorithms that guide a heuristic in the search for solutions in strategic regions of the feasibility 

space. The search strategies most used in MH are by neighborhoods or by populations with an approach inspired by natural 

processes. 

 

This work focuses on a solution search method using neighborhoods for which it will be said that the neighborhood of a solution 

𝑥 ∈ Ω is a subset 𝑁(𝑥) = {𝑥1, 𝑥2, ⋯ 𝑥𝑝} ⊆ Ω, each solution can reach to a 𝑁(𝑥) from x using an operator called move. This work 

focuses on the search for solutions to the Quadratic Assignment Problem (QAP), through the well-known Greedy Randomized 

Adaptive Search Procedure (GRASP) metaheuristic procedures (Resende and Ribeiro, 2016). QAP consists of finding an optimal 

allocation between 𝑛 facilities and 𝑛 locations considering the distance between the locations and the flow of materials between 

the facilities so that the cost of material transportation is minimized. The QAP is a classic combinatorial optimization problem 

and is classified as NP-hard. 

 

The main objective of this work is the adaptation of neighborhood structures in the post-processing phase of GRASP to compare 

the best-known value (VMC) against the result of the best-found value (VME). With the results that are intended to be found, it 

will be possible to visualize and verify if the implemented procedure is considered a robust metaheuristic to solve this type of 

problems. Furthermore, the efficiency of GRASP was analyzed by running two sets of parameters, the first with 
{𝛼 = 0.2, 𝛽 = 0.2} and the second with {𝛼 = 0.5, 𝛽 = 0.1}. 

 

The tests were carried out on 29 instances, 2 by B. Eschermann and H.J. Wunderlich, 8 by Y. Li and P.M. Pardalos, 10 for Skorin 

Kapov, 6 for E.D. Taillard, one for U.W. Thonemann and A. Bölte and 2 for M.R. Wilhelm and T.L. Ward, taken from the 

QAPLIB library (Burkard et al, 2024). The proposed objective is to find approximate solutions to those reported in the literature 

using metaheuristic procedures as a class of approximation methods designed to solve difficult combinatorial optimization 

problems (Díaz et al, 1996). 

 

Optimization problems are based on choosing the best configuration among a set of feasible solutions to achieve an objective 

(Cela, 1995) and are divided into two categories: problems with continuous and discrete variables. For this case, the second 

category will be taken, which attempts to find an objective that is selected within a finite and discrete set, an integer, a set of 

integers, a permutation or a graph. The two types of problems have different solution methods; However, combinatorial 

optimization problems belong to the second category (Cela, 1995) as an example, the Greedy Random Adaptive Search Procedure 

(GRASP). 

 

GRASP is an iterative procedure where each step consists of a construction phase and an improvement phase. In the construction 

phase, a constructive heuristic procedure is applied to obtain a good initial solution. This solution is improved in the second phase 

using a local search algorithm. The best of all the solutions examined is the result of (Li et al, 1994) and (Resende, Pardalos and 

Li, 1996). The improvement phase could be a simplified local search or apply another metaheuristic to form hybrid algorithms. 
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Other metaheuristics can be used as mentioned above such as: Variable Neighborhood Search (VNS), Taboo Search (TS), genetic 

algorithms (GA) among others (Resende and Ribeiro, 2016). 

 

The main contribution of this work is based on experimentation and analysis of the results of the method, obtaining a good initial 

solution and improving it later. 

This article is organized as follows: Section 1 addresses an introduction to the work; section 2 presents related work. In section 3, 

the formulation of the quadratic assignment problem is described, in section 4, the metaheuristic is shown, in section 4.1 GRASP 

is defined, in section 4.2 the implementation of GRASP to QAP is located. Section 5 contains the results and discussion; section 

6 contains conclusions and future work. Finally, in section 7 references. 

 

2 Related work 

 
The Quadratic Allocation Problem (QAP) is a combinatorial optimization problem that consists of finding an optimal allocation 

of n resources to n locations to minimize the transportation cost. Additionally, two matrices are needed, one for the requirements 

of the units to be transported and the Second is the cost of transportation per unit between locations. 

 

The QAP was proposed by (Koopmans and Beckmann, 1957). Subsequently, two decades later, it was shown that the QAP is NP-

hard (Sahni and González, 1976). So far, optimal solutions have been found using exact methods for instances of size 30 

(Roucairol, 1987). QAP is used in multiple applications such as: computer keyboard design, production scheduling, airport 

terminal design and communication processes. An exact branching and bounding algorithm with some variants has been used to 

solve the QAP that was presented by (Roucairol, 1987), however, recently solutions were proposed with different metaheuristic 

techniques such as in (Zhou, Hao and Duval, 2020), (Hafiz and Abdennour, 2016): genetic algorithms, simulated annealing, tabu 

search (Skarin-kapov, 1990) and GRASP (Li et al, 1994), (Chmiel et at, 2017). In (Pardalos et al, 1995) they implemented GRASP 

in parallel to solve the QAP. 

 

Other works related to the search for QAP solutions are based on the particle swarm algorithm, operator recombination for genetic 

algorithms and stall-aware cooperative parallel to local search (Aksan, Dokeroglu and Cosar, 2017), (Tosun, 2014), (Obdelkafi et 

al, 2016). QAP in large instances is a notoriously difficult problem to find a solution and the performance of metaheuristic 

algorithms varies, as mentioned in (Saifullah Hussin and Stützle, 2014) where two algorithms are compared with results that 

depend on the size of the problem. 

 

In (Kumar,Sahu and Mitra, 2021) simulated annealing algorithms, genetic algorithms, iterated local search, tabu search are 

implemented and compared to solve the QAP for large instances. Another example of parallel processing can be seen in 

(Dokeroglu, Sevenic and Cosar, 2019) where the metaheuristic is implemented with tabu search to work with large QAP instances. 

Recently, some algorithms such as NSGA-II combined in parallel with Greedy have been used to provide a solution to the multi-

objective QAP problem. On the other hand, in recent years algorithms inspired by nature have been applied, such as the Intelligent 

optimization algorithm (IOA), which has been used by different researchers to provide a quality solution to QAP applications 

(Dokeroglu, Sevenic and Cosar, 2019). 

 

Within the research activities and especially in the challenges to solve optimization problems as well as the design of hybrid 

metaheuristics to apply them to the QAP, there is the challenge to establish an appropriate diversification of procedure to facilitate 

efficiency in the search for solutions. to said problem. For this reason, intensive work has been done on a parallel memetic iterated 

tabu search (PMITS) metaheuristic to solve the QAP and its variants. Furthermore, it has been seen that extending the non-parallel 

PMITS iterations improves sequential performance by adding a modified uniform random version of a crossover operator to a 

parallel environment (Silva et al., 2021) to solve the most difficult instances of the QAPLIB (Burkard et al., 2024). 

 

On the other hand, the development of hybrid methods applied to facility layout problems(FLP) using discrete differential 

evolution algorithms(DDE) to solve the QAP, which aim to find the root where the problems tend to get worse to provide the best 

solution, once the problem is found, then an algorithm combining DDE algorithms and tabu search (TS) is proposed to facilitate 

the exploration of the mechanism in the DDE algorithm and provide optimal solutions (Hameed, Asaad Shakir et al., 2021) 

 

3 Formulation for the Quadratic Assignment Problem 
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QAP consists of finding an optimal allocation that minimizes the cost of transporting materials, between n facilities in n locations, 

considering the distance between locations and the flow of materials between facilities. The QAP can be formulated using a 

combinatorial optimization model (Resende, Pardalos and Li, 1996). 

Given a set of 𝑁 = {1,2 … , 𝑛} and two asymmetric matrices of size 𝑛 𝑥 𝑛 where: 𝐹 = (𝑓𝑖𝑗) and 𝐷 = (𝑑𝑘𝑙), a permutation of         

𝑝 ∊ ∏𝑁 that must be found to minimize. 

 

∑ ∑ 𝑓𝑖𝑗𝑑𝑝(𝑖)𝑝(𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

 

(2) 

 

Where ∏𝑁 is the set of all permutations of 𝑁 and 𝐹 is the material flow matrix between the facilities and 𝐷 is the distance matrix 

between locations 𝑖, 𝑗, 𝑘, 𝑙 = 1, ⋯ , 𝑛. As shown in equation 2. 

There are other mathematical formulations for this type of problem, for example, expressed as a binary integer programming 

problem like the following: 

min ∑ ∑ ∑ ∑ 𝐶𝑖,𝑗,𝑘,𝑙

𝑙≠𝑗𝑘>𝑖𝑗𝑖

𝑥𝑖,𝑗𝑥𝑘,𝑙 

 

(3) 

Subject to: 

∑ 𝑥𝑖𝑗  

𝑛

𝑖=1

= 1, (𝑗 = 1,2, … , 𝑛) 

 

(4) 

∑ 𝑥𝑖𝑗  

𝑛

𝑗=1

= 1, (𝑖 = 1,2, … , 𝑛) 

 

(5) 

𝑥𝑖𝑗 = 0,1  (𝑖, 𝑗 = 1,2, … , 𝑛) 

 
(6) 

 

The equation 3 is the objective function of binary problem, the next equation 4, 5, indicates that each node corresponds to one 

installation and each installation has only one location. Equation 6 indicates that the variables are binary. 

 

The previous objective function is very difficult to display, so it is easier to use the following equivalence: 

 

𝑡𝑟(𝐹𝑋𝐷𝑋𝑡) =  ∑ ∑ ∑ ∑ 𝐶𝑖,𝑗,𝑘,𝑙

𝑙≠𝑗𝑘>𝑖𝑗𝑖

𝑥𝑖,𝑗𝑥𝑘,𝑙  

 

 

(7) 

The above means the trace of this product of matrices where X is the matrix of binary variables. This approach is easier to develop 

with the solver add-in in Excel. 

 

4 Metaheuristic 
 

The main drawback that heuristic techniques face is the existence of local optima that are not absolute. If during the search there 

is a local optimum, the heuristic would not be able to continue the process and would be “stuck” at the same point. To solve the 

problem, it is recommended to restart the search from another initial solution and verify that the new search explores other paths 

(Resende and Ribeiro, 2016). 

 

Most combinatorial optimization problems are specific problems, so a heuristic technique algorithm that works for one problem 

is sometimes not useful for solving other problems. However, in recent times, general-purpose heuristics called metaheuristics 

have been developed that attempt to solve the above drawbacks. Most metaheuristics are developed with neighborhood search 

methods (Resende and Ribeiro, 2016). 
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The word metaheuristic was coined (Díaz et al, 1996) and the term Taboo Search emerged (1986). A metaheuristic is a master 

strategy that guides and modifies other heuristics to generate better solutions than those typically presented by other methods 

(Mishmast and Gelareh, 2007). 

 

There are different successful metaheuristics in solving combinatorial problems. The Greedy Randomized Adaptive Search 

Problem (GRASP) metaheuristic is one of the most recent techniques. It was originally developed (Feo and Resendes, 1995) at 

the time of studying coverage problems of high combinatorial complexity (Li et al, 1994). Each iteration in GRASP generally 

consists of two steps: the construction phase and the local search procedure. In the first stage, an initial solution is built, which is 

subsequently improved through post-processing to perfect the solution obtained in the first stage until a local optimum is obtained.  

There are works where this metaheuristic is applied to optimization problems in big data (Palmieri et al, 2016). In addition, there 

are other variants such as: GRASP-path relinking, GRASP-reactive, GRASP-parallel, GRASP-hybrids, with some other 

metaheuristics whose search is based on neighborhoods (Festas and Resendes, 2011). 

 

4.1 Greedy Randomized Adaptive Search Problem (GRASP) 
 

A GRASP is an iterative process, each iteration consists of two phases: the construction phase and the local search procedure. In 

the first, an initial feasible solution is constructed, in the second, called post-processing, an initial permutation obtained from the 

construction is implemented through a local search applied, subsequently it is improved through an exchange procedure until a 

local optimum is obtained. (Koopmans and Beckmann, 1957). Once the two phases have been executed, the solution obtained is 

stored and another iteration is carried out, each time saving the best solution found at that moment. 

An algorithm that exemplifies metaheuristics is shown in Figure 1. 

 
Procedure GRASP 

InstanceEntry (); 

While(criterion not satisfied) do 

        Phase 1 Solution 

Construction (); 

       Phase 2 post-processing (); 

       Update Solution (); 

End  

Go back (Best solution) 

End  

 

Fig. 1. GRASP Generic Pseudocode. Source (Li et al, 1994). 

 

 

The overview of the main components of GRASP are: The Greedy component that uses a myopic algorithm for the selection of 

components that guide the construction of solutions, the Random used for random selections from a list of elite candidates that 

determine the path of the search, the Adaptive has the mission of updating each result obtained from the components of the solution 

that is built (El Mouayani et al., 2019). 

 

4.2 GRASP for the Quadratic Assignment Problem (QAP) 
 

Some researchers have used the GRASP design to solve the QAP in different cases (Díaz et al, 1996), (Resende, Pardalos and Li, 

1996), (Sahni and González, 1976). It should be noted that the solutions are a permutation of length n, summarizing the procedure 

as follows: Initial construction phase: stage 1, generation of a list of candidates, which has previously been restricted by two 

parameters 𝛼 𝑎𝑛𝑑 𝛽, then, randomly one is taken from these candidates from which the first two assignments are derived. Stage 

2, the remaining 𝑛 − 2 mappings are added relative to the Greedy procedure, once the process is complete, the permutation is 

completed, producing a feasible solution. Improvement phase 2: the solution generated from phase 1 is taken as the initial solution 

of some local search procedure, at the end of the procedure a local optimal solution will be obtained, which could also be the 

global optimal one. 

 

The neighborhood structure used is: 2-exchange, which consists of an initial solution of  𝑆0, generating a neighborhood with 

cardinality 𝐶𝑘
𝑛. The k-exchange neighborhood structure has been used in permutation search problems such as the traveling agent 
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problem, the graph partitioning problem, among others. The 2-exchange neighborhood structure has achieved good results, if 

  𝑘 ≥ 3 the search could have a high computational cost (Resende and Ribeiro, 2016). An example of the neighborhood of 𝑛 = 5 

is shown in table 1: 

 

𝐶2
5 =

5!

(5 − 2)! 2!
=

5 ∗ 4

2
= 10  (8) 

 

Table 1. Neighborhood 2- exchange of initial solution 𝑆0 for Nugent 5 matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In practice the flow matrices are taken as well as the distance matrix and their elements are listed separately. the flows are ordered 

from largest to smallest and the distances from smallest to largest, both lists are restricted with a parameter of 0 < α < 1, and are 

multiplied generating a new list of elements of the form 𝑓𝑖𝑗*𝑑𝑘𝑙that contain large flows and short distances. 

 

This list is restricted with a parameter 0 < 𝛽 < 1, with these operations a restricted list of candidates (RLC) is obtained, from this 

list an element of the form𝑓𝑖𝑗*𝑑𝑘𝑙  is randomly selected, producing the first assignment pair (𝑖 , 𝑘), (𝑗, 𝑙), interpreted as facility 𝑘 

is assigned to location 𝑖 and facility 𝑙 is assigned to location 𝑗. Finally, there are 𝑛 − 2 components left to assign, again with a 

greedy the 𝐶𝑖𝑘costs are calculated with respect to the 2 assignments against the remaining possible assignments, another RLC is 

formed and one of these candidates is selected, thereby generating the third assignment and so on. successively until completing 

the permutation of n components called initial solution 𝑆0which is submitted to phase 2, called post-processing phase, completing 

an iteration of GRASP (Riffi, Saju and Barkatou, 2017).  

 

5 Results and discussion 
 

This section shows the results produced by running the GRASP metaheuristic for 36 instances extracted from the QAPLIB library 

(Burkard et al, 2024) to show the efficiency of the proposed methodology since the instances vary in size ranging from 𝑛 = 20 to 

𝑛 = 256, considered large-scale instances. To constrain the LRC, GRASP was first run with the parameters of 𝛼 = 0.2 and 𝛽 =
0.2, then processed a second time with the parameters of 𝛼 = 0.5 and 𝛽 = 0.1 (Li et al, 1994). The purpose of the experiment is 

to observe the efficiency of GRASP with variations in the RLC parameters.  

 

Table 2 shows the largest instances of the experiment, later in Table 3 the instances of considerable size of the same case are 

presented. Below is the following table with the aforementioned values. 

 

 

 

Neighborhood 2-exchange related to 𝑆0 

  Permutation Obj. function 

𝑆0 5 1 4 2 3 45 

𝑆1 1 5 4 2 3 41 

𝑆2 4 1 5 2 3 38 

𝑆3 2 1 4 5 3 35 

𝑆4 3 1 4 2 5 39 

𝑆5 5 4 1 2 3 39 

𝑆6 5 2 4 1 3 38 

𝑆7 5 3 4 2 1 33 

𝑆8 5 1 2 4 3 35 

𝑆9 5 1 3 2 4 40 

𝑆10 5 1 4 3 2 45 
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Table 2. The results presented are for a set of 29 instances of dimensions from 60 to 256 

 

Instances BVF BKVF1  GAP1  CPUT1 BKVF2 GAP2  CPUT2  

esc 64a 116 116 0.00 16194 116 0.00 17422 

esc128 64 64 0.00 289358 64 0.00 278097 

Lipa 60a 107218 108136 0.86 31230 108132 0.85 31688 

Lipa 60 b 2520135 3007542 19.34 26586 3006630 19.30 39909 

Lipa70 a 169755 170930 0.69 60449 170968 0.71 60414 

Lipa 70 b 4603200 4614766 0.25 46703 4614766 0.25 50074 

Lipa 80 a 253195 254930 0.69 116748 254928 0.68 96351 

Lipa 80 b 7763962 9388572 20.93 77328 9398638 21.05 152594 

Lipa 90 a 360630 360630 0.00 151700 360632 0.00 152587 

Lipa 90 b 12490441 15154028 21.33 121205 15163102 21.40 129387 

sko 64 48498 49014 1.06 60200 49066 1.17 69899 

Sko72 66256 66728 0.71 116687 66744 0.74 114110 

Sko 81 90998 91820 0.90 455312 91970 1.07 156591 

Sko 90 115534 116654 0.97 316722 116646 0.96 246604 

Sko 100 a 152002 153150 0.76 402552 153282 0.84 381774 

Sko 100 b 153890 155344 0.94 377645 155032 0.74 379244 

Sko 100 c 147862 155032 4.85 379244 149398 1.04 378249 

Sko 100 d 149576 150990 0.95 369676 150272 0.47 414197 

Sko 100 e 149150 150674 1.02 377337 150444 0.87 377573 

Sko 100 f 149036 150430 0.94 365562 150444 0.94 410407 

Tai 60 a 7205962 7438638 3.23 25455 7445042 3.32 26845 

Tai 64c 1855928 1855919 0.00 18817 1855919 0.00 26845 

Tai 80 a 13499184 13865020 2.71 18817 13915442 3.08 74053 

Tai 80 b 818415043 818415043 0.00 152698 818415043 0.00 152594 

Tai 150  498896643 498896643 0.00 144817 498912784 0.003  145599 

Tai 256 44759294 44890864 0.29 377645 44906536 0.33 379244 

Tho 150 8133398 8147865 0.18 377645 8137865 0.05 383645 

Wil 100 273038 274312 0.47 466797 274312 0.47 389396 

Wil 50 48816 49010 0.40 23901 49034 0.45 23351 

 

Table 2 shows the results of the experiment, as well as the instances of Lipa from 60 to 90, Sko from 64 to 100, Tai from 60 to 

256, Tho 150 and Wil from 50 to 100. The first column shows the test instances, the second, with the header BVF contains the 

best value found, then the 3 columns best known value found (BKVF1) and 4 GAP1 corresponds to GRASP with parameters of 

α=0.2 and β=0.2, the fifth column represents the CPUT1 computing time. Finally, columns 6 BKVF2 and 7 GAP2 are from 

GRASP with parameters of α=0.5 and β=0.1, the computation time is shown in the last column. 
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Table 3. The results presented are for Nugent instances of dimensions from 20 to 30 

 

Instances BVF BKVF1  GAP1  CPUT1 BKVF2 GAP2  CPUT2  

Nug 20 2570 2594 0.9 8.904 2570 0.0 0.67 

Nug 22 3596 3596 0.0 7.833 3596 0.0 3.596 

Nug 24 3488 3488 0.0 10.253 3496 0.2 3.488 

Nug 25 3744 3746 0.1 7.759 3748 0.1 3.926 

Nug 27 5234 5234 0.0 7.981 5236 0.0 5.236 

Nug 28 5166 5182 0.3 7.013 5178 0.2 5.178 

Nug 30 6124 6136 0.2 7.248 6156 0.5 6.156 

 

Table 3 shows the following: the first column shows the test instances, the second, with the header BVF contains the best value 

found, then the 3 columns best known value found (BKVF1) and 4 GAP1 corresponds to GRASP with parameters of α=0.2 and 

β=0.2, the fifth column represents the CPUT1 computing time. Finally, columns 6 BKVF2 and 7 GAP2 are from GRASP with 

parameters of α=0.5 and β=0.1, the computation time is shown in the last column. 

 

It can be seen in the results within table 2 in the GAP1 column that for the sets executed with the parameters of 𝛼 = 0.2, 𝛽 = 0.2 

the percentage of error with respect to the BVF and the BKVF1,2, of 9 instances was 0.0%, 12 cases ranging from 0.40% to 0.97%, 

the error being less than 1%. On the other hand, an error of 1% was obtained for 2 instances, for the Sko c and Tai 60 a, 80a 

matrices, the error ranges between 2% and 3% finally, the Lipa 60b, 80b, 90b instances, which have the percentages The highest 

error rates range from 19% to 21% due to its nature as it is a larger scale instance. 

 

Regarding the parameters of 𝛼 = 0.5, 𝛽 = 0.1 in the GAP2 column, it was found that again 9 instances share the error percentage 

of 0.0%, likewise, 12 instances have an error less than 1%, there was an increase of two to three instances with a value of 1%, 

decreasing to two instances with error percentages of 3%. The instances that remained with the same error percentage of 19% to 

21% were Lipa 60b, 80b, 90b. 

 

For the 29 instances, it is observed that 72% of the test sets have a gap of 0 < GAP < 1, the remaining 28% includes the rest of 

the instances. Therefore, and according to the data provided, it is shown that the implementation of GRASP is efficient and at the 

same time robust (see figure 2). 

 

 
 

Fig. 2. Gap comparison between the 29 instances 
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The average computing time for each instance is compared, the results show the efficiency of the strategy for all cases as seen in 

figure 3. 

It is worth mentioning that the program in use was designed in the JAVA programming language, so the experiment was processed 

on an Intel Evo Core i5 computer with an average computing time of 189832.7 milliseconds and with a difference in the maximum 

time in relation to the minimum. of 450603 milliseconds for the parameter 𝛼 = 0.2, 𝛽 = 0.2. Finally, for the parameters 𝛼 =
0.5, 𝛽 = 0.1, the average computing time was 190750 milliseconds with a difference between the maximum and minimum time 

of 396775 milliseconds. 

 

 
 

Fig. 3. CPUT comparison between the 29 instances 

 

As indicated at the beginning of this section, another experiment was used with Nugent's matrices. The results obtained for these 

instances of considerable size are shown in Figures 4 and 5. Figure 4 shows the performance of the algorithm for different 

parameters of α and β. It is observed that matrices of moderate size ranging from 𝑛 =  20 to 𝑛 = 30 have lower variability in 

error, except in 𝑛 =  20 and 𝑛 = 30, so it is stated that the algorithm remains robust to the small changes shown. 

 

 
 

Fig. 4. Nugent Gap comparison 

 

Figure 5, it is shown that the algorithm executed with the parameters α= 0.5 and β= 0.1 presents better performance in the CPUT 

time, reaching a balance in relation to the GAP. 
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Fig. 5. Nugent CPUT comparison 

 

6 Conclusions and future work 
 

As indicated at the beginning of this document, the main objective of this work is the adaptation of the structures of a neighborhood 

in the post-processing phase of GRASP to compare the best value found (BVF) against the result of the best-known value found 

(BKVF). With the results that are intended to be obtained, it will be possible to visualize and verify if the implemented procedure 

is considered a robust metaheuristic to solve this type of problems. 

 

In this work, the implementation of a well-known GRASP metaheuristic in a JAVA programming language for the search for 

approximate solutions for a well-known classical COP, NP-hard QAP, has been discussed. The search is carried out through a 2-

exchange neighborhood structure. Tests were performed for a wide range of large-scale instances taken from QAPLIB (Burkard 

et al, 2024) with two separate parameter sets to constrain the RLC component of GRASP in order to show variation in the 

efficiency of this approach.  For the 29 instances, it is observed that 72% of the test sets have a gap of 0 < 𝐺𝐴𝑃 < 1, the remaining 

28% includes the other instances. Therefore, and according to the data provided, it is shown that the implementation of GRASP 

is efficient and at the same time robust. Based on the discussion of the results in section 5, we claim the robust nature of this work 

and that the RLC cuts help in the construction phase to produce high-quality solutions to minimize the effort of the post-processing 

phase. As future work, we will consider introducing a combination of GRASP with recently created bioinspired MH such as Gray 

Wolf Optimizer – (GWO), Firefly Algorithm (FA) and harmonic search among others. 
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